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Notice

THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR CERTIFIED BY 
ANY GOVERNMENT AGENCY OR INDUSTRY REGULATORY ORGANIZATION OR 
ANY OTHER THIRD PARTY. THE PROGRAMS SHOULD NOT BE RELIED ON AS 
THE SOLE BASIS TO SOLVE A PROBLEM WHOSE INCORRECT SOLUTION 
COULD RESULT IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE 
NOT DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE FOR 
USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR OTHER 
INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF WHICH CAN 
REASONABLY BE EXPECTED TO CAUSE DEATH OR PERSONAL INJURY OR 
PROPERTY OR ENVIRONMENTAL DAMAGE. LICENSEE AGREES THAT PRIOR 
TO USING, INCORPORATING OR DISTRIBUTING THE PROGRAMS IN ANY 
PRODUCT, IT WILL THOROUGHLY TEST THE PRODUCT AND THE 
FUNCTIONALITY OF THE PROGRAMS IN THAT PRODUCT AND BE SOLELY 
RESPONSIBLE FOR ANY PROBLEMS OR FAILURES.
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Getting Started

The Aerospace Blockset lets you model aerospace systems for use with Simulink® and MATLAB®.

What Is the Aerospace Blockset? (p. 1-2) Introduction to the Aerospace Blockset and the 
Simulink environment

Related Products (p. 1-3) Products you might want to use with the Aerospace 
Blockset and requirements for virtual reality 
visualization

Running a Demo Model (p. 1-4) Learn how to run an aerospace model in Simulink, 
examine the results, and modify the model settings 
and parameters

Learning More (p. 1-16) Where to get online help
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What Is the Aerospace Blockset?
The Aerospace Blockset brings the full power of Simulink to aerospace system 
design, integration, and simulation by providing key aerospace subsystems 
and components in the adaptable Simulink block format. From environmental 
models to equations of motion, from gain scheduling to animation, the blockset 
gives you the core components to assemble a broad range of large aerospace 
system architectures rapidly and efficiently.

You can use the Aerospace Blockset and Simulink to develop your aerospace 
system concepts and to efficiently revise and test your models throughout the 
life cycle of your design. Use the Aerospace Blockset with Real-Time 
Workshop® to automatically generate code for real-time execution in rapid 
prototyping and for hardware-in-the-loop systems.
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Related Products
The MathWorks provides several products that are especially relevant to the 
kinds of tasks you can perform with the Aerospace Blockset. In particular, the 
Aerospace Blockset requires current versions of these products:

• MATLAB

• Control System Toolbox

• Simulink

For more information about any of these products

• Consult the online documentation for that product

• Visit the MathWorks Web site, at www.mathworks.com; see the “Products” 
section

Virtual Reality Visualization
The optional virtual reality visualization blocks in the Aerospace Blockset 
require the Virtual Reality Toolbox. The Virtual Reality Toolbox includes a 
default viewer compatible with all the platforms supported by MATLAB.

See the Virtual Reality Toolbox documentation for more information about 
virtual reality viewers.

http://www.mathworks.com
http://www.mathworks.com/products/control/
http://www.mathworks.com/products/virtualreality/
http://www.mathworks.com/access/helpdesk/help/toolbox/vr/
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Running a Demo Model
This section introduces a missile guidance model that uses blocks from the 
Aerospace Blockset to simulate a three-degrees-of-freedom missile guidance 
system, in conjunction with other Simulink blocks.

The model simulates a missile guidance system with a target acquisition and 
interception subsystem. The model implements a nonlinear representation of 
the rigid body dynamics of the missile airframe, including aerodynamic forces 
and moments. The missile autopilot is based on the trimmed and linearized 
missile airframe. The missile homing guidance system regulates missile 
acceleration and measures the distance between the missile and its target.

For more information on this model, see Chapter 3, “Case Studies.”

What This Demo Illustrates
The missile guidance demo illustrates the following features of the blockset:

• Representing bodies and degrees of freedom with the Equations of Motion 
library blocks

• Using the Aerospace Blockset with other Simulink blocks

• Using the Aerospace Blockset with Stateflow®

• Feeding in and feeding out Simulink signals to and from Aerospace Blockset 
blocks with Actuator and Sensor blocks

• Encapsulating groups of blocks into subsystems

• Visualizing and animating an aircraft with the Animation library blocks

Note  The Stateflow module in this demo is precompiled and does not require 
Stateflow to be installed.

Opening the Model
Open the Demos browser, then locate and open the missile guidance demo. You 
can also open it by entering the demo name, aeroblk_guidance, at the 
MATLAB command line. The model opens.

http://www.mathworks.com/products/stateflow/
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A Stateflow chart for the guidance control processor also appears.
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Key Subsystems
The model implements the missile environment, airframe, autopilot, and 
homing guidance system in subsystems.

• The Airframe & Autopilot subsystem implements the ISA Atmosphere Model 
block, the Incidence & Airspeed block, and the 3DoF (Body Axes) block, along 
with other Simulink blocks.

The airframe model is a nonlinear representation of rigid body dynamics. 
The aerodynamic forces and moments acting on the missile body are 
generated from coefficients that are nonlinear functions of both incidence 
and Mach number.

• The model implements the missile autopilot as a classical three-loop design 
using measurements from an accelerometer located ahead of the missile’s 
center of gravity and from a rate gyro to provide additional damping.
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• The model implements the homing guidance system as two subsystems: the 
Guidance subsystem and the Seeker/Tracker subsystem. 

- The Guidance subsystem uses a Stateflow state chart to control the 
tracker directly by sending demands to the seeker gimbals. 
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- The Seeker/Tracker subsystem consists of Simulink blocks that control the 
seeker gimbals to keep the seeker dish aligned with the target and provide 
the guidance law with an estimate of the sight line rate.

Running the Demo
Running a demo lets you observe the model simulation in real time. After you 
run the demo, you can examine the resulting data in plots, graphs, and other 
visualization tools. To run the missile guidance model, follow these steps:

1 If it is not already open, open the aeroblk_guidance demo.

2 From the Simulation menu, select Start. In Windows, you can also click the 
start button in the model window toolbar.

The simulation proceeds until the missile intercepts the target, which takes 
approximately 3 seconds. Once the interception has occurred, four scope 
figures open to display the following data:
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a A three-dimensional animation of the missile and target interception 
course
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b Plots that measure flight parameters over time, including Mach number, 
fin demand, acceleration, and degree of incidence
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c A plot that measures gimbal versus true look angles

d A plot that measures missile and target trajectories
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Modifying the Model
You can adjust the missile guidance model settings and examine the effects on 
simulation performance. Here are two modifications that you can try. The first 
modification adjusts the missile engine thrust (dynamic pressure). The second 
modification changes the camera point of view for the interception animation.

Adjusting the Thrust
As in any Simulink model, you can adjust aerospace model parameters from 
the MATLAB workspace. To demonstrate this, change the Thrust variable in 
the model workspace and evaluate the results in the simulation.

1 Open the aeroblk_guidance model.

2 In the MATLAB desktop, find the Thrust variable in the Workspace pane.

The Thrust variable is defined in the aeroblk_guid_dat.m file, which the 
aeroblk_guidance model uses to populate parameter and variable values. 
By default, the Thrust variable should be set to 10000.

3 Single-click the Thrust variable to select it. To edit the value, right-click the 
Thrust variable and select Edit Value. Change the value to 5000. 

Before you run the demo again, locate the Miss Distance block display in the 
aeroblk_guidance model.
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Start the demo, and after it finishes, note the miss distance display again. The 
miss distance should become greater than the original distance. You can 
experiment with different values in the Thrust variable and assess the effects 
on missile accuracy.

Changing the Animation Point of View
By default, the missile animation view is Fly Alongside, which means the 
view tracks with the missile’s flight path. You can easily change the animation 
point of view by adjusting a parameter of the 3DoF Animation block:

1 Open the aeroblk_guidance model, and double-click the 3DoF Animation 
block. The Block Parameters dialog box appears.

Miss
Distance
display
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2 Change the view to Cockpit. 

3 Click the OK button. 

Run the demo again, and watch the animation. Instead of moving alongside the 
missile’s flight path, the animation point of view lies in the cockpit. Upon target 
interception, the screen fills with blue, the target’s color.

Enter view 
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You can experiment with different views to watch the animation from different 
perspectives.
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Learning More
You can get help online in a number of ways to assist you while using the 
Aerospace Blockset.

Using the MATLAB Help System for Documentation 
and Demos
The MATLAB Help browser allows you to access the documentation and demo 
models for all the MathWorks products that you have installed. The online help 
includes an online index and search system.

Consult the Help for Using MATLAB section of the Using MATLAB 
documentation for more about the MATLAB help system.

Opening Aerospace Demos
To open an Aerospace Blockset demo from the Help browser, open the Demos 
library in the Help browser by clicking the Demos tab in the Help Navigator 
pane on the left.

You can also open the Aerospace Blockset demos from the Start button of the 
MATLAB desktop:

1 Click the Start button.

2 Select Blocksets, then Aerospace, and then Demos.

This opens the Help browser with Demos selected in the Help Navigator 
pane.

Alternatively, you can open the Demos window by entering demos at the 
MATLAB command line.

Finding Aerospace Blockset Help
This user’s guide also includes a reference chapter.

• “Aerospace Units” explains the unit systems used by the blockset.
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Using the Aerospace 
Blockset

Constructing a simple model with the Aerospace Blockset is easy to learn if you know how to create 
Simulink models. If you are not familiar with Simulink, please see the Simulink documentation.

Introducing the Aerospace Blockset Libraries 
(p. 2-2)

Overview of the Aerospace Blockset libraries and 
how to access them

Creating Aerospace Models (p. 2-9) Summary of the most important steps for building 
models with the Aerospace Blockset

Building a Simple Actuator System (p. 2-10) Tutorial to model and simulate a simple actuator 
system

About Aerospace Coordinate Systems (p. 2-20) Overview of coordinate systems for representing 
aircraft and spacecraft motion

Introducing the Flight Simulator Interface 
(p. 2-29)

Obtaining and installing the third-party 
FlightGear flight simulator

Working with the Flight Simulator Interface 
(p. 2-34)

Tutorial on the FlightGear interface, included with 
the Aerospace Blockset
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Introducing the Aerospace Blockset Libraries
The Aerospace Blockset is organized into hierarchical libraries of closely 
related blocks for use in Simulink. The following sections explain how to access 
the libraries from MATLAB and summarize the blocks in each library.

• “Opening the Aerospace Blockset in Windows”

• “Opening the Aerospace Blockset on UNIX Platforms” on page 2-5

• “Summary of Aerospace Block Libraries” in Chapter 2

View the details for each block in Chapter 4, “Block Reference.”

Opening the Aerospace Blockset in Windows
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the  button in the MATLAB toolbar, or enter

simulink

at the command line.

Simulink Libraries
The libraries in the Simulink Library Browser contain all the basic elements 
you need to construct a model. Look here for basic math operations, switches, 
connectors, simulation control elements, and other items that do not have a 
specific aerospace orientation.

Opening the Aerospace Blockset
On Windows platforms, the Simulink Library Browser opens when you start 
Simulink. The left pane contains a list of all the blocksets that you currently 
have installed. 
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The first item in the list is Simulink itself, which is already expanded to show 
the available Simulink libraries. Click the symbol to the left of any blockset 
name to expand the hierarchical list and display that blockset’s libraries within 
the browser.

To open the Aerospace Blockset window from the MATLAB command line, 
enter

aerolib

Double-click any library in the window to display its contents. The following 
figure shows the Aerospace Blockset library window.

For a complete list of all the blocks in the Aerospace Blockset by library, see 
“Blocks — By Category” on page 4-2.

See the Simulink documentation for a complete description of the Simulink 
Library Browser.
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Opening the Aerospace Blockset on UNIX Platforms 
On UNIX platforms, the Simulink Library window opens when you start 
Simulink. To open the Aerospace Blockset, double-click the Aerospace 
Blockset icon to open the Aerospace Blockset.

To open the Aerospace Blockset window from the MATLAB command line, 
enter

aerolib

Double-click any library in the window to display its contents. The following 
figure shows the Aerospace Blockset library window.

For a complete list of all the blocks in the Aerospace Blockset by library, see 
“Blocks — By Category” on page 4-2.

Summary of Aerospace Block Libraries
The blocks of the Aerospace Blockset are organized into these libraries.

Actuators Library
The Actuators library provides blocks for representing linear and nonlinear 
actuators with saturation and rate limits.
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Aerodynamics Library
The Aerodynamics library provides the Aerodynamic Forces and Moments 
block using the aerodynamic coefficients, dynamic pressure, center of gravity, 
and center of pressure.

Animation Library
The Animation library provides the animation blocks for visualizing flight 
paths and trajectories and for working with a flight simulator interface. The 
Animation library contains the MATLAB-Based Animation, Flight Simulator 
Interfaces, and Animation Support Utilities sublibraries.

MATLAB-Based Animation Sublibrary. The MATLAB-Based Animation sublibrary 
provides the 3DoF Animation block and the 6DoF Animation block. Using the 
animation blocks, you can visualize flight paths and trajectories. 

Flight Simulator Interfaces Sublibrary. The Flight Simulator Interfaces sublibrary 
provides the interface blocks to connect Aerospace Blockset to the third-party 
FlightGear flight simulator.

Animation Support Utilities Sublibrary. The Animation Support Utilities sublibrary 
provides additional blocks for running the FlightGear flight simulator. It 
contains a joystick interface for Windows platform and a block that lets you set 
the simulation pace.

Environment Library
The Environment library provides blocks that simulate aspects of an aircraft 
and spacecraft environment, such as atmospheric conditions, gravity, magnetic 
fields, and wind. The Environment library contains the Atmosphere, Gravity, 
and Wind sublibraries.

Atmosphere Sublibrary. The Atmosphere sublibrary provides general 
atmospheric models, such as ISA and COESA, and other blocks, including 
nonstandard day simulations, lapse rate atmosphere, and pressure altitude.

Gravity Sublibrary. The Gravity sublibrary provides blocks that calculate the 
gravity and magnetic fields for any point on the Earth.

Wind Sublibrary. The Wind sublibrary provides blocks for wind-related 
simulations, including turbulence, gust, shear, and horizontal wind.
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Equations of Motion Library
The Equations of Motion library provides blocks for implementing the 
equations of motion to determine body position, velocity, attitude, and related 
values.The Equations of Motion library contains the 3DoF, 6DoF, and Point 
Mass sublibraries. 

3DoF Sublibrary. The 3DoF sublibrary provides blocks for implementing 
three-degrees-of-freedom equations of motion in your simulations, including 
custom variable mass models.

6DoF Sublibrary. The 6DoF sublibrary provides blocks for implementing 
six-degrees-of-freedom equations of motion in your simulations, using Euler 
angles and quaternion representations.

Point Mass Sublibrary. The Point Mass sublibrary provides blocks for 
implementing point mass equations of motion in your simulations.

Flight Parameters Library
The Flight Parameters library provides blocks for various parameters, 
including ideal airspeed correction, Mach number, and dynamic pressure.

GNC Library
The GNC library provides blocks for creating control and guidance systems, 
including various controller models. The GNC library contains the Control, 
Guidance, and Navigation sublibraries.

Control Sublibrary. The Control sublibrary provides blocks for simulating various 
control types, such as one-dimensional, two-dimensional, and 
three-dimensional models.

Guidance Sublibrary. The Guidance sublibrary provides the Calculate Range 
block, which computes the range between two vehicles. 

Navigation Sublibrary. The Navigation sublibrary provides blocks for three-axis 
measurement of accelerations, angular rates, and inertias.

Mass Properties Library
The Mass Properties library provides blocks for simulating the center of 
gravity and inertia tensors.
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Propulsion Library
The Propulsion library provides the Turbofan Engine System block, which 
simulates an engine system and controller.

Utilities Library
The Utilities library contains miscellaneous blocks useful in building models. 
The library contains the Axes Transformations, Math Operations, and Unit 
Conversions sublibraries.

Axes Transformations Sublibrary. The Axes Transformations sublibrary provides 
blocks for transforming axes of coordinate systems to different types, such as 
Euler angles to quaternions and vice versa.

Math Operations Sublibrary. The Math Operations sublibrary provides blocks for 
common mathematical and matrix operations, including sine and cosine 
generation and various 3-by-3 matrix operations.

Unit Conversions Sublibrary. The Unit Conversions sublibrary provides blocks for 
converting common measurement units from one system to another, such as 
converting velocity from feet per second to meters per second and vice versa.
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Creating Aerospace Models
Regardless of the model’s complexity, you use the same essential steps for 
creating an aerospace model as you would for creating any other Simulink 
model. For general model-building rules, see the Simulink documentation.

1 Select and position the blocks. You must first select the blocks that you need 
to build your model, and then position the blocks in the model window. For 
the majority of Simulink models, you select one or more blocks from each of 
the following categories:

a Source blocks generate or import signals into the model, such as a sine 
wave, a clock, or limited-band white noise.

b Simulation blocks can consist of almost any type of block that performs 
an action in the simulation. A simulation block represents a part of the 
model functionality to be simulated, such as an actuator block, a 
mathematical operation, a block from the Aerospace Blockset, and so on.

c Signal Routing blocks route signals from one point in a model to another. 
If you need to combine or redirect two or more signals in your model, you 
will probably use a Signal Routing block, such as Mux and Demux.

d Sink blocks display, write, or save model output. To see the results of the 
simulation, you must use a Sink block.

2 Configure the blocks. Most blocks feature configuration options that let you 
customize block functionality to specific simulation parameters. For 
example, the ISA Atmosphere Model block provides configuration options 
for setting the height of the troposphere, tropopause, and air density at sea 
level.

3 Connect the blocks. To create signal pathways between blocks, you connect 
the blocks to each other. You can do this manually by clicking and dragging, 
or you can connect blocks automatically.

4 Encapsulate subsystems. Systems made with the Aerospace Blockset can 
function as subsystems of larger, more complex models, like subsystems in 
any Simulink model.
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Building a Simple Actuator System
In this tutorial, you drag, drop, and configure a some basic blocks to drive, 
simulate, and measure an aerospace actuator. The tutorial guides you through 
these aspects of model building:

• “Building the Model” on page 2-10

• “Running the Simulation” on page 2-18

By the end of the tutorial, you will have constructed a simple actuator model 
that measures the actuator’s position in relation to a sine wave. 

Building the Model
Simulink is a software environment for modeling, simulating, and analyzing 
dynamic systems. Try building a simple model that drives an actuator with a 
sine wave and displays the actuator’s position superimposed on the sine wave.

Note  If you prefer to open the complete model shown below instead of 
building it, enter aeroblktutorial at the MATLAB command line.

The following sections explain how to build a model on Windows and UNIX 
platforms:

• “Creating a Model on Windows Platforms” on page 2-11

• “Creating a Model on UNIX Platforms” on page 2-15
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Creating a Model on Windows Platforms

1 Click the  button in the MATLAB toolbar or enter simulink at the 
MATLAB command line. The Simulink library browser appears.

2 Select New > Model from the File menu in the Library Browser. A new 
model window appears on your screen.
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3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink 
Sources library.

b Drag the Sine Wave block from the Sources library into the new model 
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the symbol next to Aerospace Blockset in the Library Browser 
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator 
library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the 
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model 
window. 

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink 
Sinks library.

b Drag the Scope block from the Sinks library into the model window. 

7 Resize the Mux block in the model.

a Click the Mux block to select the block. 

b Hold down the mouse button and drag a corner of the Mux block to 
change the size of the block.
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8 Connect the blocks. 

a Position the pointer near the output port of the Sine Wave block. Hold 
down the mouse button and drag the line that appears until it touches the 
input port of the Second Order Linear Actuator block. Release the mouse 
button.

b Using the same technique, connect the output of the Second Order Linear 
Actuator block to the second input port of the Mux block. 

c Using the same technique, connect the output of the Mux block to the 
input port of the Scope block. 

d Position the pointer near the first input port of the Mux block. Hold down 
the mouse button and drag the line that appears over the line from the 
output port of the Sine Wave block until double crosshairs appear. 
Release the mouse button. The lines are connected when a knot is present 
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you 
to set the block’s parameters.

For this example, configure the block to generate a 10 rad/sec sine wave 
by entering 10 for the Frequency parameter. The sinusoid has the 
default amplitude of 1 and phase of 0 specified by the Amplitude and 
Phase offset parameters.

b Click OK.
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c Double-click the Second Order Linear Actuator block.

In this example, the actuator has the default natural frequency of 150 
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians 
specified by the Natural frequency, Damping ratio, and Initial 
position parameters.

d Click OK.
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Creating a Model on UNIX Platforms
The steps for creating a model in UNIX are similar to the steps in Windows.

1 Enter simulink at the MATLAB command line. The Simulink library 
window appears.

2 Select New > Model from the File menu in the Simulink Library window. A 
new model window appears on your screen.

3 Add a Sine Wave block to the model.

a Double-click Sources in the Simulink Library window to view the blocks 
in the Simulink Sources library.

b Drag the Sine Wave block from the Sources library into the new model 
window.
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4 Add a Second Order Linear Actuator block to the model.

a Double-click Aerospace Blockset in the Simulink Library browser. This 
opens the Aerospace Blockset block libraries.

b In the Aerospace Blockset block libraries, click Actuators to view the 
blocks in the Actuator library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Double-click Signal Routing in the Simulink Library to view the Signal 
Routing blocks.

b Drag the Mux block from the Signal Routing library into the model 
window. 

6 Add a Scope block to the model.

a Double-click Sinks in the Simulink Library window to view the blocks in 
the Simulink Sinks library.

b Drag the Scope block from the Sinks library into the model window. 

7 Resize the Mux block in the model.

a Click the Mux block to select the block. 

b Hold down the mouse button and drag a corner of the Mux block to 
change the size of the block.

8 Connect the blocks. 

a Position the pointer near the output port of the Sine Wave block. Hold 
down the mouse button and drag the line that appears until it touches the 
input port of the Second Order Linear Actuator block. Release the mouse 
button.

b Using the same technique, connect the output of the Second Order Linear 
Actuator block to the second input port of the Mux block. 

c Using the same technique, connect the output of the Mux block to the 
input port of the Scope block. 

d Position the pointer near the first input port of the Mux block. Hold down 
the mouse button and drag the line that appears over the line from the 
output port of the Sine Wave block until double crosshairs appear. 
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Release the mouse button. The lines are connected when a knot is present 
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you 
to set the block’s parameters. 

In this example, configure the block to generate a 10 rad/sec sine wave by 
entering 10 for the Frequency parameter. The sinusoid has the default 
amplitude of 1 and phase of 0 specified by the Amplitude and Phase 
offset parameters.

b Click OK.
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c Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150 
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians 
specified by the Natural frequency, Damping ratio, and Initial 
position parameters.

d Click OK.

Running the Simulation
You can now run the model that you built to see how the system behaves in 
time:

1 Double-click the Scope block if the Scope window is not already open on your 
screen. The Scope window appears.

2 Select Start from the Simulation menu in the model window. The signal 
containing the 10 rad/s sinusoid and the signal containing the actuator 
position are plotted on the scope. 

3 Adjust the Scope block’s display. While the simulation is running, right-click 
the y-axis of the scope and select Autoscale. The vertical range of the scope 
is adjusted to better fit the signal.

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open 
its parameter dialog box. This causes the simulation to pause. 
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b You can then change the frequency of the sinusoid. Try entering 1 or 
20 in the Frequency field. Close the Sine Wave dialog box to enter your 
change and allow the simulation to continue. You can then observe the 
changes on the scope. 

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is 
usually the case for parameters that directly or indirectly alter a signal’s 
dimensions or sample rate. However, there are some parameters, like the Sine 
Wave Frequency parameter, that you can tune without stopping the 
simulation.

Note  Opening a dialog box for a source block causes the simulation to pause. 
While the simulation is paused, you can edit the parameter values. You must 
close the dialog box to have the changes take effect and allow the simulation to 
continue.

Running a Simulation from an M-File
You can also modify and run a Simulink simulation from a MATLAB M-file. By 
doing this, you can automate the variation of model parameters to explore a 
large number of simulation conditions rapidly and efficiently. For information 
on how to do this, see the Simulink documentation.
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About Aerospace Coordinate Systems
Coordinate systems allow you to keep track of an aircraft or spacecraft’s 
position and orientation in space. This section introduces important 
terminology and the major coordinate systems used by the Aerospace Blockset.

• “Fundamental Coordinate System Concepts”

• “Coordinate Systems for Modeling” on page 2-21

• “Coordinate Systems for Navigation” on page 2-23

• “Coordinate Systems for Display” on page 2-26

The “References” on page 2-28 point you to further information.

Fundamental Coordinate System Concepts
The Aerospace Blockset coordinate systems are based on these underlying 
concepts from geodesy, astronomy, and physics.

Definitions
The Aerospace Blockset uses right-handed (RH) Cartesian coordinate systems. 
The right-hand rule establishes the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. Loosely 
speaking, acceleration is defined with respect to the distant cosmos. In an 
inertial frame, Newton’s second law (force = mass X acceleration) holds.

Strictly defined, an inertial frame is a member of the set of all frames not 
accelerating relative to one another. A noninertial frame is any frame 
accelerating relative to an inertial frame. Its acceleration, in general, includes 
both translational and rotational components, resulting in pseudoforces 
(pseudogravity, as well as Coriolis and centrifugal forces). 

The blockset models the Earth’s shape (the geoid) as an oblate spheroid, a 
special type of ellipsoid with two longer axes equal (defining the equatorial 
plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator is 
the intersection of the equatorial plane and the Earth’s surface. The geographic 
poles are the intersection of the Earth’s surface and the geopolar axis. In 
general, the Earth’s geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero 
longitude or prime meridian passes through Greenwich, England.
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Approximations
The Aerospace Blockset makes three standard approximations in defining 
coordinate systems relative to the Earth.

• The Earth’s surface or geoid is an oblate spheroid, defined by its longer 
equatorial and shorter geopolar axes. In reality, the Earth is slightly 
deformed with respect to the standard geoid.

• The Earth’s rotation axis and equatorial plane are perpendicular, so that the 
rotation and geopolar axes are identical. In reality, these axes are slightly 
misaligned, and the equatorial plane wobbles as the Earth rotates. This 
effect is negligible in most applications.

• The only noninertial effect in Earth-fixed coordinates is due to the Earth’s 
rotation about its axis. This is a rotating, geocentric system. The blockset 
ignores the Earth’s motion around the Sun, the Sun’s motion in the Galaxy, 
and the Galaxy’s motion through cosmos. In most applications, only the 
Earth’s rotation matters.

This approximation must be changed for spacecraft sent into deep space, i.e., 
outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets
The Aerospace Blockset uses the standard WGS-84 geoid to model the Earth. 
You can change the equatorial axis length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body 
that is well approximated by an oblate spheroid by changing the spheroid size, 
flattening, and rotation rate. If the celestial body is rotating westward 
(retrogradely), make the rotation rate negative.

Coordinate Systems for Modeling
Modeling aircraft and spacecraft is simplest if you use a coordinate system 
fixed in the body itself. In the case of aircraft, the forward direction is modified 
by the presence of wind, and the craft’s motion through the air is not the same 
as its motion relative to the ground.

See the “Equations of Motion Library” on page 4-6 for further details on how 
the Aerospace Blockset implements body and wind coordinates.
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Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation 
to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.

• The y-axis points to the right of the x-axis (facing in the pilot’s direction of 
view), perpendicular to the x-axis.

• The z-axis points down through the bottom the craft, perpendicular to the x-y 
plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving along these 
axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles P, Q, R 
or φ, θ, ψ. They are

• P or φ: Roll about the x-axis

• Q or θ: Pitch about the y-axis

• R or ψ: Yaw about the z-axis
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Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid aircraft. 
The coordinate system orientation is defined relative to the craft’s velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.

• The y-axis points to the right of the x-axis (facing in the direction of V), 
perpendicular to the x-axis.

• The z-axis points perpendicular to the x-y plane in whatever way needed to 
satisfy the RH rule with respect to the x- and y-axes.

Translational Degrees of Freedom. Translations are defined by moving along these 
axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles φ, γ, χ. 
They are

• φ: Bank angle about the x-axis

• γ: Flight path about the y-axis

• χ: Heading angle about the z-axis

Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft 
or spacecraft with respect to the rotating Earth. Navigation coordinates are 
defined with respect to the center and surface of the Earth.
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Geocentric and Geodetic Latitudes
The geocentric latitude λ on the Earth’s surface is defined by the angle 
subtended by the radius vector from the Earth’s center to the surface point 
with the equatorial plane.

The geodetic latitude μ on the Earth’s surface is defined by the angle subtended 
by the surface normal vector n and the equatorial plane.
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NED Coordinates
The north-east-down (NED) system is a noninertial system with its origin fixed 
at the aircraft or spacecraft’s center of gravity. Its axes are oriented along the 
geodetic directions defined by the Earth’s surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.

• The y-axis points east parallel to the geoid surface, along a latitude curve.

• The z-axis points downward, toward the Earth’s surface, antiparallel to the 
surface’s outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth’s 
surface.

ECI Coordinates
The Earth-centered inertial (ECI) system is a mixed inertial system. It is 
oriented with respect to the Sun. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward in the Earth’s equatorial plane exactly at the Sun. 
(This rule ignores the Sun’s oblique angle to the equator, which varies with 
season. The actual Sun always remains in the x-z plane.)

• The y-axis points into the eastward quadrant, perpendicular to the x-z plane 
so as to satisfy the RH rule.
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Earth-Centered Coordinates

ECEF Coordinates
The Earth-center, Earth-fixed (ECEF) system is a noninertial system that 
rotates with the Earth. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward along the intersection of the Earth’s equatorial 
plane and prime meridian.

• The y-axis points into the eastward quadrant, perpendicular to the x-z plane 
so as to satisfy the RH rule.

Coordinate Systems for Display
Several display tools are available for use with the Aerospace Blockset. Each 
has a specific coordinate system for rendering motion.
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MATLAB Graphics Coordinates
See the MATLAB Graphics documentation for more information about the 
MATLAB Graphics coordinate axes.

MATLAB Graphics uses this default coordinate axis orientation:

• The x-axis points out of the screen.

• The y-axis points to the right.

• The z-axis points up.

FlightGear Coordinates
FlightGear is an open-source, third-party flight simulator with an interface 
supported by Aerospace Blockset.

• “Working with the Flight Simulator Interface” on page 2-34 discusses the 
blockset interface to FlightGear.

• See the FlightGear documentation at www.flightgear.org for complete 
information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the 
standard body coordinate system about the y-axis by −180 degrees:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive toward the right of the vehicle.

• The z-axis is positive upward, e.g., wheels typically have the lowest z values.

http://www.flightgear.org/
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AC3D Coordinates
AC3D is a low-cost, widely used, geometry editor available from www.ac3d.org. 
Its body-fixed coordinates are formed by inverting the three standard body 
coordinate axes:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive upward, e.g., wheels typically have the lowest y values.

• The z-axis is positive to the left of the vehicle.
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Introducing the Flight Simulator Interface
The Aerospace Blockset supports an interface to the third-party FlightGear 
flight simulator, an open source software package available through a GNU 
General Public License (GPL).

• “About the FlightGear Interface”

• “Obtaining FlightGear”

• “Configuring Your Computer for FlightGear” on page 2-30

• “Installing and Starting FlightGear” on page 2-33

About the FlightGear Interface
The FlightGear flight simulator interface included with Aerospace Blockset is 
a unidirectional transmission link from Simulink to FlightGear using 
FlightGear’s published net_fdm binary data exchange protocol. Data is 
transmitted via UDP network packets to a running instance of FlightGear.

FlightGear is a separate software entity neither created, owned, nor 
maintained by The MathWorks.

• To report bugs or request enhancements to the Aerospace Blockset 
FlightGear interface blocks, contact MathWorks Technical Support by 
sending e-mail to support@mathworks.com or suggest@mathworks.com, 
respectively.

• To report bugs or request enhancements to FlightGear itself, visit 
www.flightgear.org and use the contact page.

Obtaining FlightGear
You can obtain FlightGear from www.flightgear.org in the download area or 
by ordering CDs from FlightGear. The download area contains extensive 
documentation for installation and configuration. Because FlightGear is an 
open source project, source downloads are also available for customization and 
porting to custom environments.

Aerospace Blockset supports the standard binary distributions of FlightGear 
versions 0.9.3, 0.9.8a, and 0.9.9. If you would like to use other stable releases 
with Aerospace Blockset, send e-mail to suggest@mathworks.com.

http://www.flightgear.org
http://www.flightgear.org
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Configuring Your Computer for FlightGear
You must have a high performance graphics card with stable drivers to use 
FlightGear. For more information, see the FlightGear CD distribution or the 
hardware requirements and documentation areas of the FlightGear Web site, 
www.flightgear.org.

MathWorks tests of FlightGear’s performance and stability indicate significant 
sensitivity to computer video cards, driver versions, and driver settings. You 
need OpenGL support with hardware acceleration activated. The OpenGL 
settings are particularly important. Without proper setup, performance can 
drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.

Graphics Recommendations for Windows
The MathWorks recommends the following for Windows users:

• Choose a graphics card with good OpenGL performance.

• Always use the latest tested and stable driver release for your video card. 
Test the driver thoroughly on a few computers before deploying to others.

For Microsoft Windows 2000 or XP systems running on x86 (32-bit) or 
AMD-64/EM64T chip architectures, the graphics card operates in the 
unprotected kernel space known as Ring Zero. This means that glitches in 
the driver can cause Windows to lock or crash. Before buying a large number 
of computers for 3-D applications, test, with your vendor, one or two 
computers to find a combination of hardware, operating system, drivers, and 
settings that are stable for your applications.

Setting Up OpenGL Graphics on Windows
For complete information on OpenGL settings, go to the OpenGL Web site: 
www.opengl.org/documentation/index.html.

Follow these steps to optimize your video card settings. Your driver’s panes 
might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on your 
video card. On Windows, access this configuration through Start > Settings 
> Control Panel > Display, which opens the following dialog box. Select the 
Settings tab.

http://www.opengl.org/documentation/index.html
http://www.flightgear.org
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2 Click the Advanced button in the lower right of the dialog box, which brings 
up the graphics card’s custom configuration dialog box, and go to the 
OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL 
pane looks like this:
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3 For best performance, move the Main Settings slider near the top of the 
dialog box to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in 
the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known 
as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon 
9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2 
fps are achieved in 32-bit color mode.

Setup on Linux, Macintosh, and Other Platforms
FlightGear distributions are available for Linux, Macintosh, and other UNIX 
platforms from the FlightGear Web site, www.flightgear.org. Installation on 
these platforms, like Windows, requires careful configuration of graphics cards 
and drivers. Consult the documentation and hardware requirements sections 
at the FlightGear Web site.

http://www.flightgear.org
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Using MATLAB Graphics Controls to Configure Your OpenGL Settings
You can also control your OpenGL rendering from the MATLAB command line 
with the MATLAB Graphics opengl command. Consult the opengl command 
reference for more information.

Installing and Starting FlightGear
The extensive FlightGear documentation guides you through the installation 
in detail. Consult the documentation section of the FlightGear Web site for 
complete installation instructions: www.flightgear.org.

Keep the following points in mind:

• Generous central processor speed, system and video RAM, and virtual 
memory are essential for good flight simulator performance.

The MathWorks recommends a minimum of 512 megabytes of system RAM 
and 128 megabytes of video RAM for reasonable performance.

• Be sure to have sufficient disk space for the FlightGear download and 
installation.

• The MathWorks recommends configuring your computer’s graphics card 
before you install FlightGear. See the preceding section, “Configuring Your 
Computer for FlightGear” on page 2-30.

• Shutting down all running applications (including MATLAB) before 
installing FlightGear is recommended.

• MathWorks tests indicate that the operational stability of FlightGear is 
especially sensitive during startup. It is best to not move, resize, mouse over, 
overlap, or cover up the FlightGear window until the initial simulation scene 
appears after the startup splash screen fades out.

• The current releases of FlightGear are optimized for flight visualization at 
altitudes below 100,000 feet. FlightGear does work well or at all with very 
high altitude and orbital views.

http://www.flightgear.org
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Working with the Flight Simulator Interface
Use this section to learn how to use the FlightGear flight simulator and 
Aerospace Blockset to visualize your Simulink aircraft models:

• “About Aircraft Geometry Models”

• “Working with Aircraft Geometry Models” on page 2-37

• “Running FlightGear with Simulink” on page 2-39

• “Running the NASA HL-20 Demo with FlightGear” on page 2-48

If you have not yet installed FlightGear, see “Introducing the Flight Simulator 
Interface” on page 2-29.

Simulink-Driven HL-20 Model in a Landing Flare at KSFC

About Aircraft Geometry Models
Before you can visualize your aircraft’s dynamics, you need to create or obtain 
an aircraft model file compatible with FlightGear. This section explains how to 
do this.
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Aircraft Geometry Editors and Formats
You have a competitive choice of over twelve 3-D geometry file formats 
supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format, 
which has the suffix *.ac. AC3D is a low-cost geometry editor available from 
www.ac3d.org. Another popular 3-D editor for aircraft models is Flight Sim 
Design Studio, distributed by Abacus Publications at www.abacuspub.com. 

Aircraft Model Structure and Requirements
Aircraft models live in the FlightGearRoot/data/Aircraft/ directory and 
subdirectories. A complete aircraft model must contain a directory linked 
through the required aircraft master file named model-set.xml.

All other model elements are optional. This is a partial list of the optional 
elements you can put in an aircraft data directory:

• Vehicle objects and their shapes and colors

• Vehicle objects’ surface bitmaps

• Variable geometry descriptions

• Cockpit instrument 3-D models

• Vehicle sounds to tie to events (e.g., engine, gear, wind noise)

• Flight dynamics model

• Simulator views

• Submodels (independently movable items) associated with the vehicle

Model behavior reverts to defaults when these elements are not used. For 
example,

• Default sound: no vehicle-related sounds are emitted.

• Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you always 
run FlightGear from the cockpit view, the aircraft geometry is often secondary 
to the instrument geometries.

A how-to document for including optional elements is included in the 
FlightGear documentation at: 

http://www.flightgear.org/Docs/fgfs-model-howto.html

http://www.ac3d.org
http://www.abacuspub.com
http://www.flightgear.org/Docs/fgfs-model-howto.html
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Required Flight Dynamics Model Specification
The flight dynamics model (FDM) specification is a required element for an 
aircraft model. To set Simulink as the source of the flight dynamics model data 
stream for a given geometry model, you put this line in 
data/Aircraft/model/model-set.xml:

<flight-model>network</flight-model>

Obtaining and Modifying Existing Aircraft Models
You can quickly build models from scratch by referencing instruments, sounds, 
and other optional elements from existing FlightGear models. Such models 
provide examples of geometry, dynamics, instruments, views, and sounds. It is 
simple to copy an aircraft directory to a new name, rename the model-set.xml 
file, modify it for network flight dynamics, and then run FlightGear with the 
aircraft flag set to the name in model-set.xml.

Many existing 3-D aircraft geometry models are available for use with 
FlightGear. Visit the download area of www.flightgear.org to see some of the 
aircraft models available. Additional models can be obtained via Web search. 
Search key words such as “flight gear aircraft model” are a good starting point. 
Be sure to comply with copyrights when distributing these files.

Hardware Requirements for Aircraft Geometry Rendering
When creating your own geometry files, keep in mind that your graphics card 
can efficiently render a limited number of surfaces. Some cards can efficiently 
render fewer than 1000 surfaces with bitmaps and specular reflections at the 
nominal rate of 30 frames per second. Other cards can easily render on the 
order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect 
of geometric complexity on graphics performance by varying the number of 
aircraft model surfaces. An easy way to check this is to replace the full aircraft 
geometry file with a simple shape, such as a single triangle, then test 
FlightGear with this simpler geometry. If a geometry file is too complex for 
smooth display, use a 3-D geometry editor to simplify your model by reducing 
the number of surfaces in the geometry.

http://www.flightgear.org/Docs/fgfs-model-howto.html
http://www.flightgear.org
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Working with Aircraft Geometry Models
Once you have obtained, modified, or created an aircraft data file, you need to 
put it in the correct directory for FlightGear to see it.

Importing Aircraft Models into FlightGear
To install a compatible model into FlightGear:

1 Go to your installed FlightGear directory. Open the data directory, then the 
Aircraft directory: /FlightGear/data/Aircraft/.

2 Make a subdirectory /model/ here for your aircraft data.

3 Put model-set.xml in that subdirectory, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files 
(/model/), instruments (/instruments/), and sounds (/sounds/).

Example: Animating Vehicle Geometries
This example illustrates how to prepare hinge line definitions for animated 
elements such as vehicle control surfaces and landing gear. To enable 
animation, each element must be a named entity in a geometry file. The 
resulting code forms part of the HL20 lifting body model presented in “Running 
the NASA HL-20 Demo with FlightGear” on page 2-48.

1 The standard body coordinates used in FlightGear geometry models form a 
right-handed system, rotated from the standard body coordinate system in 
Y by −180 degrees:

- X = positive toward the back of the vehicle

- Y = positive toward the right of the vehicle

- Z = positive is up, e.g., wheels typically have the lowest Z values.

See “About Aerospace Coordinate Systems” on page 2-20 for more details.

2 Find two points that lie on the desired named-object hinge line in body 
coordinates and write them down as XYZ triplets or put them into a 
MATLAB calculation like this:

a = [2.98, 1.89, 0.53];
b = [3.54, 2.75, 1.46];
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3 Calculate the difference between the points:

pdiff = b - a
pdiff =

0.5600    0.8600    0.9300

4 The hinge point is either of the points in step 2 (or the midpoint as shown 
here):

mid = a + pdiff/2
mid =

3.2600    2.3200    0.9950

5 Put the hinge point into the animation scope in model-set.xml:

<center>
<x-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>

</center>

6 Use the difference from step 3 to define the relative motion vector in the 
animation axis:

<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>

</axis>

7 Put these steps together to obtain the complete hinge line animation used in 
the HL20 demo model:

<animation>
<type>rotate</type>
<object-name>RightAileron</object-name>
<property>/surface-positions/right-aileron-pos-norm</property>
<factor>30</factor>
<offset-deg>0</offset-deg>
<center>
<x-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>
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</center>
<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>

</axis>
</animation>

Running FlightGear with Simulink
To run a Simulink model of your aircraft and simultaneously animate it in 
FlightGear with an aircraft data file model-set.xml, you need to configure the 
aircraft data file and modify your Simulink model with some new blocks.

These are the main steps to connecting and using FlightGear with Simulink:

• “Setting the Flight Dynamics Model to Network in the Aircraft Data File” on 
page 2-39 explains how to create the network connection you need.

• “Obtaining the Destination IP Address” on page 2-40 starts by determining 
the IP address of the computer running FlightGear.

• “Adding and Connecting Interface Blocks” on page 2-40 shows how to add 
and connect interface and pace blocks to your Simulink model.

• “Creating a FlightGear Run Script” on page 2-43 shows how to write a 
FlightGear run script compatible with your Simulink model.

• “Starting FlightGear” on page 2-46 guides you through the final steps to 
making Simulink work with FlightGear.

• “Improving Performance” on page 2-48 helps you speed your model up.

Setting the Flight Dynamics Model to Network in the Aircraft Data File
Be sure to

• Remove any pre-existing flight dynamics model (FDM) data from the aircraft 
data file.

• Indicate in the aircraft data file that its FDM is streaming from the network 
by adding this line:

<flight-model>network</flight-model>
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Obtaining the Destination IP Address
You need the destination IP address for your Simulink model to stream its 
flight data to FlightGear.

• If you know your computer’s name, enter at the MATLAB command line:
java.net.InetAddress.getByName('www.mathworks.com')

• If you are running FlightGear and Simulink on the same computer, get your 
computer’s name by entering at the MATLAB command line:

java.net.InetAddress.getLocalHost

• If you are working in Windows, get your computer’s IP address by entering 
at the DOS prompt:

ipconfig /all

Examine the IP address entry in the resulting output. There is one entry per 
Ethernet device.

Adding and Connecting Interface Blocks
The easiest way to connect your model to FlightGear with the Aerospace 
Blockset is to use the FlightGear Preconfigured 6DoF Animation block:

FlightGear Preconfigured 6DoF Animation Block
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The FlightGear Preconfigured 6DoF Animation block is a subsystem 
containing the Pack net_fdm Packet for FlightGear and Send net_fdm Packet 
to FlightGear blocks:

Pack and Send net_fdm Packet to FlightGear Blocks

These transmit data to a FlightGear session. The blocks are separate for 
maximum flexibility and compatibility.

• The Pack net_fdm Packet for FlightGear block formats a binary structure 
compatible with FlightGear from model inputs. In its default configuration, 
only the 6DoF ports are shown, but you can configure the full FlightGear 
interface supporting more than 50 distinct signals from the block dialog box:
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• The Send net_fdm Packet to FlightGear block transmits this packet via UDP 
to the specified IP address and port where a FlightGear session awaits an 
incoming datastream.

• The Simulation Pace block, available in the Animation Support Utilities 
Sublibrary, slows down the simulation so that its aggregate run rate is 1 
second of simulation time per second of clock time. You can also use it to 
specify other ratios of simulation time to clock time.
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Creating a FlightGear Run Script
To start FlightGear with the desired initial conditions (location, date, time, 
weather, operating modes), it is best to create a run script by using the 
Generate Run Script block or the interface included in FlightGear.

If you make separate run scripts for each model you intend to link to 
FlightGear and place them in separate directories, run the appropriate script 
from MATLAB just before starting your Simulink model.

Using the Generate Run Script Block. The easiest way to create a run script is by 
using the Generate Run Script block. Use the following procedure:

1 Open the Flight Simulator Interfaces Sublibrary of the Animation Library.

2 Create a new Simulink model or open an existing model.

3 Drag a Generate Run Script block into the Simulink diagram.
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4 Double-click the Generate Run Script block. Its dialog opens.

5 In the Output file name field, type the name of the output file. This name 
should be the name of the command, with the .bat extension, you want to 
use to start FlightGear with these initial parameters.

For example, if your filename is runfg.bat, use the runfg command to 
execute the run script and start FlightGear.

6 In the FlightGear base directory field, specify the name of your FlightGear 
installation directory.
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7 In the FlightGear geometry model name field, specify the name of the 
subdirectory, in the FlightGear/data/Aircraft directory, containing the 
desired model geometry.

8 Specify the initial conditions as needed.

9 Click the Generate Script button at the top of the Parameters area.

Aerospace Blockset generates the run script, and saves it in your MATLAB 
working directory under the filename that you specified in the Output file 
name field. 

10 Repeat steps 5 through 9 to generate other run scripts, if needed.

11 Click OK to close the dialog box. You do not need to save the Generate Run 
Script block with the Simulink model.

The Generate Run Script block saves the run script as a text file in your 
working directory. This is an example of the contents of a run script file:

cd D:\Applications\FlightGear-0.9.8a

SET FG_ROOT=D:\Applications\FlightGear-0.9.8a\data

.\bin\win32\fgfs --aircraft=HL20 
--fdm=network,localhost,5501,5502,5503 --fog-fastest 
--disable-clouds --start-date-lat=2004:06:01:09:00:00 
--disable-sound --in-air --enable-freeze --airport-id=KSFO 
--runway=10L --altitude=7224 --heading=113 --offset-distance=4.72 
--offset-azimuth=0

Using the Interface Provided with FlightGear. The FlightGear launcher GUI (part of 
FlightGear, not Aerospace Blockset) lets you build simple and advanced 
options into a visible FlightGear run command:



2 Using the Aerospace Blockset

2-46

Starting FlightGear
If your computer has enough computational power to run both Simulink and 
FlightGear at the same time, a simple way to start FlightGear is to create a 
MATLAB desktop button containing the following command to execute a run 
script like the one created above:

dos('runfg &')

To create a desktop button:

1 From the Start button on your MATLAB desktop, click Shortcuts > New 
Shortcut. The Shortcut Editor dialog opens.

2 Set the Label, Callback, Category, and Icon fields as shown in the 
following figure.
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3 Click Save.

The FlightGear toolbar button appears in your MATLAB desktop. If you 
click it, the runfg.bat file runs in the current directory.

Once you have completed the setup, start FlightGear and run your model:

1 Make sure your model is in a writable directory. Open the model, and update 
the diagram. This step ensures that any referenced block code is compiled 
and that the block diagram is compiled before running. Once you start 
FlightGear, it uses all available processor power while it is running.

2 Click the FlightGear button or run the FlightGear run script manually.
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3 When FlightGear starts, it displays the initial view at the initial coordinates 
specified in the run script. If you are running Simulink and FlightGear on 
different computers, arrange to view the two displays at the same time.

4 Now begin the simulation and view the animation in FlightGear.

Improving Performance
If your Simulink model is complex and cannot run at the aggregate rate needed 
for the visualization, you might need to

• Use the Simulink Accelerator to speed up your model execution.

• Free up processor power by running the Simulink model on one computer 
and FlightGear on another computer. Use the Destination IP Address 
parameter of the Send net_fdm Packet to FlightGear block to specify the 
network address of the computer where FlightGear is running.

Running the NASA HL-20 Demo with FlightGear
Aerospace Blockset contains a demo model of the NASA HL-20 lifting body that 
uses the FlightGear interface.

You need to have FlightGear installed and configured before attempting to 
simulate this model. See “Introducing the Flight Simulator Interface” on 
page 2-29.

To run this demo:

1 Copy the HL20 folder from matlabroot\toolbox\aeroblks\aerodemos\ 
directory to FlightGear\data\Aircraft\ directory. This folder contains the 
preconfigured geometries for the HL-20 simulation and HL20-set.xml. The 
file matlabroot\toolbox\aeroblks\aerodemos\HL20\models\HL20.xml 
defines the geometry.

For more about this step, see “Importing Aircraft Models into FlightGear” 
on page 2-37.

2 Start MATLAB. Open the demo either by entering asbhl20 in the MATLAB 
Command Window or by finding the demo entry (NASA HL-20 with 
FlightGear Interface) in the Demos browser and clicking Open this model 
on its demo page. The model opens.
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3 If this is your first time running FlightGear for this model, double-click the 
Generate Run Script block to create a run script. Make sure to specify your 
FlightGear installation directory in the FlightGear base directory field. 
For more information, see “Creating a FlightGear Run Script” on page 2-43. 

4 Execute the script you just created manually by entering the following at the 
MATLAB Command Line:

dos('runfg &')

If you created a FlightGear desktop button, you can click it instead to start 
the run script and start FlightGear. For more information, see “Starting 
FlightGear” on page 2-46.

5 Now start the simulation and view the animation in FlightGear.

Tip  With the FlightGear window in focus, press the V key to alternate 
between the different aircraft views: cockpit view, helicopter view, chase view, 
and so on.
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3

Case Studies

These case studies illustrate how to model realistic aerospace problems with Simulink and the 
Aerospace Blockset.

Ideal Airspeed Correction (p. 3-2) Calculating indicated and true airspeed

1903 Wright Flyer (p. 3-9) Modeling the airframe, environment, and pilot of the first 
aircraft, the Wright Flyer

NASA HL-20 Lifting Body Airframe 
(p. 3-19)

Modeling the airframe of a NASA HL-20 lifting body, a 
low-cost complement to the Space Shuttle orbiter

Missile Guidance System (p. 3-33) Designing and simulating a three-degrees-of-freedom 
missile guidance system
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Ideal Airspeed Correction
This case study simulates indicated and true airspeed. It constitutes a 
fragment of a complete aerodynamics problem, including only measurement 
and calibration.

The following sections demonstrate the details:

• “Airspeed Correction Models” shows how to open the models.

• “Measuring Airspeed” on page 3-3 describes the different types of airspeed.

• “Modeling Airspeed Correction” on page 3-4 describes how the Ideal 
Airspeed Correction block is implemented.

• “Simulating Airspeed Correction” on page 3-7 runs the model.

Airspeed Correction Models
To view the airspeed correction models, enter the following at the MATLAB 
command line:

aeroblk_indicated
aeroblk_calibrated

aeroblk_indicated Model
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aeroblk_calibrated Model

Measuring Airspeed
To measure airspeed, most light aircraft designs implement pitot-static 
airspeed indicators based on Bernoulli’s principle. Pitot-static airspeed 
indicators measure airspeed by an expandable capsule that expands and 
contracts with increasing and decreasing dynamic pressure. This is known as 
calibrated airspeed (CAS) and is what a pilot sees in the cockpit of an aircraft.

To compensate for measurement errors, it helps to distinguish three types of 
airspeed. 

Airspeed Type Description See Also

Calibrated Indicated airspeed 
corrected for calibration 
error

“Calibration Error” on 
page 3-4

Equivalent Calibrated airspeed 
corrected for 
compressibility error

“Compressibility Error” 
on page 3-4

True Equivalent airspeed 
corrected for density error

“Density Error” on 
page 3-4
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Calibration Error
An airspeed sensor features a static vent to maintain its internal pressure 
equal to atmospheric pressure. Position and placement of the static vent with 
respect to the angle of attack and velocity of the aircraft determines the 
pressure inside the airspeed sensor and therefore the calibration error. Thus, 
a calibration error is specific to an aircraft’s design. 

An airspeed calibration table, which is usually included in the pilot operating 
handbook or other aircraft documentation, helps pilots convert the indicated 
airspeed to the calibrated airspeed. 

Compressibility Error 
The density of air is not constant, and the compressibility of air increases with 
altitude and airspeed, or when contained in a restricted volume. A pitot-static 
airspeed sensor contains a restricted volume of air. At high altitudes and high 
airspeeds, calibrated airspeed is always higher than equivalent airspeed. 
Equivalent airspeed can be derived by adjusting the calibrated airspeed for 
compressibility error.

Density Error
At high altitudes, airspeed indicators read lower than true airspeed because 
the air density is lower. True airspeed represents the compensation of 
equivalent airspeed for the density error, the difference in air density at 
altitude from the air density at sea level, in a standard atmosphere.

Modeling Airspeed Correction
The aeroblk_indicated and aeroblk_calibrated models show how to take 
true airspeed and correct it to indicated airspeed for instrument display in a 
Cessna 150M Commuter light aircraft. The aeroblk_indicated model 
implements a conversion to indicated airspeed. The aeroblk_calibrated 
model implements a conversion to true airspeed. 

Each model consists of two main components:

• “COESA Atmosphere Model Block” on page 3-5 calculates the change in 
atmospheric conditions with changing altitude.

• “Ideal Airspeed Correction Block” on page 3-5 transforms true airspeed to 
calibrated airspeed and vice versa.
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COESA Atmosphere Model Block
The COESA Atmosphere Model block is a mathematical representation of the 
U.S. 1976 COESA (Committee on Extension to the Standard Atmosphere) 
standard lower atmospheric values for absolute temperature, pressure, 
density, and speed of sound for input geopotential altitude. Below 32,000 
meters (104,987 feet), the U.S. Standard Atmosphere is identical with the 
Standard Atmosphere of the ICAO (International Civil Aviation Organization).

The aeroblk_indicated and aeroblk_calibrated models use the COESA 
Atmosphere Model block to supply the speed of sound and air pressure inputs 
for the Ideal Airspeed Correction block in each model. 

Ideal Airspeed Correction Block
The Ideal Airspeed Correction block compensates for airspeed measurement 
errors to convert airspeed from one type to another type. The following table 
contains the Ideal Airspeed Correction block’s inputs and outputs.

In the aeroblk_indicated model, the Ideal Airspeed Correction block 
transforms true to calibrated airspeed. In the aeroblk_calibrated model, the 
Ideal Airspeed Correction block transforms calibrated to true airspeed.

The following sections explain how the Ideal Airspeed Correction block 
mathematically represents airspeed transformations:

• “True Airspeed Implementation” on page 3-6

• “Calibrated Airspeed Implementation” on page 3-6

• “Equivalent Airspeed Implementation” on page 3-6

Airspeed Input Airspeed Output

True Airspeed Equivalent airspeed

Calibrated airspeed

Equivalent Airspeed True airspeed

Calibrated airspeed

Calibrated Airspeed True airspeed

Equivalent airspeed
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True Airspeed Implementation. True airspeed (TAS) is implemented as an input 
and as a function of equivalent airspeed (EAS), expressible as
 

where 

Calibrated Airspeed Implementation. Calibrated airspeed (CAS), derived using the 
compressible form of Bernoulli’s equation and assuming isentropic conditions, 
can be expressed as

where 

Equivalent Airspeed Implementation. Equivalent airspeed (EAS) is the same as 
CAS, except static pressure at sea level is replaced by static pressure at 
altitude.

α Speed of sound at altitude in m/s

δ Relative pressure ratio at altitude

a0 Speed of sound at mean sea level in m/s

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Ratio of specific heats

Dynamic pressure at mean sea level in N/m2

TAS EAS a×
a0 δ

-----------------------=

CAS
2γP0

γ 1–( )ρ0
----------------------- q

P0
------ 1+⎝ ⎠
⎛ ⎞ γ 1–( ) γ⁄

1–=

ρ0

P0

γ

q
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The symbols are defined as follows: 

Simulating Airspeed Correction
In the aeroblk_indicated model, the aircraft is defined to be traveling at a 
constant speed of 72 knots (true airspeed) and altitude of 500 feet. The flaps 
are set to 40 degrees. The COESA Atmosphere Model block takes the altitude 
as input and outputs the speed of sound and air pressure. Taking the speed of 
sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction 
block converts true airspeed to calibrated airspeed. Finally, the Calculate IAS 
subsystem uses the flap setting and calibrated airspeed to calculate indicated 
airspeed. 

The model’s Display block shows both indicated and calibrated airspeeds.

In the aeroblk_calibrated model, the aircraft is defined to be traveling at a 
constant speed of 70 knots (indicated airspeed) and altitude of 500 feet. The 

Air density at mean sea level in kg/m3

Static pressure at altitude in N/m2

Ratio of specific heats

Dynamic pressure at mean sea level in N/m2

EAS 2γP
γ 1–( )ρ0

----------------------- q
P
---- 1+⎝ ⎠
⎛ ⎞ γ 1–( ) γ⁄

1–=

ρ0

P

γ

q



3 Case Studies

3-8

flaps are set to 10 degrees. The COESA Atmosphere Model block takes the 
altitude as input and outputs the speed of sound and air pressure. The 
Calculate CAS subsystem uses the flap setting and indicated airspeed to 
calculate the calibrated airspeed. Finally, using the speed of sound, air 
pressure, and true calibrated airspeed as inputs, the Ideal Airspeed Correction 
block converts calibrated airspeed back to true airspeed. 

The model’s Display block shows both calibrated and true airspeeds.
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1903 Wright Flyer

Note  The final section of this study requires the Virtual Reality Toolbox.

This case study describes a model of the 1903 Wright Flyer. Built by Orville 
and Wilbur Wright, the Wright Flyer took to the skies in December 1903 and 
opened the age of controlled flight. The Wright brothers’ flying machine 
achieved the following goals:

• Left the ground under its own power

• Moved forward and maintained its speed

• Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal 
stability of the Wright Flyer and therefore modeled only forward and vertical 
motion along with the pitch angle. The Wright Flyer suffered from numerous 
engineering challenges, including dynamic and static instability. Laterally, the 
Flyer tended to overturn in crosswinds and gusts, and longitudinally, its pitch 
angle would undulate [2]. 

Under these constraints, the model recreates the longitudinal flight dynamics 
that pilots of the Wright Flyer would have experienced. Because they were able 
to control lateral motion, Orville and Wilbur Wright were able to maintain a 
relatively straight flight path.

The study consists of these sections:

• “Wright Flyer Model” on page 3-10 shows how to open the model used in this 
case study.

• “Airframe Subsystem” on page 3-10 describes the airframe subsystem.

• “Environment Subsystem” on page 3-14 describes the environment 
subsystem.

• “Pilot Subsystem” on page 3-15 describes the Pilot subsystem.

• “Running the Simulation” on page 3-16 provides a demonstration of the 
Wright Flyer model, including a virtual world visualization.

http://www.mathworks.com/products/virtualreality/
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Wright Flyer Model
Open the Wright Flyer model by entering aeroblk_wf_3dof at the MATLAB 
command line.

Airframe Subsystem
The Airframe subsystem simulates the rigid body dynamics of the Wright Flyer 
airframe, including elevator angle of attack, aerodynamic coefficients, forces 
and moments, and three-degrees-of-freedom equations of motion.
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The Airframe subsystem consists of the following parts:

• “Elevator Angle of Attack Subsystem” on page 3-11

• “Aerodynamic Coefficients Subsystem” on page 3-12 

• “Forces and Moments Subsystem” on page 3-13 

• “3DoF (Body Axes) Block” on page 3-13 

Elevator Angle of Attack Subsystem
The Elevator Angle of Attack subsystem calculates the effective elevator angle 
for the Wright Flyer airframe and feeds its output to the Pilot subsystem.
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Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data and 
equations for calculating the aerodynamic coefficients, which are summed and 
passed to the Forces and Moments subsystem. Stored in data sets, the 
aerodynamic coefficients are determined by interpolation using PreLook-Up 
blocks. 
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Forces and Moments Subsystem
The aerodynamic forces and moments acting on the airframe are generated 
from aerodynamic coefficients. The Forces and Moments subsystem calculates 
the body forces and body moments acting on the airframe about the center of 
gravity. These forces and moments depend on the aerodynamic coefficients, 
thrust, dynamic pressure, and reference airframe parameters.

3DoF (Body Axes) Block
The 3DoF (Body Axes) block use equations of motion to define the linear and 
angular motion of the Wright Flyer airframe. It also performs conversions from 
the original model’s axis system and the body axes.
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3DoF (Body Axes) Block Parameters

Environment Subsystem
The first and final flights of the Wright Flyer occurred on December 17, 1903. 
Orville and Wilbur Wright chose an area near Kitty Hawk, North Carolina, 
situated near the Atlantic coast. Wind gusts of more than 25 miles per hour 
were recorded that day. After the final flight on that blustery December day, a 
wind gust caught and overturned the Wright Flyer, damaging it beyond repair.

The Environment subsystem of the Wright Flyer model contains a variety of 
blocks from the Environment sublibrary of the Aerospace Blockset, including 
wind, atmosphere, and gravity, and calculates airspeed and dynamic pressure. 
The Discrete Wind Gust Model block provides wind gusts to the simulated 
environment. The other blocks are

• The Incidence and Airspeed block calculates the angle of attack and 
airspeed.

• The COESA Atmosphere Model block calculates the air density.

• The Dynamic Pressure block computes the dynamic pressure from the air 
density and velocity.
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• The WGS84 Gravity Block produces the gravity at the Wright Flyer’s 
latitude and height.

Pilot Subsystem
The Pilot subsystem controls the aircraft by responding to both pitch angle 
(attitude) and angle of attack. If the angle of attack differs from the set angle 
of attack by more than one degree, the Pilot subsystem responds with a 
correction of the elevator (canard) angle. When the angular velocity exceeds 
+/− 0.02 rad/s, angular velocity and angular acceleration are also taken into 
consideration with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without an 
automatic controller, a reaction time of 0.06 seconds is optimal for successful 
flight. The Delay of Pilot block recreates this effect by producing a delay of no 
more than 0.08 second.
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Running the Simulation
The default values for this simulation allow the Wright Flyer model to take off 
and land successfully. The pilot reaction time (wf_B3) is set to 0.06 seconds, the 
desired angle of attack (wf_alphaa) is constant, and the altitude attained is 
low. The Wright Flyer model reacts similarly to the actual Wright Flyer. It 
leaves the ground, moves forward, and lands on a point as high as that from 
which it started. This model exhibits the longitudinal “undulation” in attitude 
of the original aircraft.

Attitude Scope (Measured in Radians)
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A pilot with quick reaction times and ideal flight conditions makes it possible 
to fly the Wright Flyer successfully. The Wright Flyer model confirms that 
controlling its longitudinal motion was a serious challenge. The longest 
recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note  This section requires the Virtual Reality Toolbox.

The Wright Flyer model also provides a virtual world visualization, coded in 
Virtual Reality Modeling Language (VRML) [3]. The VR Sink block in the main 
model allows you to view the flight motion in three dimensions.

1903 Wright Flyer Virtual Reality World

References
[1] Hooven, Frederick J., “Longitudinal Dynamics of the Wright Brothers’ 
Early Flyers: A Study in Computer Simulation of Flight,” from The Wright 
Flyer: An Engineering Perspective, ed. Howard S. Wolko, Smithsonian 
Institution Press, 1987.

http://www.mathworks.com/products/virtualreality/
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and Timothy Rohaly converted it to VRML.

Additional information about the 1903 Wright Flyer can be found at

• http://www.wrightexperience.com
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NASA HL-20 Lifting Body Airframe
This case study models the airframe of a NASA HL-20 lifting body, a low-cost 
complement to the Space Shuttle orbiter. The HL-20 is unpowered, but the 
model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be 
modeled, simulated, and analyzed. Ideally, this airframe should be modeled 
quickly, reusing blocks or model structure to reduce validation time and leave 
more time available for control design. In this study, the Aerospace Blockset 
efficiently models portions of the HL-20 airframe. The remaining portions, 
including calculation of the aerodynamic coefficients, are modeled with 
Simulink. This case study examines the HL-20 airframe model and touches on 
how the aerodynamic data are used in the model.

This study consists of these sections:

• “NASA HL-20 Lifting Body” provides an overview of the history and 
purposes of the NASA HL-20 lifting body.

• “The HL-20 Airframe and Controller Model” on page 3-21 describes the 
HL-20 combined plant and controller model.

• “References” on page 3-32 provides a selected bibliography.

NASA HL-20 Lifting Body
The HL-20, also known as the Personnel Launch System (PLS), is a lifting body 
reentry vehicle designed to complement the Space Shuttle orbiter. It was 
developed originally as a low-cost solution for getting to and from low Earth 
orbit. It can carry up to 10 people and a limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically 
with booster rockets or by transporting it in the payload bay of the Space 
Shuttle orbiter. The HL-20 lifting body deorbits using a small onboard 
propulsion system. Its reentry profile is nose first, horizontal, and unpowered.
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Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

• Rapid turnaround between landing and launch reduces operating costs.

• The HL-20 has exceptional flight safety.

• It can land conventionally on aircraft runways.

Potential uses for the HL-20 include

• Orbital rescue of stranded astronauts

• International Space Station crew exchanges

• Observation missions

• Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data 
from HL-20 tests are being used in current NASA projects [2].
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The HL-20 Airframe and Controller Model
You can open the HL-20 airframe and controller model by entering 
aeroblk_HL20 at the MATLAB command line.
 

Modeling Assumptions and Limitations
Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA 
document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

• The airframe is assumed to be rigid and have constant mass, center of 
gravity, and inertia, since the model represents only the unpowered reentry 
portion of a mission.

• HL-20 is assumed to be a laterally symmetric vehicle.

• Compressibility (Mach) effects are assumed to be negligible.

• Control effectiveness is assumed to vary nonlinearly with angle of attack and 
linearly with angle of deflection. Control effectiveness is not dependent on 
sideslip angle.
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• The nonlinear six-degrees-of-freedom aerodynamic model is a representation 
of an early version of the HL-20. Therefore, the model is not intended for 
realistic performance simulation of later versions of the HL-20.

The typical airframe model consists of a number of components, such as

• Equations of motion

• Environmental models

• Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which 
model the typical airframe components:

• “6DoF (Euler Angles) Subsystem” on page 3-23

• “Environmental Models Subsystem” on page 3-24

• “Alpha, Beta, Mach Subsystem” on page 3-26

• “Aerodynamic Coefficients Subsystem” on page 3-27

• “Forces and Moments Subsystem” on page 3-31
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HL-20 Airframe Subsystem

6DoF (Euler Angles) Subsystem
The 6DoF (Euler Angles) subsystem contains the six-degrees-of-freedom 
equations of motion for the airframe. In the 6DoF (Euler Angles) subsystem, 
the body attitude is propagated in time using an Euler angle representation. 
This subsystem is one of the equations of motion blocks from the Aerospace 
Blockset. A quaternion representation is also available. See the 6DoF (Euler 
Angles) and 6DoF (Quaternion) block reference pages for more information on 
these blocks.
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Environmental Models Subsystem
The Environmental Models subsystem contains the following subsystems and 
blocks:

• The WGS84 Gravity Model block implements the mathematical 
representation of the geocentric equipotential ellipsoid of the World Geodetic 
System (WGS84).

See the WGS84 Gravity Model block reference page for more information on 
this block.

• The COESA Atmosphere Model block implements the mathematical 
representation of the 1976 Committee on Extension to the Standard 
Atmosphere (COESA) standard lower atmospheric values for absolute 
temperature, pressure, density, and speed of sound, given the input 
geopotential altitude.

See the COESA Atmosphere Model block reference page for more 
information on this block.

• The Wind Models subsystem contains the following blocks:

- The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information on 
this block.

- The Discrete Wind Gust Model block implements a wind gust of the 
standard “1 − cosine” shape.

See the Discrete Wind Gust Model block reference page for more 
information on this block.

- The Dryden Wind Turbulence Model (Continuous) block uses the Dryden 
spectral representation to add turbulence to the aerospace model by 
passing band-limited white noise through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference page 
for more information on this block.

The environmental models implement mathematical representations within 
standard references, such as U.S. Standard Atmosphere, 1976.
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Environmental Models in HL-20 Airframe Model
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Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem
The Alpha, Beta, Mach subsystem calculates additional parameters needed for 
the aerodynamic coefficient computation and lookup. These additional 
parameters include

• Mach number

• Incidence angles ( )

• Airspeed

• Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity 
and corrects the body rates for wind angular acceleration.

α β,
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Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta, 
Mach Subsystem)

Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data and 
equations for calculating the six aerodynamic coefficients, which are 
implemented as in reference [1]. The six aerodynamic coefficients follow. 

Ground and landing gear effects are not included in this model.

Cx Axial-force coefficient

Cy Side-force coefficient

Cz Normal-force coefficient

Cl Rolling-moment coefficient

Cm Pitching-moment coefficient

Cn Yawing-moment coefficient
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The contribution of each of these coefficients is calculated in the subsystems 
(body rate, actuator increment, and datum), and then summed and passed to 
the Forces and Moments subsystem.

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled 
models of a preliminary subsonic aerodynamic model of the HL-20. The data 
was curve fitted, and most of the aerodynamic coefficients are described by 
polynomial functions of angle of attack and sideslip angle. In-depth details 
about the aerodynamic data and the data reduction can be found in 
reference [1].

The polynomial functions contained in the M-file aeroblk_init_hl20.m are 
used to calculate lookup tables used by the model’s preload function. Lookup 
tables substitute for polynomial functions. Depending on the order and 
implementation of the function, using lookup tables can be more efficient than 
recalculating values at each time step with functions. To further improve 
efficiency, most tables are implemented as PreLook-up Index Search and 
Interpolation (n-D) using PreLook-up blocks. These blocks improve 
performance most when the model has a number of tables with identical 
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breakpoints. These blocks reduce the number of times the model has to search 
for a breakpoint in a given time step. Once the tables are populated by the 
preload function, the aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided 
among three subsystems:

• “Datum Coefficients Subsystem” on page 3-29

• “Body Rate Damping Subsystem” on page 3-30

• “Actuator Increment Subsystem” on page 3-31

Summing the Datum Coefficients, Body Rate Damping, and Actuator 
Increments subsystem outputs generates the six aerodynamic coefficients used 
to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem. The Datum Coefficients subsystem calculates 
coefficients for the basic configuration without control surface deflection. These 
datum coefficients depend only on the incidence angles of the body.
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Body Rate Damping Subsystem. Dynamic motion derivatives are computed in the 
Body Rate Damping subsystem.
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Actuator Increment Subsystem. Lookup tables determine the incremental changes 
to the coefficients due to the control surface deflections in the Actuator 
Increment subsystem. Available control surfaces include symmetric wing flaps 
(elevator), differential wing flaps (ailerons), positive body flaps, negative body 
flaps, differential body flaps, and an all-movable rudder.

Forces and Moments Subsystem. The Forces and Moments subsystem calculates 
the body forces and body moments acting on the airframe about the center of 
gravity. These forces and moments depend on the aerodynamic coefficients, 
thrust, dynamic pressure, and reference airframe parameters.
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Completing the Model
These subsystems that you have examined complete the HL-20 airframe. The 
next step in the flight control design process is to analyze, trim, and linearize 
the HL-20 airframe so that a flight control system can be designed for it. You 
can see an example of an auto-land flight control for the HL-20 airframe in the 
aeroblk_HL20 demo.

References
[1] Jackson, E. B., and C. L. Cruz, “Preliminary Subsonic Aerodynamic Model 
for Simulation Studies of the HL-20 Lifting Body,” NASA TM4302 (August 
1992).

This document is included in the ZIP file available from MATLAB Central as 
file 1815.

[2] Morring, F., Jr., “ISS ‘Lifeboat’ Study Includes ELVs,” Aviation Week & 
Space Technology (May 20, 2002). 

Find additional information about the HL-20 lifting body at

• http://www.astronautix.com/craft/hl20.htm

• http://www.aviationnow.com/content/publication/awst/20020520/aw46
.htm (requires subscription)

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1815
http://www.mathworks.com/matlabcentral/
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Missile Guidance System
This case study explains the design and simulation of a guidance system for a 
three-degrees-of-freedom missile. The model includes all aspects of the system, 
from the missile airframe (plant) and environment to the controller.

• “Missile Guidance System Model” shows how to open the model used in this 
study.

• “Modeling Airframe Dynamics” on page 3-34 describes the implementation 
of the atmospheric equations and equations of motion for the missile 
airframe.

• “Modeling a Classical Three-Loop Autopilot” on page 3-41 describes the 
design of the missile autopilot to control the acceleration normal to the 
missile body.

• “Modeling the Homing Guidance Loop” on page 3-43 describes the design of 
a homing guidance loop to track the target and generate the demands that 
are passed to the autopilot. This subsystem uses Stateflow.

• “Simulating the Missile Guidance System” on page 3-49 describes the 
simulation of the model and evaluation of system performance.

• “Extending the Model” on page 3-51 examines a representation of the full 
six-degrees-of-freedom equations of motion.

• “References” on page 3-52 provides a selected bibliography.

Note  The Stateflow module in this demo is precompiled and does not require 
Stateflow to be installed.

Missile Guidance System Model
To view the missile guidance system model, enter aeroblk_guidance at the 
MATLAB command line.

The missile airframe and autopilot are contained in the Airframe & Autopilot 
subsystem. The Seeker/Tracker and Guidance subsystems model the homing 
guidance loop.

http://www.mathworks.com/products/stateflow/
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Modeling Airframe Dynamics
The model of the missile airframe in this demo uses advanced control methods 
applied to missile autopilot design [1], [2], [3]. The model represents a 
tail-controlled missile traveling between Mach 2 and Mach 4, at altitudes 
ranging between 3,050 meters (10,000 feet) and 18,290 meters (60,000 feet), 
and with typical angles of attack in the range of ±20 degrees.
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Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body 
dynamics of the airframe. The aerodynamic forces and moments acting on the 
missile body are generated from coefficients that are nonlinear functions of 
both incidence and Mach number. You can model these dynamics easily with 
the Aerospace Blockset.

The model of the missile airframe consists of two main components:

• “ISA Atmosphere Model Block” on page 3-36 calculates the change in 
atmospheric conditions with changing altitude.

• “Aerodynamics & Equations of Motion Subsystem” on page 3-39 calculates 
the magnitude of the forces and moments acting on the missile body and 
integrates the equations of motion.
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To view the missile airframe model, enter aeroblk_guidance_airframe at the 
MATLAB command line.

ISA Atmosphere Model Block
The ISA Atmosphere Model block is an approximation of the International 
Standard Atmosphere (ISA). This block implements two sets of equations. The 
troposphere requires one set of equations, and the lower stratosphere requires 
the other set. The troposphere lies between sea level and 11,000 meters (36,089 
feet). The ISA model assumes a linear temperature drop with increasing 
altitude in the troposphere. The lower stratosphere ranges between 11,000 
meters (36,089 feet) and 20,000 meters (65,617 feet). The ISA models the lower 
stratosphere by assuming that the temperature remains constant.
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Variation of Sound Speed and Air Density with Altitude

The following equations define the troposphere.
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The following equations define the lower stratosphere.

The symbols are defined as follows: 

You can look under the mask of the ISA Atmosphere Model block to see how 
these equations are implemented.

Absolute temperature at mean sea level in kelvin (oK)

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Altitude in m

Height of the troposphere in m

Absolute temperature at altitude h in kelvin (oK)

ρ Air density at altitude h in kg/m3

Static pressure at altitude h in N/m2

Speed of sound at altitude h in m/s2

Temperature lapse rate in oK/m

Characteristic gas constant J/kg-oK

Ratio of specific heats

Acceleration due to gravity in m/s2
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Aerodynamics & Equations of Motion Subsystem
The Aerodynamics & Equations of Motion subsystem generates the forces and 
moments applied to the missile in the body axes and integrates the equations 
of motion that define the linear and angular motion of the airframe. The 
aerodynamic coefficients are stored in data sets. During the simulation, the 
value at the current operating condition is determined by interpolation using 
the Interpolation (n-D) using PreLook-Up blocks. 

These are the three-degrees-of-freedom body axis equations of motion, which 
are defined in the Equations of Motion (Body Axes) block.

U· T Fx+( ) m⁄ qW– g θsin–=

W· Fz m⁄ qU g θcos+ +=

q· M Iyy⁄=

θ· q=
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These are the aerodynamic forces and moments equations, which are defined 
in the Aerodynamics subsystem.

These are the stability axes variables, which are calculated in the Incidence & 
Airspeed block.

The symbols are defined as follows: 

Attitude in radians

Body rotation rate in rad/s

Missile mass in kg

Acceleration due to gravity in m/s2

Moment of inertia about the y-axis in kg-m2

Acceleration in the Z body axis in m/s2

Change in body rotation rate in rad/s2

Thrust in the X body axis in N

Air density in kg/m3

Reference area in m2

Coefficient of aerodynamic force in the X body axis

Coefficient of aerodynamic force in the Z body axis

Coefficient of aerodynamic moment about the Y body axis

Fx qSrefCx Mach α,( )=

Fz qSrefCz Mach α η,( , )=
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Modeling a Classical Three-Loop Autopilot
The missile autopilot controls the acceleration normal to the missile body. The 
autopilot structure of this case study is a three-loop design using 
measurements from an accelerometer located ahead of the missile’s center of 
gravity and from a rate gyro to provide additional damping. The controller 
gains are scheduled on incidence and Mach number and tuned for robust 
performance at an altitude of 3,050 meters (10,000 feet).

Classical Autopilot

Reference length in m

Fin angle in rad

Aerodynamic force in the X body axis in N

Aerodynamic force in the Z body axis in N

Aerodynamic moment along the Y body axis

Dynamic pressure in Pa

Airspeed in m/s

Incidence in rad

Velocity in the X body axis in m/s

Velocity in the Z body axis in m/s

dref

η

FX

FZ

M

q

V

α

U

W
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Designing an autopilot requires the following:

• “Trimming and Linearizing an Airframe Model” on page 3-42 explains how 
to model the airframe pitch dynamics for several trimmed flight conditions.

• “Autopilot Design” on page 3-43 summarizes the autopilot design process.

Trimming and Linearizing an Airframe Model
Designing the autopilot with classical design techniques requires linear models 
of the airframe pitch dynamics for several trimmed flight conditions. MATLAB 
can determine the trim conditions and derive linear state-space models directly 
from the nonlinear Simulink model. This step saves time and helps to validate 
the model. The functions provided by Simulink Control Design or the Control 
System Toolbox allow you to visualize the behavior of the airframe in terms of 
open-loop frequency or time response.

The airframe trim demos show how to trim and linearize an airframe model.

• To run the demo based on the Control System Toolbox, enter 
asbguidance_trimlinearize_cst. The results of this demo are displayed as 
a Bode diagram in the LTI Viewer.

• The alternative demo, asbguidance_trimlinearize, uses Simulink Control 
Design instead and produces identical results.

http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/control/
http://www.mathworks.com/products/control/
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Autopilot Design
Autopilot design can begin after the missile airframe has been linearized at a 
number of flight conditions. Autopilot designs are typically carried out on a 
number of linear airframe models derived at varying flight conditions across 
the expected flight envelope. Implementing the autopilot in the nonlinear 
model involves storing the autopilot gains in two-dimensional lookup tables 
and incorporating an antiwindup gain to prevent integrator windup when the 
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear 
model is the best way to demonstrate satisfactory performance in the presence 
of nonlinearities, such as actuator fin and rate limits and dynamically 
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop 
autopilot design.

Modeling the Homing Guidance Loop
The complete homing guidance loop consists of these two subsystems:

• The “Guidance Subsystem” on page 3-44 generates the normal acceleration 
demands that are passed to the autopilot and uses Stateflow.

• The “Seeker/Tracker Subsystem” on page 3-47 returns measurements of the 
relative motion between the missile and the target.
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The autopilot is part of an inner loop within the overall homing guidance 
system. Consult reference [4] for information on different types of guidance 
systems and on the analysis techniques that are used to quantify guidance loop 
performance.

Guidance Subsystem
Initially, the Guidance subsystem searches to locate the target’s position and 
then generates demands during closed-loop tracking. A Stateflow chart 
controls the transfer between the different modes of these operations. 
Stateflow is the ideal tool for rapidly defining all the operational modes, both 
during normal operation and during unusual situations.
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Guidance Processor State Chart. Mode switching is triggered by events generated 
in Simulink or in the Stateflow chart. The variable Mode is passed to Simulink 
and is used to control the Simulink model’s behavior and response. For 
example, the Guidance Processor state chart, which is part of the Guidance 
subsystem, shows how the system reacts in response to either losing the target 
lock or failing to acquire the target’s position during the target search.

During the target search, this Stateflow state chart controls the tracker 
directly by sending demands to the seeker gimbals (Sigma_d). Target 
acquisition is flagged by the tracker once the target lies within the beam width 
of the seeker (Acquire) and, after a short delay, closed-loop guidance begins.
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Proportional Navigation Guidance. Once the seeker has acquired the target, a 
proportional navigation guidance (PNG) law guides the missile until impact. 
This form of guidance law is the most basic, used in guided missiles since the 
1940s, and can be applied to radar-, infrared-, or television-guided missiles. 
The navigation law requires measurements of the closing velocity between the 
missile and target, which for a radar-guided missile can be obtained with a 
Doppler tracking device, and an estimate for the rate of change of the inertial 
sight line angle.

Proportional Navigation Guidance Measurements
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The diagram symbols are defined as follows: 

Seeker/Tracker Subsystem
The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker 
dish aligned with the target and provides the guidance law with an estimate of 
the sight line rate.

Tracker and Sightline Rate Estimator. The Tracker and Sightline Rate Estimator is 
the most elaborate subsystem of the Seeker/Tracker subsystem because of its 
complex error modeling.

λ Navigation gain (> 2)

Vc Closing velocity

θb Body attitude

Sight line rate

σg Gimbal angle

σL Look angle

σd Dish angle

az_dem =  λVc Demanded normal acceleration

θ· s

θ· s
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The subsystem contains a number of feedback loops, estimated parameters, 
and parasitic effects for the homing guidance.

• The tracker loop time constant tors is set to 0.05 second, a compromise 
between maximizing speed of response and keeping the noise transmission 
within acceptable levels.

• The stabilization loop compensates for body rotation rates. The gain Ks, 
which is the loop crossover frequency, is set as high as possible subject to the 
limitations of the stabilizing rate gyro’s bandwidth.

• The sight line rate estimate is a filtered value of the sum of the rate of change 
of the dish angle measured by the stabilizing rate gyro and an estimated 
value for the rate of change of the angular tracking error (e) measured by the 
receiver. In this model, the bandwidth of the estimator filter is set to half 
that of the bandwidth of the autopilot.

Radome Aberration. The Tracker and Sightline Rate Estimator subsystem also 
models the radome aberration.
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Radome aberration is a parasitic feedback effect commonly modeled in 
radar-guided missile designs and occurs because the shape of the protective 
covering over the seeker distorts the returning signal and gives a false reading 
of the look angle to the target. The distortion is, in general, a nonlinear function 
of the current gimbal angle. A common approximation is to assume a linear 
relationship between the gimbal angle and the magnitude of the distortion. The 
approximation is valid for a limited range of angle. Other parasitic effects, such 
as sensitivity to normal acceleration in the rate gyros, are often modeled as 
well to test the robustness of the target tracker and estimator filters.

Simulating the Missile Guidance System
Running the guidance simulation demonstrates the performance of the overall 
system. The target is defined to be traveling at a constant speed of 328 m/s on 
a reciprocal course to the initial missile heading and 500 meters above the 
initial missile position. The data, shown in the following figure, can be used to 
determine if the missile can withstand the flight demands and complete the 
mission to target.
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Target acquisition occurs 0.69 second after search initiation, with closed-loop 
guidance starting after 0.89 second. Impact with the target occurs at 3.46 
seconds, with the range to target at the point of closest approach calculated to 
be 0.26 meter.
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Extending the Model
Modeling the airframe and guidance loop in a single plane is only the start of 
the design process. Extending the model to a full six-degrees-of-freedom 
representation requires the implementation of the full equations of motion for 
a rigid body.

Six degrees of freedom can be represented using a quaternion or Euler angles.

• The first implementation uses a quaternion to represent the angular 
orientation of the body in space. The quaternion is appropriate when the 
standard Euler angle definitions become singular as the pitch attitude tends 
to ±90 degrees.

• The second implementation uses the standard Euler angle equations of 
motion. Euler angles are appropriate when obtaining trim conditions and 
modeling linear airframes. This model contains one of the 
six-degrees-of-freedom equations of motion blocks.
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Blocks — Categorical List 4

The Aerospace Blockset’s block library, aerolib, is organized into libraries 
according to their behavior. The aerolib window displays the block library 
icons and names.  

Actuators Library Actuator models

Aerodynamics Library Aerodynamics models

Animation Library 3-D animation during simulation

Environment Library Environmental models

Flight Parameters Library Flight parameter models

Equations of Motion Library Equation of motion models

GNC Library Gain scheduling models

Mass Properties Library Center of gravity and tensor models

Propulsion Library Simple propulsion system models

Utilities Library Common mathematical operations and 
conversions
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Actuators Library  

Aerodynamics Library 

Animation Library  

Environment Library
The Environment Library contains the following sublibraries:

Second Order Linear 
Actuator

Implement a second-order linear actuator

Second Order Nonlinear 
Actuator

Implement a second-order nonlinear actuator 
with rate and deflection limits

Aerodynamic Forces and 
Moments

Compute the aerodynamic forces and moments 
using the aerodynamic coefficients, dynamic 
pressure, center of gravity, and center of 
pressure

3DoF Animation Create a 3-D Handle Graphics® animation of a 
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a 
six-degrees-of-freedom object



4 Block Reference

4-4

Atmosphere Sublibrary  

Gravity Sublibrary  

Wind Sublibrary  

COESA Atmosphere Model Implement the 1976 Committee on Extension 
to the Standard Atmosphere (COESA) lower 
atmosphere

ISA Atmosphere Model Implement the International Standard 
Atmosphere (ISA)

Lapse Rate Model Implement Lapse Rate Model for atmosphere

Non-Standard Day 210C Implement the MIL-STD-210C climatic data

Non-Standard Day 310 Implement the MIL-HDBK-310 climatic data

Pressure Altitude Calculate pressure altitude based on ambient 
pressure

WGS84 Gravity Model Implement the 1984 World Geodetic System 
representation of Earth’s gravity

World Magnetic Model 2000 Calculate the Earth's magnetic field at a 
specific location and time using the World 
Magnetic Model 2000 (WMM2000)

Discrete Wind Gust Model Generate discrete wind gust

Dryden Wind Turbulence 
Model (Continuous)

Generate wind turbulence with the Dryden 
velocity spectra

Dryden Wind Turbulence 
Model (Discrete)

Generate wind turbulence with the Dryden 
velocity spectra

Horizontal Wind Model Transform horizontal wind into body-axes 
coordinates

Von Karman Wind 
Turbulence Model 
(Continuous)

Generate atmospheric turbulence

Wind Shear Model Calculate wind shear conditions
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Flight Parameters Library  

Equations of Motion Library
The Equations of Motion library contains the following sublibraries:

Dynamic Pressure Compute dynamic pressure using velocity and 
air density

Ideal Airspeed Correction Calculate equivalent airspeed (EAS), calibrated 
airspeed (CAS), or true airspeed (TAS) from 
each other

Incidence & Airspeed Calculate incidence and air speed

Incidence, Sideslip & 
Airspeed

Calculate incidence, sideslip and air speed

Mach Number Compute Mach number using velocity and 
speed of sound

Relative Ratio Calculate relative atmospheric ratios



4 Block Reference

4-6

3DoF Sublibrary 

6DoF Sublibrary

GNC Library
The GNC library contains the following sublibraries:

3DoF (Body Axes) Implement three-degrees-of-freedom equations 
of motion

Custom Variable Mass 
3DoF (Body Axes)

Implement three-degrees-of-freedom equations 
of motion

Simple Variable Mass 3DoF 
(Body Axes)

Implement three-degrees-of-freedom equations 
of motion

6DoF (Euler Angles) Implement an Euler angle representation of 
six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of 
six-degrees-of-freedom equations of motion

Custom Variable Mass 
6DoF (Euler Angles)

Implement an Euler angle representation of 
six-degrees-of-freedom equations of motion

Custom Variable Mass 
6DoF (Quaternion)

Implement a quaternion representation of 
six-degrees-of-freedom equations of motion

Simple Variable Mass 6DoF 
(Euler Angles)

Implement an Euler angle representation of 
six-degrees-of-freedom equations of motion

Custom Variable Mass 
6DoF (Quaternion)

Implement a quaternion representation of 
six-degrees-of-freedom equations of motion
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Controls Sublibrary 

1D Controller 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller depending on one scheduling 
parameter

1D Controller Blend 
u=(1-L).K1.y+L.K2.y

Implement a 1-D vector of state-space 
controllers by linear interpolation of their 
outputs

1D Observer Form 
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space 
controller in an observer form depending on 
one scheduling parameter

1D Self-Conditioned 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller in a self-conditioned form

2D Controller 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller depending on two scheduling 
parameters

2D Controller Blend Implement a 2-D vector of state-space 
controllers by linear interpolation of their 
outputs

2D Observer Form 
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space 
controller in an observer form depending on 
two scheduling parameters

2D Self-Conditioned 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller in a self-conditioned form

3D Controller 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller depending on three scheduling 
parameters

3D Observer Form 
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space 
controller in an observer form depending on 
three scheduling parameters

3D Self-Conditioned 
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space 
controller in a self-conditioned form
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Guidance Sublibrary 

Mass Properties Library 

Propulsion Library  

Utilities Library
The Utilities library contains the following sublibraries:

Gain Scheduled Lead-Lag Implement a first-order lead-lag with 
gain-scheduled coefficients

Interpolate Matrix(x) Return an interpolated matrix for given input x

Interpolate Matrix(x,y) Return an interpolated matrix for given inputs 
x and y

Interpolate Matrix(x,y,z) Return an interpolated matrix for given inputs 
x, y, and z

Self-Conditioned [A,B,C,D] Implement a state-space controller in a 
self-conditioned form

Calculate Range Calculate the range between two crafts given 
their respective positions

Estimate Center of Gravity Calculate the center of gravity location

Estimate Inertia Tensor Calculate the inertia tensor

Moments About CG Due to 
Forces

Compute moments about center of gravity due 
to forces that are applied at point CP, not the 
center of gravity

Symmetric Inertia Tensor Create an inertia tensor from moments and 
products of inertia

Turbofan Engine System Implement a first-order representation of a 
turbofan engine with controller
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Axes Transformations Sublibrary  

Math Operations Sublibrary 

Unit Conversions Sublibrary  

Direction Cosine Matrix to 
Euler Angles

Convert direction cosine matrix to Euler angles

Direction Cosine Matrix to 
Quaternions

Convert direction cosine matrix to quaternion 
vector

Euler Angles to Direction 
Cosine Matrix

Convert Euler angles to direction cosine matrix

Euler Angles to 
Quaternions

Convert Euler angles to quaternion vector

Quaternions to Direction 
Cosine Matrix

Convert quaternion vector to direction cosine 
matrix

Quaternions to Euler 
Angles

Convert quaternion vector to Euler angles

3x3 Cross Product Calculate the cross product of two 3-by-1 
vectors

Adjoint of 3x3 Matrix Compute the adjoint matrix for the input 
matrix

Create 3x3 Matrix Create a 3-by-3 matrix from nine input values

Determinant of 3x3 Matrix Compute the determinant for the input matrix

Invert 3x3 Matrix Compute the inverse of 3-by-3 matrix using 
determinant formula

SinCos Compute the sine and cosine of input angle

Acceleration Conversion Convert from acceleration units to desired 
acceleration units

Angle Conversion Convert from angle units to desired angle units
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Angular Acceleration 
Conversion

Convert from angular acceleration units to 
desired angular acceleration units

Angular Velocity 
Conversion

Convert from angular velocity units to desired 
angular velocity units

Density Conversion Convert from density units to desired density 
units

Force Conversion Convert from force units to desired force units

Length Conversion Convert from length units to desired length 
units

Mass Conversion Convert from mass units to desired mass units

Pressure Conversion Convert from pressure units to desired 
pressure units

Temperature Conversion Convert from temperature units to desired 
temperature units

Velocity Conversion Convert from velocity units to desired velocity 
units
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Blocks — Alphabetical List 4

This section contains the Aerospace Blockset block reference pages listed 
alphabetically.
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41D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on one 
scheduling parameter

Library GNC/Controls

Description The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled 
state-space controller as defined by the equations

where v is a parameter over which A, B, C, and D are defined. This type of 
controller scheduling assumes that the matrices A, B, C, and D vary smoothly 
as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v( )x B v( )y+=

u C v( )x D v( )y+=
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A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D scheduling, 
the A-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the A-matrix 
corresponding to the first entry of v is the identity matrix, then 
A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. In the case of 1-D scheduling, 
the B-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the B-matrix 
corresponding to the first entry of v is the identity matrix, then 
B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. In the case of 1-D scheduling, 
the C-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the C-matrix 
corresponding to the first entry of v is the identity matrix, then 
C(:,:,1) = 1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. In the case of 1-D scheduling, 
the D-matrix should have three dimensions, the last one corresponding to 
the scheduling variable v. Hence, for example, if the D-matrix 
corresponding to the first entry of v is the identity matrix, then 
D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.
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Inputs and 
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of 
the state-space matrices.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the 
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]
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41D Controller Blend u=(1-L).K1.y+L.K2.yPurpose Implement a 1-D vector of state-space controllers by linear interpolation of 
their outputs

Library GNC/Controls

Description The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of 
state-space controller designs. The controllers are run in parallel, and their 
outputs interpolated according to the current flight condition or operating 
point. The advantage of this implementation approach is that the state-space 
matrices A, B, C, and D for the individual controller designs do not need to vary 
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points 
v=vmin and v=vmax. The 1D Controller Blend block implements

For longer arrays of design points, the blocks only implement nearest neighbor 
designs. For the 1D Controller Blend block, at any given instant in time, three 
controller designs are being updated. This reduces computational 
requirements.

As the value of the scheduling parameter varies and the index of the controllers 
that need to be run changes, the states of the oncoming controller are 
initialized by using the self-conditioned form as defined for the 
Self-Conditioned [A,B,C,D] block.

x1
· A1x1 B1y+=

u1 C1x1 D1y+=

x2
· A2x2 B2y+=

u2 C= 2x2 D2y+

u 1 λ–( )u1 λu2+=

λ

0 v vmin<

v vmin–

vmax vmin–
-------------------------------- vmin v vmax≤ ≤

1 v vmax>⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
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Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D blending, 
the A-matrix should have three dimensions, the last one corresponding to 
scheduling variable v. Hence, for example, if the A-matrix corresponding to 
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. 

C-matrix(v)
C-matrix of the state-space implementation. 

D-matrix(v)
D-matrix of the state-space implementation. 
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Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that 
the controller output tracks the current block output, u. The poles of the 
observer are defined in this dialog box as a vector, the number of poles 
being equal to the dimension of the A-matrix. Poles that are too fast result 
in sensor noise propagation, and poles that are too slow result in the failure 
of the controller output to track u.

Inputs and 
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of 
the state-space matrices.

The output is the actuator demands. 

Assumptions 
and Limitations

This block requires the Control System Toolbox.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 5.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller Blend
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41D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form 
depending on one scheduling parameter

Library GNC/Controls

Description The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a 
gain-scheduled state-space controller defined in the following observer form:

The main application of this blocks is to implement a controller designed using 
H-infinity loop-shaping, one of the design methods supported by the 

-Analysis and Synthesis Toolbox.

Dialog Box

x· A v( ) H v( )C v( )+( )x B v( )umeas H v( ) y ydem–( )+ +=

udem F v( )x=

μ
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A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the A-matrix corresponding to the first entry of v is 
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the B-matrix corresponding to the first entry of v is 
the identity matrix, then B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the C-matrix corresponding to the first entry of v is 
the identity matrix, then C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the 
last one corresponding to the scheduling variable v. Hence, for example, if 
the F-matrix corresponding to the first entry of v is the identity matrix, 
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three 
dimensions, the last one corresponding to the scheduling variable v. Hence, 
for example, if the H-matrix corresponding to the first entry of v is the 
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the set-point error. 
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The second input is the scheduling variable.

The third input is measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the 
aeroblk_lib_HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
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41D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a 
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the 
Self-Conditioned [A,B,C,D] block reference. This block implements a 
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the 
parameter over which A, B, C, and D are defined. This type of controller 
scheduling assumes that the matrices A, B, C, and D vary smoothly as a 
function of v, which is often the case in aerospace applications.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=

z· A v( ) H v( )C v( )–( )z B v( ) H v( )D v( )–( )e H v( )umeas++=

udem C v( )z D v( )e+=
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Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the A-matrix corresponding to the first entry of v is 
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the B-matrix corresponding to the first entry of v is 
the identity matrix, then B(:,:,1) = [1 0;0 1];.
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C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the C-matrix corresponding to the first entry of v is 
the identity matrix, then C(:,:,1) = [1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have 
three dimensions, the last one corresponding to the scheduling variable v. 
Hence, for example, if the D-matrix corresponding to the first entry of v is 
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v 
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the 
same locations for all values of the scheduling parameter v. Hence the 
number of pole locations defined should be equal to the length of the first 
dimension of the A-matrix.

Inputs and 
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of 
the state-space matrices. 

The third input is the measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.
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References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]
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42D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on two 
scheduling parameters

Library GNC/Controls

Description The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled 
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This 
type of controller scheduling assumes that the matrices A, B, C, and D vary 
smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v( )x B v( )y+=

u C v( )x D v( )y+=
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A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling, 
the A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling, 
the B-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the B-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling, 
the C-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the C-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D scheduling, 
the D-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the D-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.
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Inputs and 
Outputs

The first input is the measurements. 

The second and third block inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the 
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]
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42D Controller BlendPurpose Implement a 2-D vector of state-space controllers by linear interpolation of 
their outputs

Library GNC/Controls

Description The 2D Controller Blend block implements an array of state-space controller 
designs. The controllers are run in parallel, and their outputs interpolated 
according to the current flight condition or operating point. The advantage of 
this implementation approach is that the state-space matrices A, B, C, and D 
for the individual controller designs do not need to vary smoothly from one 
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller 
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers 
that need to be run changes, the states of the oncoming controller are 
initialized by using the self-conditioned form as defined for the 
Self-Conditioned [A,B,C,D] block.
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Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D blending, 
the A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. 

C-matrix(v1,v2)
C-matrix of the state-space implementation. 
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D-matrix(v1,v2)
D-matrix of the state-space implementation. 

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that 
the controller output tracks the current block output, u. The poles of the 
observer are defined in this dialog box as a vector, the number of poles 
being equal to the dimension of the A-matrix. Poles that are too fast result 
in sensor noise propagation, and poles that are too slow result in the failure 
of the controller output to track u.

Inputs and 
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming 
to the dimensions of the state-space matrices.

The output is the actuator demands. 

Assumptions 
and Limitations

This block requires the Control System Toolbox.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 5.
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See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

2D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]
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42D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form 
depending on two scheduling parameters

Library GNC/Controls

Description The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a 
gain-scheduled state-space controller defined in the following observer form:

The main application of these blocks is to implement a controller designed 
using H-infinity loop-shaping, one of the design methods supported by the 

-Analysis and Synthesis Toolbox.

x· A v( ) H v( )C v( )+( )x B v( )umeas H v( ) y ydem–( )+ +=

udem F v( )x=

μ
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Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling, 
the A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling, 
the B-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the B-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then B(:,:,1,1) = [1 0;0 1];.
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C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling, 
the C-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the C-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then C(:,:,1,1) = [1 0;0 1];.

F-matrix(v1,v2)
State-feedback matrix. In the case of 2-D scheduling, the F-matrix should 
have four dimensions, the last two corresponding to scheduling variables 
v1 and v2. Hence, for example, if the F-matrix corresponding to the first 
entry of v1 and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1 
0;0 1];.

H-matrix(v1,v2)
Observer (output injection) matrix. In the case of 2-D scheduling, the 
H-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the H-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then H(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the set-point error.

The second and third inputs are the scheduling variables ordered conforming 
to the dimensions of the state-space matrices. 

The fourth input is the measured actuator position.

The output is the actuator demands. 
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Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the 
aeroblk_lib_HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
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42D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a 
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the 
Self-Conditioned [A,B,C,D] block reference. This block implements a 
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the 
vector of parameters over which A, B, C, and D are defined. This type of 
controller scheduling assumes that the matrices A, B, C, and D vary smoothly 
as a function of v, which is often the case in aerospace applications.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=

z· A v( ) H v( )C v( )–( )z B v( ) H v( )D v( )–( )e H v( )umeas++=

udem C v( )z D v( )e+=
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Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling, 
the A-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the A-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then A(:,:,1,1) = [1 0;0 1];.
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B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling, 
the B-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the B-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling, 
the C-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the C-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D scheduling, 
the D-matrix should have four dimensions, the last two corresponding to 
scheduling variables v1 and v2. Hence, for example, if the D-matrix 
corresponding to the first entry of v1 and first entry of v2 is the identity 
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the 
same locations for all values of the scheduling parameter, v. Hence the 
number of pole locations defined should be equal to the length of the first 
dimension of the A-matrix.
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Inputs and 
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming 
to the dimensions of the state-space matrices. 

The fourth input is the measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]
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43D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on three 
scheduling parameters

Library GNC/Controls

Description The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled 
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This 
type of controller scheduling assumes that the matrices A, B, C, and D vary 
smoothly as a function of v, which is often the case in aerospace applications.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=
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Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling, 
the A-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0 0;0 1 0; 0 0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling, 
the B-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix 
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corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling, 
the C-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling, 
the D-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of 
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and 
Outputs

The first input is the measurements. 

The second, third and fourth inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices.

The output is the actuator demands. 



3D Controller [A(v),B(v),C(v),D(v)]

4-43

Assumptions 
and Limitations

If the scheduling parameter input to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]
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43D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form 
depending on three scheduling parameters

Library GNC/Controls

Description The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a 
gain-scheduled state-space controller defined in the following observer form:

The main application of this block is to implement a controller designed using 
H-infinity loop-shaping, one of the design methods supported by the 

-Analysis and Synthesis Toolbox.

x· A v( ) H v( )C v( )+( )x B v( )umeas H v( ) y ydem–( )+ +=

udem F v( )x=

μ
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Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling, 
the A-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling, 
the B-matrix should have five dimensions, the last three corresponding to 
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scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling, 
the C-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(v1,v2,v3)
State-feedback matrix. In the case of 3-D scheduling, the F-matrix should 
have five dimensions, the last three corresponding to scheduling variables 
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the 
first entry of v1, the first entry of v2, and the first entry of v3 is the identity 
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(v1,v2,v3)
observer (output injection) matrix. In the case of 3-D scheduling, the 
H-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of 
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.
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Inputs and 
Outputs

The first input is the set-point error. 

The second, third, and fourth inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices. 

The fifth input is measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight 
Application,” Springer Verlag, Advances in Industrial Control Series, 1995. 
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]



3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-48

43D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a 
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the 
Self-Conditioned [A,B,C,D] block reference. These blocks implement a 
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the 
vector of parameters over which A, B, C, and D are defined. This type of 
controller scheduling assumes that the matrices A, B, C, and D vary smoothly 
as a function of v, which is often the case in aerospace applications.

x· A v( )x B v( )y+=

u C v( )x D v( )y+=

z· A v( ) H v( )C v( )–( )z B v( ) H v( )D v( )–( )e H v( )umeas++=

udem C v( )z D v( )e+=
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Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling, 
the A-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.
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B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling, 
the B-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling, 
the C-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling, 
the D-matrix should have five dimensions, the last three corresponding to 
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix 
corresponding to the first entry of v1, the first entry of v2, and the first 
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1 
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of 
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of 
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state 
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the 
same locations for all values of the scheduling parameter v. Hence the 
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number of pole locations defined should be equal to the length of the first 
dimension of the A-matrix.

Inputs and 
Outputs

The first input is the measurements. 

The second, third, and fourth inputs are the scheduling variables ordered 
conforming to the dimensions of the state-space matrices. 

The fifth input is the measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are 
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
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43DoF AnimationPurpose Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object

Library Animation

Description The 3DoF Animation block displays a 3-D animated view of a 
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using 
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to 
create and display the animation.

Dialog Box
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Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn. 

Size of craft displayed
Scale factor to adjust the size of the craft and target. 

Enter view
Selects preset Handle Graphics parameters CameraTarget and 
CameraUpVector for the figure axes. The dialog parameters Position of 
camera and View angle are used to customize the position and field of 
view for the selected view. Possible views are

-Fixed position

-Cockpit

-Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure 
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the 
figure axes in degrees. 

Enable animation
When selected, the animation is displayed during the simulation. If not 
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude and the downrange position 
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange 
position of the craft in Earth coordinates.

The third input is the attitude of the craft.
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Examples See the aero_guidance demo for an example of this block.

See Also 6DoF Animation

FlightGear Preconfigured 6DoF Animation
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43DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to body 
axes

Library Equations of Motion/3DoF

Description The 3DoF (Body Axes) block considers the rotation in the vertical plane of a 
body-fixed coordinate frame about an Earth-fixed reference frame. 

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ qw– g θ

w·

sin–

Fz
m
------ qu g θ

q·

cos+ +

M
Iyy
-------

θ· q

=

=

=

=
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of 
motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body, 

.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton-
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot- 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot- 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

θ0( )

α0( )
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Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in the 
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity 
source is selected. If gravity is to be neglected in the simulation, this value 
can be set to 0.

Inputs and 
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth optional input to the block is gravity in the selected units. 

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second 
squared .

The fourth output is a two-element vector containing the location of the body, 
in the Earth-fixed reference frame, (Xe,Ze).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx( )

Fz( )

θ( )

q·( )
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The fifth output is a two-element vector containing the velocity of the body 
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body 
resolved into the body-fixed coordinate frame, (Ax,Az).

Examples See the aero_guidance demo for an example of this block.

See Also 3DoF (Wind Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)
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43DoF (Wind Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to wind 
axes

Library Equations of Motion/3DoF

Description The 3DoF (Wind Axes) block considers the rotation in the vertical plane of a 
wind-fixed coordinate frame about an Earth-fixed reference frame. 

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

V·
Fxwind

m
-------------- g γ

α·

sin–

Fzwind

mV βcos
---------------------- q g

V βcos
----------------- γ

q·

cos+ +

θ·
Mybody

Iyy
---------------=

γ· q α·–

=

=

=

=
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of 
motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial flight path angle of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body, 

.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

γ0( )

α0( )



3DoF (Wind Axes)

4-63

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in the 
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia body axes
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity 
source is selected. If gravity is to be neglected in the simulation, this value 
can be set to 0.

Inputs and 
Outputs

The first input to the block is the force acting along the wind x-axis, .

The second input to the block is the force acting along the wind z-axis, .

The third input to the block is the applied pitch moment in body axes, (M).

The fourth optional input to the block is gravity in the selected units. 

The first output from the block is the flight path angle, in radians .

The second output is the pitch angular rate, in radians per second .

The third output is the pitch angular acceleration, in radians per second 
squared .

The fourth output is a two-element vector containing the location of the body, 
in the Earth-fixed reference frame, (Xe,Ze).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx( )

Fz( )

γ( )

ωy( )

dωy dt⁄( )
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The fifth output is a two-element vector containing the velocity of the body 
resolved into the wind-fixed coordinate frame, (V,0).

The sixth output is a two-element vector containing the acceleration of the body 
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, .

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body, and that the mass and inertia are constant.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also 3DoF (Body Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

α( )
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43x3 Cross ProductPurpose Calculate the cross product of two 3-by-1 vectors

Library Utilities/Math Operations

Description The 3x3 Cross Product block computes cross (or vector) product of two vectors, 
A and B, by generating a third vector, C, in a direction normal to the plane 
containing A and B, and with magnitude equal to the product of the lengths of 
A and B multiplied by the sine of the angle between them. The direction of C is 
that in which a right-handed screw would move in turning from A to B.

Dialog Box

Inputs and 
Outputs

The inputs are two 3-by-1 vectors.

The output is a 3-by-1 vector.

A a1i a2j a3k
B

+ +
b1i b2j b3k+ +

=
=

C A B
i j k

a1 a2 a3

b1 b2 b3

=×=

a2b3 a3b2–( )= i a3b1 a1b3–( )j a1b2 a2b1–( )k+ +
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44th Order Point Mass (Longitudinal)Purpose Calculate fourth order point mass

Library Equations of Motion/Point Mass

Description The 4th Order Point Mass (Longitudinal) block performs the calculations for 
the translational motion of a single point mass or multiple point masses.

The translational motions of the point mass [XEast XUp]T are functions of 
airspeed  and flight path angle , V( ) γ( )

Fx mV·=

Fz mVγ·=

X· East V γcos=

X· Up V γsin=
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where the applied forces [Fx Fz]
T are in a system defined as follows: x-axis is in 

the direction of vehicle velocity relative to air, z-axis is upwards and y-axis 
completes the right hand frame. The mass of the body  is assumed constant.

Dialog Box

Units
Specifies the input and output units: 

Initial flight path angle
The scalar or vector containing the initial flight path angle of the point 
mass(es).

m

Units Forces Velocity Position

Metric (MKS) Newton Meters per second Meters

English (Velocity in ft/s) Pound Feet per second Feet

English (Velocity in kts) Pound Knots Feet
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Initial airspeed
The scalar or vector containing the initial airspeed of the point mass(es).

Initial downrange
The scalar or vector containing the initial downrange of the point mass(es).

Initial altitude
The scalar or vector containing the initial altitude of the point mass(es).

Initial mass
The scalar or vector containing the mass of the point mass(es).

Inputs and 
Outputs

The first input is force in x-axis in selected units.

The second input is force in z-axis in selected units.

The first output is flight path angle in radians.

The second output is airspeed in selected units.

The third output is the downrange or amount traveled East in selected units.

The fourth output is the altitude or amount traveled Up in selected units.

Assumptions 
and Limitations

The flat Earth-fixed reference frame is considered inertial, a simplification 
that allows the forces due to the Earth’s motion relative to a star-fixed 
reference system to be neglected.

See Also 4th Order Point Mass Forces (Longitudinal)

3DoF (Body Axes)

3DoF (Wind Axes)

6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes) 

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)
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44th Order Point Mass Forces (Longitudinal) Purpose Calculate forces used by fourth order point mass

Library Equations of Motion/Point Mass

Description The 4th Order Point Mass Forces (Longitudinal) block calculates the applied 
forces for a single point mass or multiple point masses.
 

The applied forces [Fx Fz]
T are in a system defined as follows: x-axis is in the 

direction of vehicle velocity relative to air, z-axis is upwards and y-axis 
completes the right hand frame. They are functions of lift , drag , thrust 

, weight , flight path angle , angle of attack , and bank angle . 
L( ) D( )

T( ) W( ) γ( ) α( ) μ( )

Fx T αcos D– W γsin–=

Fz L T αsin+( ) μcos W γcos–=
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Dialog Box

Inputs and 
Outputs

The first input is lift in units of force.

The second input is drag in units of force.

The third input is weight in units of force.

The fourth input is thrust in units of force.

The fifth input is flight path angle in radians.

The sixth input is bank angle in radians.

The seventh input is angle of attack in radians.

The first output is force in x-axis in units of force.

The second output is force in z-axis in units of force.

Assumptions 
and Limitations

The flat Earth-fixed reference frame is considered inertial, a simplification 
that allows the forces due to the Earth’s motion relative to a star-fixed 
reference system to be neglected.

See Also 4th Order Point Mass (Longitudinal)

6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)
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46DoF AnimationPurpose Create a 3-D Handle Graphics® animation of a six-degrees-of-freedom object

Library Animation

Description The 6DoF Animation block displays a 3-D animated view of a 
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle 
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to 
create and display the animation.

Dialog Box
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Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn. 

Size of craft displayed
Scale factor to adjust the size of the craft and target. 

Static object position
Specifies the altitude, the cross-range position, and the downrange position 
of the target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and 
CameraUpVector for the figure axes. The dialog parameters Position of 
camera and View angle are used to customize the position and field of 
view for the selected view. Possible views are

-Fixed position
-Cockpit
-Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure 
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the 
figure axes in degrees. 

Enable animation
When selected, the animation is displayed during the simulation. If not 
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude, the cross-range position, and 
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

Examples See the aeroblk_vmm demo for an example of this block.
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See Also 3DoF Animation

FlightGear Preconfigured 6DoF Animation
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46DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations 
of motion

Library Equations of Motion/6DoF

Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate 
frame about an Earth-fixed reference frame . The 
origin of the body-fixed coordinate frame is the center of gravity of the body, 
and the body is assumed to be rigid, an assumption that eliminates the need to 
consider the forces acting between individual elements of mass. The 
Earth-fixed reference frame is considered inertial, a simplification that allows 
the forces due to the Earth’s motion relative to a star-fixed reference system to 
be neglected.

The translational motion of the body-fixed coordinate frame is given below, 
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame, and the mass 
of the body  is assumed constant.

Xb Yb Zb, ,( ) Xe Ye Ze, ,( )

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of 
gravity

O

m

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+( )=
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The rotational dynamics of the body-fixed frame are given below, where the 
applied moments are [L M N]T, and the inertia tensor  is with respect to the 
origin O. 

The relationship between the body-fixed angular velocity vector, [p q r]T, and 
the rate of change of the Euler angles, [  ]T, can be determined by 
resolving the Euler rates into the body-fixed coordinate frame.

Inverting  then gives the required relationship to determine the Euler rate 
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω( )×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
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Dialog Box

Units
Specifies the input and output units: 

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared
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Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of 
motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations 
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial Mass
The mass of the rigid body.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Inertia
The 3-by-3 inertia tensor matrix .

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body, and that the mass and inertia are constant.

Examples See the aeroblk_six_dof demo, Airframe in the aeroblk_HL20 demo and 
asbhl20 demo for examples of this block.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper,” Edizioni Libreria CLUP, 1998. 

See Also 6DoF (Quaternion)

6DoF ECEF (Quaternion)

I
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6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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46DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational 
dynamics, see the block description for the 6DoF (Euler Angles) block. 

The integration of the rate of change of the quaternion vector is given below. 
The gain  drives the norm of the quaternion state vector to 1.0 should  
become nonzero. You must choose the value of this gain with care, because a 
large value improves the decay rate of the error in the norm, but also slows the 
simulation because fast dynamics are introduced. An error in the magnitude in 
one element of the quaternion vector is spread equally among all the elements, 
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2
---

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3
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1 q0
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2 q3
2 q4

2
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of 
motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial Mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame.
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The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body, and that the mass and inertia are constant.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper,” Edizioni Libreria CLUP, 1998. 

See Also 6DoF (Euler Angles)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)



6DoF ECEF (Quaternion)

4-85

46DoF ECEF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The 6DoF ECEF (Quaternion) block considers the rotation of a Earth-Centered 
Earth-Fixed (ECEF) coordinate frame  about an 
Earth-Centered Inertial (ECI) reference frame . The origin 
of the ECEF coordinate frame is the center of the Earth, additionally the body 
of interest is assumed to be rigid, an assumption that eliminates the need to 
consider the forces acting between individual elements of mass. The 
representation of the rotation of ECEF frame from ECI frame is simplified to 
consider only the constant rotation of the ellipsoid Earth  including an 
initial celestial longitude . This simplification that allows the forces 
due to the Earth’s complex motion relative to a star-fixed reference system to 
be neglected.

XECEF YECEF ZECEF, ,( )
XECI YECI ZECI, ,( )

ωe( )
LG 0( )( )
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The translational motion of the ECEF coordinate frame is given below, where 
the applied forces [Fx Fy Fz]

T are in the body frame, and the mass of the body 
 is assumed constant.

where the change of position in ECI  is calculated by

and the velocity in body-axis , angular rates in body-axis . Earth 
rotation rate , and relative angular rates in body-axis  are defined as

The rotational dynamics of the body defined in body-fixed frame are given 
below, where the applied moments are [L M N]T, and the inertia tensor  is 
with respect to the origin O.  
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The integration of the rate of change of the quaternion vector is given below.

Dialog Box
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Units
Specifies the input and output units: 

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared
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Mass type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of 
motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic 
reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity in the body-fixed 
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll, 
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.
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Flattening
Specifies the flattening of the planet. This option is only available when 
Planet model is set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial 
radius parameter should be the same as the units for ECEF position. This 
option is only available when Planet model is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/sec. This option is 
only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude: 

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of the ECI 
frame.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
body-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The first output is a three-element vector containing the velocity in the ECEF 
reference frame.

The second output is a three-element vector containing the position in the 
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic 
latitude, longitude and altitude, in degrees, degrees and selected units of 
length respectively.

The fourth output is a three-element vector containing the body rotation angles 
[roll, pitch, yaw], in radians.

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.
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The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI 
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from 
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from 
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the 
body-fixed frame.

The ninth output is a three-element vector containing the relative angular 
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

This implementation assumes that the applied forces are acting at the center 
of gravity of the body, and that the mass and inertia are constant.

This implementation generates a geodetic latitude that lies between  
degrees, and longitude that lies between degrees. Additionally, the MSL 
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical 
planet can be achieved. The Earth’s precession, nutation, and polar motion are 
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal 
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is 
at the center of the planet, the x-axis intersects the Greenwich meridian and 
the equator, the z-axis is the mean spin axis of the planet, positive to the north, 
and the y-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at 
the center of the planet, the x-axis is the continuation of the line from the 

90±
180±
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center of the Earth through the center of the Sun toward the vernal equinox, 
the z-axis points in the direction of the mean equatorial plane’s north pole, 
positive to the north, and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical 
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,” 
DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion) 

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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46DoF Wind (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion with respect to wind axes

Library Equations of Motion/6DoF

Description The 6DoF Wind (Quaternion) block considers the rotation of a wind-fixed 
coordinate frame about an Earth-fixed reference frame 

. The origin of the wind-fixed coordinate frame is the center of 
gravity of the body, and the body is assumed to be rigid, an assumption that 
eliminates the need to consider the forces acting between individual elements 
of mass. The Earth-fixed reference frame is considered inertial, a simplification 
that allows the forces due to the Earth’s motion relative to a star-fixed 
reference system to be neglected.

The translational motion of the wind-fixed coordinate frame is given below, 
where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame, and the mass 
of the body  is assumed constant.

Xw Yw Zw, ,( )
Xe Ye Ze, ,( )
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The rotational dynamics of the body-fixed frame are given below, where the 
applied moments are [L M N]T, and the inertia tensor  is with respect to the 
origin O. Inertia tensor I is much easier to define in body-fixed frame.   

The integration of the rate of change of the quaternion vector is given below.
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of 
motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial airspeed, angle of attack, and sideslip angle
The three-element vector containing the initial airspeed, initial angle of 
attack and initial sideslip angle.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight 
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
wind-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles 
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
wind-fixed frame.
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The sixth output is a two-element vector containing the angle of attack and 
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of 
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body, and that the mass and inertia are constant.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion) 

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
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Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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46DoF Wind (Wind Angles)Purpose Implement a wind angle representation of six-degrees-of-freedom equations of 
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational 
dynamics, see the block description for the 6DoF Wind (Quaternion) block. 

The relationship between the wind angles, [  ]T, can be determined by 
resolving the wind rates into the wind-fixed coordinate frame.

Inverting  then gives the required relationship to determine the wind rate 
vector. 

The body-fixed angular rates are related to the wind-fixed angular rate by the 
following equation.  

Using this relationship in the wind rate vector equations, gives the 
relationship between the wind rate vector and the body-fixed angular rates.
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Dialog Box
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Units
Specifies the input and output units: 

Mass type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of 
motion.

Representation
Select the representation to use:

The Wind Angles selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial airspeed, angle of attack, and sideslip angle
The three-element vector containing the initial airspeed, initial angle of 
attack and initial sideslip angle.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight 
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix , in body-fixed axes.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
wind-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles 
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
wind-fixed frame.

I
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The sixth output is a two-element vector containing the angle of attack and 
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of 
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body, and that the mass and inertia are constant.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion) 

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
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Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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46th Order Point Mass (Coordinated Flight)Purpose Calculate sixth order point mass in coordinated flight

Library Equations of Motion/Point Mass

Description The 6th Order Point Mass (Coordinated Flight) block performs the calculations 
for the translational motion of a single point mass or multiple point masses. 

The translational motion of the point mass [XEast XNorth XUp]T are functions of 
airspeed , flight path angle , and heading angle , V( ) γ( ) χ( )

Fx mV·=

Fy mV γcos( )χ·=

Fz mVγ·=

X· East V χ γcoscos=

X· North V χsin γcos=

X· Up V γsin=
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where the applied forces [Fx Fy Fh]T are in a system is defined by x-axis in the 
direction of vehicle velocity relative to air, z-axis is upwards and y-axis 
completes the right hand frame, and the mass of the body  is assumed 
constant

Dialog Box

m
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Units
Specifies the input and output units: 

Initial flight path angle
The scalar or vector containing initial flight path angle of the point 
mass(es).

Initial heading angle
The scalar or vector containing initial heading angle of the point mass(es).

Initial airspeed
The scalar or vector containing initial airspeed of the point mass(es).

Initial downrange [East]
The scalar or vector containing initial downrange of the point mass(es).

Initial crossrange [North]
The scalar or vector containing initial crossrange of the point mass(es).

Initial altitude [Up]
The scalar or vector containing initial altitude of the point mass(es).

Initial mass
The scalar or vector containing mass of the point mass(es).

Inputs and 
Outputs

The first input is force in x-axis in selected units.

The second input is force in y-axis in selected units.

The third input is force in z-axis in selected units.

The first output is flight path angle in radians.

The second output is heading angle in radians.

The third output is airspeed in selected units.

Units Forces Velocity Position

Metric (MKS) Newton Meters per second Meters

English (Velocity in ft/s) Pound Feet per second Feet

English (Velocity in kts) Pound Knots Feet
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The fourth output is the downrange or amount traveled East in selected units.

The fifth output is the crossrange or amount traveled North in selected units.

The sixth output is the altitude or amount traveled Up in selected units.

Assumptions 
and Limitations

The block assumes that there is fully coordinated flight, i.e. there is no side 
force (wind axes) and sideslip is always zero.

The flat Earth-fixed reference frame is considered inertial, a simplification 
that allows the forces due to the Earth’s motion relative to a star-fixed 
reference system to be neglected.

See Also 4th Order Point Mass (Longitudinal)

4th Order Point Mass Forces (Longitudinal)

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass Forces (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion) 

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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46th Order Point Mass Forces (Coordinated Flight) Purpose Calculate forces used by sixth order point mass in coordinated flight

Library Equations of Motion/Point Mass

Description The 6th Order Point Mass Forces (Coordinated Flight) block calculates the 
applied forces for a single point mass or multiple point masses. 

The applied forces [Fx Fy Fh]T are in a system is defined by x-axis in the 
direction of vehicle velocity relative to air, z-axis is upwards and y-axis 
completes the right hand frame and are functions of lift , drag , thrust 

, weight , flight path angle , angle of attack , and bank angle . 
L( ) D( )

T( ) W( ) γ( ) α( ) μ( )

Fx T αcos D– W γsin–=

Fy L T αsin+( ) μsin=

Fz L T αsin+( ) μcos W γcos–=
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Dialog Box

Inputs and 
Outputs

The first input is lift in units of force.

The second input is drag in units of force.

The third input is weight in units of force.

The fourth input is thrust in units of force.

The fifth input is flight path angle in radians.

The sixth input is bank angle in radians.

The seventh input is angle of attack in radians.

The first output is force in x-axis in units of force.

The second output is force in y-axis in units of force.

The third output is force in z-axis in units of force.

Assumptions 
and Limitations

The block assumes that there is fully coordinated flight, i.e. there is no side 
force (wind axes) and sideslip is always zero.

The flat Earth-fixed reference frame is considered inertial, a simplification 
that allows the forces due to the Earth’s motion relative to a star-fixed 
reference system to be neglected.

See Also 4th Order Point Mass (Longitudinal)

4th Order Point Mass Forces (Longitudinal)

6th Order Point Mass (Coordinated Flight)
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4Acceleration ConversionPurpose Convert from acceleration units to desired acceleration units

Library Utilities/Unit Conversions

Description The Acceleration Conversion block computes the conversion factor from 
specified input acceleration units to specified output acceleration units and 
applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units 
selected from the Initial units and Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

m/s2 Meters per second squared

ft/s2 Feet per second squared

km/s2 Kilometers per second squared

in/s2 Inches per second squared

km/h-s Kilometers per hour per second

mph-s Miles per hour per second

G's g-units
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Inputs and 
Outputs

The input is acceleration in initial acceleration units. 

The output is acceleration in final acceleration units. 

See Also Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4Adjoint of 3x3 MatrixPurpose Compute the adjoint matrix for the input matrix

Library Utilities/Math Operations

Description The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input 
matrix.

The input matrix has the form of

The adjoint of the matrix has the form of

where 

Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 adjoint matrix of input matrix.

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

adj A( )
M11 M12 M13

M21 M22 M23

M31 M32 M33

=

Mij 1–( )i j+
=
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See Also Create 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix
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4Aerodynamic Forces and MomentsPurpose Compute the aerodynamic forces and moments using the aerodynamic 
coefficients, dynamic pressure, center of gravity, and center of pressure

Library Aerodynamics

Description The Aerodynamic Forces and Moments block computes the aerodynamic forces 
and moments about the center of gravity. 

Dialog Box

Reference area
Specifies the reference area for calculating aerodynamic forces and 
moments.

Reference span
Specifies the reference span for calculating aerodynamic moments in 
x-axes and z-axes.

Reference length
Specifies the reference length for calculating aerodynamic moment in the 
y-axes.
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Inputs and 
Outputs

The first input consists of aerodynamic coefficients (in body axes) for forces and 
moments. These coefficients are ordered into a vector as follows:

(axial force Cx, side force Cy, normal force Cz, rolling moment Cl,
pitching moment Cm, yawing moment Cn)

The second input is the dynamic pressure.

The third input is the center of gravity.

The fourth input is the center of pressure.

The first output consists of the aerodynamic forces at the center of gravity in 
x-, y-, and z-axes.

The second output consists of the aerodynamic moments at the center of 
gravity in x-, y-, and z-axes.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

See Also Dynamic Pressure

Estimate Center of Gravity

Moments About CG Due to Forces
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4Angle ConversionPurpose Convert from angle units to desired angle units

Library Utilities/Unit Conversions

Description The Angle Conversion block computes the conversion factor from specified 
input angle units to specified output angle units and applies the conversion 
factor to the input signal.

The Angle Conversion block icon displays the input and output units selected 
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is angle in initial angle units. 

The output is angle in final angle units. 

deg Degrees

rad Radians

rev Revolutions
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See Also Acceleration Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4Angular Acceleration ConversionPurpose Convert from angular acceleration units to desired angular acceleration units

Library Utilities/Unit Conversions

Description The Angular Acceleration Conversion block computes the conversion factor 
from specified input angular acceleration units to specified output angular 
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output 
units selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is angular acceleration in initial angular acceleration units. 

The output is angular acceleration in final angular acceleration units. 

deg/s2 Degrees per second squared

rad/s2 Radians per second squared

rpm/s Revolutions per minute per second
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See Also Acceleration Conversion

Angle Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4Angular Velocity ConversionPurpose Convert from angular velocity units to desired angular velocity units

Library Utilities/Unit Conversions

Description The Angular Velocity Conversion block computes the conversion factor from 
specified input angular velocity units to specified output angular velocity units 
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output 
units selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is angular velocity in initial angular velocity units. 

The output is angular velocity in final angular velocity units. 

deg/s Degrees per second

rad/s Radians per second

rpm Revolutions per minute
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See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4Besselian Epoch to Julian EpochPurpose Transform position and velocity components from the discontinued Standard 
Besselian Epoch (B1950) to the Standard Julian Epoch (J2000) 

Library Utilities/Axes Transformations

Description The Besselian Epoch to Julian Epoch block transforms two 3-by-1 vectors of 
Besselian Epoch position , and Besselian Epoch velocity  into 
Julian Epoch position ,and Julian Epoch velocity . The 
transformation is calculated using:

where  are defined as: 

rB1950( ) vB1950( )
rJ2000( ) vJ2000( )

rJ2000

vJ2000

Mrr Mvr

Mrv Mvv

rB1950

vB1950

=

Mrr Mvr Mrv Mvv, , ,( )

0.9999256782 -0.0111820611 -0.0048579477

0.0111820610  0.9999374784 -0.0000271765

0.0048579479 -0.0000271474  0.9999881997

Mrr =

0.00000242395018 -0.00000002710663 -0.00000001177656

0.00000002710663  0.00000242397878 -0.00000000006587

0.00000001177656 -0.00000000006582  0.00000242410173

Mvr =

Mrv

0.000551– 0.238565– 0.435739
0.238514 0.002667– 0.008541–

0.435623– 0.012254 0.002117

=

Mvv

0.99994704 0.01118251– 0.00485767–

0.01118251 0.99995883 0.00002718–

0.00485767 0.00002714– 1.00000956

=
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Dialog Box

Inputs and 
Outputs

The first input is a 3-by-1 vector containing the position in Standard Besselian 
Epoch (B1950).

The second input is a 3-by-1 vector containing the velocity in Standard 
Besselian Epoch (B1950).

The first output is a 3-by-1 vector containing the position in Standard Julian 
Epoch (J2000).

The second output is a 3-by-1 vector containing the velocity in Standard Julian 
Epoch (J2000).

References “Supplement to Department of Defense World Geodetic System 1984 Technical 
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,” 
DMA TR8350.2-A. 

See Also Julian Epoch to Besselian Epoch
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4Calculate RangePurpose Calculate the range between two crafts given their respective positions.

Library GNC/Guidance

Description The Calculate Range block computes the range between two crafts. The 
equation used for the range calculation is

Dialog Box

Inputs and 
Outputs

The first input is the (x, y and z) position of craft 1.

The second input is the (x, y and z) position of craft 2.

The output is the range from craft 2 and craft 1.

Limitation The calculated range is give the magnitude of the distance but not the direction 
therefore it is always positive.

Craft positions are real values.

Range x1 x2–( )2 y1 y2–( )2 z1 z2–( )2
+ +=
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4COESA Atmosphere Model Purpose Implement the 1976 COESA lower atmosphere

Library Environment/Atmosphere

Description The COESA Atmosphere Model block implements the mathematical 
representation of the 1976 Committee on Extension to the Standard 
Atmosphere (COESA) United States standard lower atmospheric values for 
absolute temperature, pressure, density, and speed of sound for the input 
geopotential altitude. 

Below 32,000 meters (approximately 104,987 feet), the U.S. Standard 
Atmosphere is identical with the Standard Atmosphere of the International 
Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units 
selected from the Units list.

Dialog Box
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Units
Specifies the input and output units: 

Specification
Specify the atmosphere model type from one of the following atmosphere 
models. The default is 1976 COESA-extended U.S. Standard Atmosphere. 

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and 
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air 
density.

Assumptions 
and Limitations

Below the geopotential altitude of 0 m (0 feet) and above the geopotential 
altitude of 84,852 m (approximately 278,386 feet), temperature values are 

Units Height Temperature Speed of 
Sound

Air Pressure Air Density

Metric 
(MKS)

Meters Kelvin Meters per 
second

Pascal Kilograms 
per cubic 
meter

English 
(Velocity 
in ft/s)

Feet Degrees 
Rankine

Feet per 
second

Pound-force 
per square 
inch

Slug per 
cubic foot

English 
(Velocity 
in kts)

Feet Degrees 
Rankine

Knots Pound-force 
per square 
inch

Slug per 
cubic foot

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the 
block reference for more information.

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the 
block reference for more information.
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extrapolated linearly and pressure values are extrapolated logarithmically. 
Density and speed of sound are calculated using a perfect gas relationship.

Examples See the aeroblk_calibrated model, the aeroblk_indicated model, and 
Airframe in the aeroblk_HL20 demo for examples of this block.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 
Washington, D.C.

See Also ISA Atmosphere Model

Non-Standard Day 210C

Non-Standard Day 310
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4Create 3x3 MatrixPurpose Create a 3-by-3 matrix from nine input values.

Library Utilities/Math Operations

Description The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values 
where each input corresponds to an element of the matrix.

The output matrix has the form of
 

Dialog Box

Inputs and 
Outputs

The first input is the entry of the first row and first column of the matrix.

The second input is the entry of the first row and second column of the matrix.

The third input is the entry of the first row and third column of the matrix.

The fourth input is the entry of the second row and first column of the matrix.

The fifth input is the entry of the second row and second column of the matrix.

The sixth input is the entry of the second row and third column of the matrix.

The seventh input is the entry of the third row and first column of the matrix.

The eighth input is the entry of the third row and second column of the matrix.

The ninth input is the entry of the third row and third column of the matrix.

The output of the block is a 3-by-3 matrix.

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=
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See Also Adjoint of 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix

Symmetric Inertia Tensor
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4Custom Variable Mass 3DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to body 
axes

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Body Axes) block considers the rotation in 
the vertical plane of a body-fixed coordinate frame about an Earth-fixed 
reference frame.

The equations of motion are

u·
Fx
m
------ m· U

m
----------– qw– g θ

w·

sin–

Fz
m
------ m· w

m
----------– qu g θ

q·

cos+ +

M Iyy
· q–

Iyy
-----------------------

θ
·

q

=

=

=

=
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where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described 
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body, 

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

θ0( )

α0( )
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Initial position (x,z)
A two-element vector containing the initial location of the body in the 
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity 
source is selected. If gravity is to be neglected in the simulation, this value 
can be set to 0.

Inputs and 
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth input to the block is the rate of change of mass, .

The fifth input to the block is the mass, (m).

The sixth input to the block is the rate of change of inertia tensor matrix, .

The seventh input to the block is the inertia tensor matrix, (Iyy).

The eighth optional input to the block is gravity in the selected units. 

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second 
squared .

The fourth output is a two-element vector containing the location of the body, 
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body 
resolved into the body-fixed coordinate frame, (u,w).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx( )

Fz( )

m( )·

Iyy
·( )

θ( )

q·( )
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The sixth output is a two-element vector containing the acceleration of the body 
resolved into the body-fixed coordinate frame, (Ax,Az).

See Also 3DoF (Body Axes)

Incidence & Airspeed

Simple Variable Mass 3DoF (Body Axes)
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4Custom Variable Mass 3DoF (Wind Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to wind 
axes

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Wind Axes) block considers the rotation in 
the vertical plane of a wind-fixed coordinate frame about an Earth-fixed 
reference frame.

The equations of motion are

V·
Fxwind

m
-------------- m· V

m
---------– g γ

α·

sin–

Fzwind

mV
-------------- q g

V
---- γ

q·

cos+ +

θ·
Mybody

Iyy
· q–

Iyy
---------------------------------=

γ· q α·–

=

=

=

=
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where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described 
equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body, 

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

γ0( )

α0( )
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Initial position (x,z)
A two-element vector containing the initial location of the body in the 
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity 
source is selected. If gravity is to be neglected in the simulation, this value 
can be set to 0.

Inputs and 
Outputs

The first input to the block is the force acting along the wind x-axis, .

The second input to the block is the force acting along the wind z-axis, .

The third input to the block is the applied pitch moment in body axes, (M).

The fourth input to the block is the rate of change of mass, .

The fifth input to the block is the mass, (m).

The sixth input to the block is the rate of change of inertia tensor matrix, .

The seventh input to the block is the inertia tensor matrix, (Iyy).

The eighth optional input to the block is gravity in the selected units. 

The first output from the block is the flight path angle, in radians .

The second output is the pitch angular rate, in radians per second .

The third output is the pitch angular acceleration, in radians per second 
squared .

The fourth output is a two-element vector containing the location of the body, 
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body 
resolved into the wind-fixed coordinate frame, (V,0).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx( )

Fz( )

m( )·

Iyy
·( )

γ( )

ωy( )

dωy dt⁄( )
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The sixth output is a two-element vector containing the acceleration of the body 
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, .

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

α( )
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4Custom Variable Mass 6DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations 
of motion

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF (Euler Angles) block considers the rotation of 
a body-fixed coordinate frame about an Earth-fixed reference 
frame . The origin of the body-fixed coordinate frame is the center 
of gravity of the body, and the body is assumed to be rigid, an assumption that 
eliminates the need to consider the forces acting between individual elements 
of mass. The Earth-fixed reference frame is considered inertial, a simplification 
that allows the forces due to the Earth’s motion relative to a star-fixed 
reference system to be neglected.

The translational motion of the body-fixed coordinate frame is given below, 
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

Xb Yb Zb, ,( )
Xe Ye Ze, ,( )

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of 
gravity

O

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+( ) m· Vb+=
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The rotational dynamics of the body-fixed frame are given below, where the 
applied moments are [L M N]T, and the inertia tensor  is with respect to the 
origin O. 

The relationship between the body-fixed angular velocity vector, [p q r]T, and 
the rate of change of the Euler angles, [  ]T, can be determined by 
resolving the Euler rates into the body-fixed coordinate frame.

Inverting  then gives the required relationship to determine the Euler rate 
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω( ) I·ω+×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

I·
Ixx

· Ixy
·

– Ixz–
·

Iyx
·

– Iyy
· Iyz–

·

Izx–
· Izy–

· Izz
·

=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J
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Dialog Box

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin( ) φ θtancos( )
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

------------

p
q
r

= =
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame.
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The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Custom Variable Mass 6DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational 
dynamics, see the block description for the Custom Variable Mass 6DoF (Euler 
Angles) block. 

The integration of the rate of change of the quaternion vector is given below. 
The gain  drives the norm of the quaternion state vector to 1.0 should  
become nonzero. You must choose the value of this gain with care, because a 
large value improves the decay rate of the error in the norm, but also slows the 
simulation because fast dynamics are introduced. An error in the magnitude in 
one element of the quaternion vector is spread equally among all the elements, 
potentially increasing the error in the state vector.
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Dialog Box

Units
Specifies the input and output units: 

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared
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Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations 
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.



Custom Variable Mass 6DoF (Quaternion)

4-151

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)
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6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Custom Variable Mass 6DoF ECEF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF ECEF (Quaternion) block considers the 
rotation of a Earth-Centered Earth-Fixed (ECEF) coordinate frame 

 about an Earth-Centered Inertial (ECI) reference 
frame . The origin of the ECEF coordinate frame is the 
center of the Earth, additionally the body of interest is assumed to be rigid, an 
assumption that eliminates the need to consider the forces acting between 
individual elements of mass. The representation of the rotation of ECEF frame 
from ECI frame is simplified to consider only the constant rotation of the 
ellipsoid Earth  including an initial celestial longitude . This 
simplification allows the forces due to the Earth’s complex motion relative to a 
star-fixed reference system to be neglected.

XECEF YECEF ZECEF, ,( )
XECI YECI ZECI, ,( )

ωe( ) LG 0( )( )
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The translational motion of the ECEF coordinate frame is given below, where 
the applied forces [Fx Fy Fz]

T are in the body frame.

where the change of position in ECI  is calculated by

and the velocity in body-axis , angular rates in body-axis . Earth 
rotation rate , and relative angular rates in body-axis  are defined as

The rotational dynamics of the body defined in body-fixed frame are given 
below, where the applied moments are [L M N]T, and the inertia tensor  is 
with respect to the origin O.  
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The rate of change of the inertia tensor is defined by the following equation.

The integration of the rate of change of the quaternion vector is given below.

Dialog Box

I·
Ixx

· Ixy
·

– Ixz–
·

Iyx
·

– Iyy
· Iyz–

·

Izx–
· Izy–

· Izz
·

=

q· 0

q1
·

q· 2

q· 3

1
2
---–

0 p q r
p– 0 r– q
q– r 0 p–

r– q– p 0

q0

q1

q2

q3

=



Custom Variable Mass 6DoF ECEF (Quaternion)

4-156

Units
Specifies the input and output units: 

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared
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Mass type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic 
reference frame.

Initial velocity in body-axis
The three-element vector containing the initial velocity in the body-fixed 
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll, 
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available when 
Planet model is set to Custom.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.
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Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial 
radius parameter should be the same as the units for ECEF position. This 
option is only available when Planet model is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/sec. This option is 
only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude: 

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of the ECI 
frame.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
body-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the ECEF 
reference frame.

The second output is a three-element vector containing the position in the 
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic 
latitude, longitude and altitude, in degrees, degrees and selected units of 
length respectively.

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.
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The fourth output is a three-element vector containing the body rotation angles 
[roll, pitch, yaw], in radians.

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI 
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from 
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from 
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the 
body-fixed frame.

The ninth output is a three-element vector containing the relative angular 
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

This implementation assumes that the applied forces are acting at the center 
of gravity of the body.

This implementation generates a geodetic latitude that lies between  
degrees, and longitude that lies between degrees. Additionally, the MSL 
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical 
planet can be achieved. The Earth’s precession, nutation, and polar motion are 
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal 
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is 
at the center of the planet, the x-axis intersects the Greenwich meridian and 
the equator, the z-axis is the mean spin axis of the planet, positive to the north, 
and the y-axis completes the right-hand system.

90±
180±
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The implementation of the ECI coordinate system assumes that the origin is at 
the center of the planet, the x-axis is the continuation of the line from the 
center of the Earth through the center of the Sun toward the vernal equinox, 
the z-axis points in the direction of the mean equatorial plane’s north pole, 
positive to the north, and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical 
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,” 
DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion) 

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Custom Variable Mass 6DoF Wind (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion with respect to wind axes

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF Wind (Quaternion) block considers the 
rotation of a wind-fixed coordinate frame about an Earth-fixed 
reference frame . The origin of the wind-fixed coordinate frame is 
the center of gravity of the body, and the body is assumed to be rigid, an 
assumption that eliminates the need to consider the forces acting between 
individual elements of mass. The Earth-fixed reference frame is considered 
inertial, a simplification that allows the forces due to the Earth’s motion 
relative to a star-fixed reference system to be neglected.

The translational motion of the wind-fixed coordinate frame is given below, 
where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame.
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The rotational dynamics of the body-fixed frame are given below, where the 
applied moments are [L M N]T, and the inertia tensor  is with respect to the 
origin O. Inertia tensor I is much easier to define in body-fixed frame.   

The integration of the rate of change of the quaternion vector is given below. 
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Dialog Box

Units
Specifies the input and output units: 

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared
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Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations 
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip 
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight 
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
wind-fixed axes.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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The second input is a vector containing the three applied moments in 
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix 
in body-fixed axes.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix in body-fixed 
axes.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles 
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and 
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of 
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.
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References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Custom Variable Mass 6DoF Wind (Wind Angles)Purpose Implement a wind angle representation of six-degrees-of-freedom equations of 
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational 
dynamics, see the block description for the Custom Variable Mass 6DoF Wind 
(Quaternion) block.

The relationship between the wind angles, [  ]T, can be determined by 
resolving the wind rates into the wind-fixed coordinate frame.

Inverting  then gives the required relationship to determine the wind rate 
vector.

The body-fixed angular rates are related to the wind-fixed angular rate by the 
following equation.  

Using this relationship in the wind rate vector equations, gives the 
relationship between the wind rate vector and the body-fixed angular rates.
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Wind Angles selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip 
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight 
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
wind-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix 
in body-fixed axes.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix in body-fixed 
axes.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles 
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to wind-fixed axes.
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The fifth output is a three-element vector containing the velocity in the 
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and 
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of 
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in 
body-fixed axes.

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)
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Custom Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Density ConversionPurpose Convert from density units to desired density units

Library Utilities/Unit Conversions

Description The Density Conversion block computes the conversion factor from specified 
input density units to specified output density units and applies the conversion 
factor to the input signal.

The Density Conversion block icon displays the input and output units selected 
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is density in initial density units. 

The output is density in final density units. 

lbm/ft3 Pound mass per cubic foot

kg/m3 Kilograms per cubic meter

slug/ft3 Slugs per cubic foot

lbm/in3 Pound mass per cubic inch
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See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4Determinant of 3x3 MatrixPurpose Compute the determinant for the input matrix

Library Utilities/Math Operations

Description The Determinant of 3x3 Matrix block computes the determinant for the input 
matrix.

The input matrix has the form of 

The determinant of the matrix has the form of 

Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 matrix.

The output of the block is the determinant of input matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

Invert 3x3 Matrix

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

det A( ) A11 A22A33 A23A32–( ) A12 A21A33 A23A31–( )
A13 A21A32 A22A31–( )

+–=
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4Direction Cosine Matrix Body to WindPurpose Convert angle of attack and sideslip angle to direction cosine matrix

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix Body to Wind block converts angle of attack and 
sideslip angle into a 3-by-3 direction cosine matrix (DCM). The DCM matrix 
performs the coordinate transformation of a vector in body axes  
into a vector in wind axes . The order of the axis rotations 
required to bring  into coincidence with  is first, a 
rotation about  through the sideslip angle  to axes , 
second, a rotation about  through the angle of attack  to axes 

.

 

Combining the two axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,( )
ox2 oy2 oz2,,( )

ox2 oy2 oz2,,( ) ox0 oy0 oz0,,( )
oz2 β( ) ox1 oy1 oz1,,( )

oy1 α( )
ox0 oy0 oz0,,( )

ox2

oy2

oz2

DCMwb

ox0

oy0

oz0

=

ox2

oy2

oz2

βcos βsin 0
βsin– βcos 0

0 0 1

αcos 0 αsin
0 1 0

αsin– 0 αcos

ox0

oy0

oz0

=

DCMwb

α βcoscos βsin α βcossin
α βsincos– βcos α βsinsin–

αsin– 0 αcos

=
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Dialog Box

Inputs and 
Outputs

The input is a 2-by-1 vector containing angle of attack and sideslip angle, in 
radians.

The output is a 3-by-3 direction cosine matrix which transforms body-fixed 
vectors to wind-fixed vectors.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also Direction Cosine Matrix Body to Wind to Alpha and Beta

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix
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4Direction Cosine Matrix Body to Wind to Alpha and BetaPurpose Convert direction cosine matrix to angle of attack and sideslip angle

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix Body to Wind to Alpha and Beta block converts a 
3-by-3 direction cosine matrix (DCM) into angle of attack and sideslip angle. 
The DCM matrix performs the coordinate transformation of a vector in body 
axes  into a vector in wind axes . The order of the 
axis rotations required to bring  into coincidence with 

 is first, a rotation about  through the sideslip angle  to 
axes , second, a rotation about  through the angle of attack 

 to axes .

 

Combining the two axis transformation matrices defines the following DCM.

To determine angles from the DCM, the following equations are used:

ox0 oy0 oz0,,( ) ox2 oy2 oz2,,( )
ox2 oy2 oz2,,( )

ox0 oy0 oz0,,( ) oz2 β( )
ox1 oy1 oz1,,( ) oy1

α( ) ox0 oy0 oz0,,( )

ox2

oy2

oz2

DCMwb

ox0

oy0

oz0

=

ox2

oy2

oz2

βcos βsin 0
βsin– βcos 0

0 0 1

αcos 0 αsin
0 1 0

αsin– 0 αcos

ox0

oy0

oz0

=

DCMwb

α βcoscos βsin α βcossin
α βsincos– βcos α βsinsin–

αsin– 0 αcos

=

α DCM 3 1,( )–( )asin=

β DCM 1 2,( )( )asin=
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 direction cosine matrix which transforms body-fixed 
vectors to wind-fixed vectors.

The output is a 2-by-1 vector containing angle of attack and sideslip angle, in 
radians.

Assumptions 
and Limitations

This implementation generates angles that lies between  degrees.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

90±
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4Direction Cosine Matrix ECEF to NEDPurpose Convert geodetic latitude and longitude to direction cosine matrix

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix ECEF to NED block converts geodetic latitude 
and longitude into a 3-by-3 direction cosine matrix (DCM). The DCM matrix 
performs the coordinate transformation of a vector in Earth-centered 
Earth-fixed (ECEF) axes  into a vector in north-east-down 
(NED) axes . The order of the axis rotations required to bring 

 into coincidence with  is first, a left-handed 
rotation about  through the geodetic latitude  to axes , 
second, a rotation about  through the longitude  to axes .

 

Combining the two axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,( )
ox2 oy2 oz2,,( )

ox2 oy2 oz2,,( ) ox0 oy0 oz0,,( )
oy2 μ( ) ox1 oy1 oz1,,( )
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oz2
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=

DCMef

μ ιcossin– μsin ιsin– μcos
ιsin– ιcos 0
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=
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Dialog Box

Inputs and 
Outputs

The input is a 2-by-1 vector containing geodetic latitude and longitude, in 
degrees.

The output is a 3-by-3 direction cosine matrix which transforms ECEF vectors 
to NED vectors.

Assumptions The implementation of the ECEF coordinate system assumes that the origin is 
at the center of the planet, the x-axis intersects the Greenwich meridian and 
the equator, the z-axis is the mean spin axis of the planet, positive to the north, 
and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA 
R-004-1992. 

See Also Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

ECEF Position to LLA

Euler Angles to Direction Cosine Matrix

LLA to ECEF Position
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Wind Angles to Direction Cosine Matrix
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4Direction Cosine Matrix ECEF to NED to Latitude and LongitudePurpose Convert direction cosine matrix to geodetic latitude and longitude

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix ECEF to NED to Latitude and Longitude block 
converts a 3-by-3 direction cosine matrix (DCM) into geodetic latitude and 
longitude. The DCM matrix performs the coordinate transformation of a vector 
in Earth-centered Earth-fixed (ECEF) axes  into a vector in 
north-east-down (NED) axes . The order of the axis rotations 
required to bring  into coincidence with  is first, a 
left-handed rotation about  through the geodetic latitude  to axes 

, second, a rotation about  through the longitude  to axes 
.

 

Combining the two axis transformation matrices defines the following DCM.

To determine geodetic latitude and longitude from the DCM, the following 
equations are used:
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=

DCMef
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=
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---------------------------------⎝ ⎠
⎛ ⎞atan=
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 direction cosine matrix which transforms ECEF vectors 
to NED vectors.

The output is a 2-by-1 vector containing geodetic latitude and longitude, in 
degrees.

Assumptions 
and Limitations

This implementation generates a geodetic latitude that lies between  
degrees, and longitude that lies between degrees.

The implementation of the ECEF coordinate system assumes that the origin is 
at the center of the planet, the x-axis intersects the Greenwich meridian and 
the equator, the z-axis is the mean spin axis of the planet, positive to the north, 
and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA 
R-004-1992. 

See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

ECEF Position to LLA

Euler Angles to Direction Cosine Matrix

90±
180±
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LLA to ECEF Position

Wind Angles to Direction Cosine Matrix
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4Direction Cosine Matrix to Euler AnglesPurpose Convert direction cosine matrix to Euler angles

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction 
cosine matrix (DCM) into three Euler rotation angles. The DCM matrix 
performs the coordinate transformation of a vector in inertial axes 

 into a vector in body axes . The order of the axis 
rotations required to bring  into coincidence with  
is first, a rotation about  through the roll angle  to axes , 
second, a rotation about  through the pitch angle  to axes , 
and finally a rotation about  through the yaw angle  to axes 

.

 

Combining the three axis transformation matrices defines the following DCM.

To determine Euler angles from the DCM, the following equations are used:
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------------------------------⎝ ⎠
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of Euler angles.

Assumptions 
and Limitations

This implementation generates a pitch angle that lies between  degrees, 
and roll and yaw angles that lie between degrees.

See Also Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

90±
180±
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4Direction Cosine Matrix to QuaternionsPurpose Convert direction cosine matrix to quaternion vector

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Quaternions block transforms a 3-by-3 
direction cosine matrix (DCM) into a four-element unit quaternion vector 
(q0,q1,q2,q3). The DCM performs the coordinate transformation of a vector in 
inertial axes to a vector in body axes. 

The DCM is defined as a function of a unit quaternion vector by the following: 

Using this representation of the DCM, there is a number of calculations to 
arrive at the correct quaternion. The first of these is to calculate the trace of 
the DCM to determine which algorithms are used. If the trace is greater that 
zero, the quaternion can be automatically calculated. When the trace is less 
than or equal to zero, the major diagonal element of the DCM with the greatest 
value must be identified to determine the final algorithm used to calculate the 
quaternion. Once the major diagonal element is identified, the quaternion is 
calculated. For a detailed view of these algorithms, look under the mask of this 
block.

Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

DCM

q0
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2 q2
2 q3

2
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2
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2
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2 q1q3 q0q2+( ) 2 q2q3 q0q1–( ) q0
2 q1

2
– q2

2 q3
2

+–( )
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See Also Direction Cosine Matrix to Euler Angles

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles
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4Direction Cosine Matrix to Wind AnglesPurpose Convert direction cosine matrix to wind angles

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Wind Angles block converts a 3-by-3 direction 
cosine matrix (DCM) into three wind rotation angles. The DCM matrix 
performs the coordinate transformation of a vector in earth axes  
into a vector in wind axes . The order of the axis rotations 
required to bring  into coincidence with  is first, a 
rotation about  through the bank angle  to axes , second, 
a rotation about  through the flight path angle  to axes , 
and finally, a rotation about  through the heading angle  to axes 

.

 

Combining the three axis transformation matrices defines the following DCM.

To determine wind angles from the DCM, the following equations are used:
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 direction cosine matrix which transforms earth vectors to 
wind vectors.

The output is a 3-by-1 vector of wind angles, in radians.

Assumptions 
and Limitations

This implementation generates a flight path angle that lies between  
degrees, and bank and heading angles that lie between degrees.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix Body to Wind to Alpha and Beta

Direction Cosine Matrix to Euler Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

90±
180±
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4Discrete Wind Gust ModelPurpose Generate discrete wind gust

Library Environment/Wind

Description The Discrete Wind Gust Model block implements a wind gust of the standard 
“1-cosine” shape. This block implements the mathematical representation in 
the Military Specification MIL-F-8785C [1]. The gust is applied to each axis 
individually, or to all three axes at once. The user specifies the gust amplitude 
(the increase in wind speed generated by the gust), the gust length (length, in 
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of 
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The 
parameters that govern the gust shape are indicated on the diagram.

The discrete gust can be used singly or in multiples to assess airplane response 
to large wind disturbances.
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The mathematical representation of the discrete gust is

 

where Vm is the gust amplitude, dm is the gust length, x is the distance 
traveled, and Vwind is the resultant wind velocity in the body axis frame.

Dialog Box

Vwind 
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Units
Define the units of wind gust.  

Gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (sec)
The model time, in seconds, at which the gust begins. 

Gust length [dx dy dz] (m or f)
The length, in meters or feet (depending on the choice of units), over which 
the gust builds up in each axis. These values must be positive.

Gust amplitude [ug vg wg] (m/s, f/s, or knots)
The magnitude of the increase in wind speed caused by the gust in each 
axis. These values may be positive or negative.

Inputs and 
Outputs

The input is airspeed in units selected.

The output is wind speed in units selected.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

References U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Dryden Wind Turbulence Model (Continuous)

Units Wind Altitude

Metric (MKS) Meters/second Meters

English (Velocity 
in ft/s)

Feet/second Feet

English (Velocity 
in kts)

Knots Feet
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Dryden Wind Turbulence Model (Discrete)

Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model
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4Dryden Wind Turbulence Model (Continuous)Purpose Generate continuous wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Continuous) block uses the Dryden 
spectral representation to add turbulence to the aerospace model by passing 
band-limited white noise through appropriate forming filters. This block 
implements the mathematical representation in the Military Specification 
MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined 
by velocity spectra. For an aircraft flying at a speed V through a “frozen” 
turbulence field with a spatial frequency of  Ω radians per meter, the circular 
frequency ω is calculated by multiplying V by Ω. The following table displays 
the component spectra functions:

             MIL-F-8785C              MIL-HDBK-1797

Longitudinal

 Φu ω( )

 Φpg
ω( )

2σu
2Lu

πV
------------------ 1

1 Lu
ω
V
----( )

2
+

----------------------------⋅
2σu

2Lu
πV

------------------ 1

1 Lu
ω
V
----( )

2
+

----------------------------⋅

σw
2

VLw
------------

0.8
πLw
4b

-----------⎝ ⎠
⎛ ⎞

1
3
---

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

-----------------------------⋅
σw

2

2VLw
----------------

0.8
2πLw

4b
---------------⎝ ⎠
⎛ ⎞

1
3
---

1 4bw
πV

------------⎝ ⎠
⎛ ⎞ 2

+

--------------------------------⋅



Dryden Wind Turbulence Model (Continuous)

4-197

The variable b represents the aircraft wingspan. The variables  
represent the turbulence scale lengths. The variables σu, σv, σw represent the 
turbulence intensities.

Lateral

Vertical
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The spectral density definitions of turbulence angular rates are defined in the 
specifications as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular 
rates. 

Keep in mind that the longitudinal turbulence angular rate spectrum, , 
is a rational function. The rational function is derived from curve-fitting a 
complex algebraic function, not the vertical turbulence velocity spectrum, 

, multiplied by a scale factor. Because the turbulence angular rate 
spectra contribute less to the aircraft gust response than the turbulence 
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral 
turbulence angular rate spectra:

To generate a signal with the correct characteristics, a unit variance, 
band-limited white noise signal is passed through forming filters. The forming 
filters are derived from the spectral square roots of the spectrum equations.

Vertical Lateral
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The following table displays the transfer functions:

              MIL-F-8785C             MIL-HDBK-1797
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Divided into two distinct regions, the turbulence scale lengths and intensities 
are functions of altitude.

Note  The military specifications result in the same transfer function after 
evaluating the turbulence scale lengths. The differences in turbulence scale 
lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low 
altitudes, where  is the altitude in feet, are represented in the following table: 

The turbulence intensities are given below, where  is the wind speed at 
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15 

Vertical

                   MIL-F-8785C                 MIL-HDBK-1797
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knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe” 
turbulence the wind speed is 45 knots. 

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative 
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical 

At this altitude range, the output of the block is transformed into body 
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are 
based on the assumption that the turbulence is isotropic. In the military 
references, the scale lengths are represented by the following equations: 

The turbulence intensities are determined from a lookup table that provides 
the turbulence intensity as a function of altitude and the probability of the 
turbulence intensity being exceeded. The relationship of the turbulence 
intensities is represented in the following equation.

                  MIL-F-8785C                MIL-HDBK-1797
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The turbulence axes orientation in this region is defined as being aligned with 
the body coordinates.

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and 
turbulence angular rates are determined by linearly interpolating between the 
value from the low altitude model at 1000 feet transformed from mean 
horizontal wind coordinates to body coordinates and the value from the high 
altitude model at 2000 feet in body coordinates.
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Dialog Box
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Units
Define the units of wind speed due to the turbulence.  

Specification
Define which military reference to use. This affects the application of 
turbulence scale lengths in the lateral and vertical directions.

Model type
Select the wind turbulence model to use.

Units Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English 
(Velocity in 
ft/s)

Feet/second Feet Feet/second

English 
(Velocity in 
kts)

Knots Feet Knots

Continuous Von Kármán (+q -r) Use continuous representation of Von 
Kármán velocity spectra with positive 
vertical and negative lateral angular 
rates spectra.

Continuous Von Kármán (+q +r) Use continuous representation of Von 
Kármán velocity spectra with positive 
vertical and lateral angular rates 
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von 
Kármán velocity spectra with negative 
vertical and positive lateral angular 
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of 
Dryden velocity spectra with positive 
vertical and negative lateral angular 
rates spectra.
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The Continuous Dryden selections conform to the transfer function 
descriptions. 

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet) provides the 
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is an angle to 
aid in transforming the low-altitude turbulence model into a body 
coordinates. 

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table 
that gives the turbulence intensity as a function of altitude and the 
probability of the turbulence intensity’s being exceeded.

Continuous Dryden (+q +r) Use continuous representation of 
Dryden velocity spectra with positive 
vertical and lateral angular rates 
spectra.

Continuous Dryden (-q +r) Use continuous representation of 
Dryden velocity spectra with negative 
vertical and positive lateral angular 
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden 
velocity spectra with positive vertical 
and negative lateral angular rates 
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden 
velocity spectra with positive vertical 
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden 
velocity spectra with negative vertical 
and positive lateral angular rates 
spectra.
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Scale length at medium/high altitudes (m)
The turbulence scale length above 2000 feet is assumed constant, and from 
the military references, a figure of 1750 feet is recommended for the 
longitudinal turbulence scale length of the Dryden spectra.

Note  An alternate scale length value changes the power spectral density 
asymptote and gust load. 

Wingspan
The wingspan is required in the calculation of the turbulence on the 
angular rates.

Band-limited noise sample time (sec)
The sample time at which the unit variance white noise signal is generated. 

Noise seeds
There are four random numbers required to generate the turbulence 
signals, one for each of the three velocity components and one for the roll 
rate. The turbulences on the pitch and yaw angular rates are based on 
further shaping of the outputs from the shaping filters for the vertical and 
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and 
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities, 
in the selected units.

The second output is a three-element signal containing the turbulence angular 
rates, in radians per second.
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Assumptions 
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind 
velocity and the root-mean-square turbulence velocity, or intensity, is small 
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air 
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example of this 
block.

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background 
Information and User Guide for MIL-F-8785B(ASG), ‘Military 
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell 
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education 
Series, 1988. 

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance 
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, 
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic 
Control, Princeton University Press, July 1990. 

Moorhouse, D., Woodcock, R., “Background Information and User Guide for 
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,” 
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at 
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.
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Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts 
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St. 
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4Dryden Wind Turbulence Model (Discrete)Purpose Generate continuous wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral 
representation to add turbulence to the aerospace model by using band-limited 
white noise with appropriate digital filter finite difference equations. This 
block implements the mathematical representation in the Military 
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined 
by velocity spectra. For an aircraft flying at a speed V through a “frozen” 
turbulence field with a spatial frequency of  Ω radians per meter, the circular 
frequency ω is calculated by multiplying V by Ω. The following table displays 
the component spectra functions:
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Longitudinal

  Φu ω( )

  Φp ω( )

2σu
2Lu

πV
------------------ 1

1 Lu
ω
V
----( )

2
+

----------------------------⋅
2σu

2Lu
πV

------------------ 1

1 Lu
ω
V
----( )

2
+

----------------------------⋅

σw
2

VLw
------------

0.8
πLw
4b

-----------⎝ ⎠
⎛ ⎞

1
3
---

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

-----------------------------⋅
σw

2

2VLw
----------------

0.8
2πLw

4b
---------------⎝ ⎠
⎛ ⎞

1
3
---

1 4bw
πV

------------⎝ ⎠
⎛ ⎞ 2

+

--------------------------------⋅



Dryden Wind Turbulence Model (Discrete)

4-210

Lateral

Vertical
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The variable b represents the aircraft wingspan. The variables  
represent the turbulence scale lengths. The variables σu, σv, σw represent the 
turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the 
references as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular 
rates. 

Keep in mind that the longitudinal turbulence angular rate spectrum, , 
is a rational function. The rational function is derived from curve-fitting a 
complex algebraic function, not the vertical turbulence velocity spectrum, 

, multiplied by a scale factor. Because the turbulence angular rate 
spectra contribute less to the aircraft gust response than the turbulence 
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral 
turbulence angular rate spectra: 

Vertical Lateral

Lu Lv Lw, ,
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To generate a signal with the correct characteristics, a unit variance, 
band-limited white noise signal is used in the digital filter finite difference 
equations.

The following table displays the digital filter finite difference equations:

             MIL-F-8785C            MIL-HDBK-1797
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Divided into two distinct regions, the turbulence scale lengths and intensities 
are functions of altitude.

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low 
altitudes, where  is the altitude in feet, are represented in the following table: 

The turbulence intensities are given below, where  is the wind speed at 
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15 
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe” 
turbulence the wind speed is 45 knots. 

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative 
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical. 

At this altitude range, the output of the block is transformed into body 
coordinates.

                  MIL-F-8785C                 MIL-HDBK-1797
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Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are 
based on the assumption that the turbulence is isotropic. In the military 
references, the scale lengths are represented by the following equations: 

The turbulence intensities are determined from a lookup table that provides 
the turbulence intensity as a function of altitude and the probability of the 
turbulence intensity being exceeded. The relationship of the turbulence 
intensities is represented in the following equation.

The turbulence axes orientation in this region is defined as being aligned with 
the body coordinates.

                MIL-F-8785C                MIL-HDBK-1797
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Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and 
turbulence angular rates are determined by linearly interpolating between the 
value from the low altitude model at 1000 feet transformed from mean 
horizontal wind coordinates to body coordinates and the value from the high 
altitude model at 2000 feet in body coordinates.

Dialog Box
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Units
Define the units of wind speed due to the turbulence.  

Specification
Define which military reference to use. This affects the application of 
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Units Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English 
(Velocity in 
ft/s)

Feet/second Feet Feet/second

English 
(Velocity in 
kts)

Knots Feet Knots

Continuous Von Kármán (+q -r) Use continuous representation of Von 
Kármán velocity spectra with positive 
vertical and negative lateral angular 
rates spectra.

Continuous Von Kármán (+q +r) Use continuous representation of Von 
Kármán velocity spectra with positive 
vertical and lateral angular rates 
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von 
Kármán velocity spectra with negative 
vertical and positive lateral angular 
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of 
Dryden velocity spectra with positive 
vertical and negative lateral angular 
rates spectra.



Dryden Wind Turbulence Model (Discrete)

4-217

The Discrete Dryden selections conform to the transfer function 
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet) provides the 
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is an angle to 
aid in transforming the low-altitude turbulence model into a body 
coordinates. 

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table 
that gives the turbulence intensity as a function of altitude and the 
probability of the turbulence intensity’s being exceeded.

Continuous Dryden (+q +r) Use continuous representation of 
Dryden velocity spectra with positive 
vertical and lateral angular rates 
spectra.

Continuous Dryden (-q +r) Use continuous representation of 
Dryden velocity spectra with negative 
vertical and positive lateral angular 
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden 
velocity spectra with positive vertical 
and negative lateral angular rates 
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden 
velocity spectra with positive vertical 
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden 
velocity spectra with negative vertical 
and positive lateral angular rates 
spectra.
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Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from 
the military references, a figure of 1750 feet is recommended for the 
longitudinal turbulence scale length of the Dryden spectra.

Note  An alternate scale length value changes the power spectral density 
asymptote and gust load. 

Wingspan
The wingspan is required in the calculation of the turbulence on the 
angular rates.

Band-limited noise and discrete filter sample time (sec)
The sample time at which the unit variance white noise signal is generated 
and at which the discrete filters are updated. 

Noise seeds
There are four random numbers required to generate the turbulence 
signals, one for each of the three velocity components and one for the roll 
rate. The turbulences on the pitch and yaw angular rates are based on 
further shaping of the outputs from the shaping filters for the vertical and 
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and 
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities, 
in the selected units.

The second output is a three-element signal containing the turbulence angular 
rates, in radians per second.
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Assumptions 
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind 
velocity and the root-mean-square turbulence velocity, or intensity, is small 
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air 
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background 
Information and User Guide for MIL-F-8785B(ASG), ‘Military 
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell 
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education 
Series, 1988. 

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance 
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, 
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic 
Control, Princeton University Press, July 1990. 

Moorhouse, D., Woodcock, R., “Background Information and User Guide for 
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,” 
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at 
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts 
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St. 
Louis, MO., January 12-15, 1981.
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Yeager, J., “Implementation and Testing of Turbulence Models for the 
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin 
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Continuous)

Von Karman Wind Turbulence Model (Continuous)

Discrete Wind Gust Model

Wind Shear Model
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4Dynamic PressurePurpose Compute dynamic pressure using velocity and air density

Library Flight Parameters

Description The Dynamic Pressure block computes dynamic pressure.

Dynamic pressure is defined as

where  is air density and V is velocity.

Dialog Box

Inputs and 
Outputs

The first input is velocity vector.

The second input is air density.

The output of the block is dynamic pressure.

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example of this 
block.

See Also Aerodynamic Forces and Moments

Mach Number

q 1
2
---ρV2

=

ρ



ECEF Position to LLA

4-222

4ECEF Position to LLAPurpose Calculate geodetic latitude, longitude, and altitude above mean sea-level 
(MSL) from Earth-centered Earth-fixed (ECEF) position

Library Utilities/Axes Transformations

Description The ECEF Position to LLA block converts a 3-by-1 vector of ECEF position  
into geodetic latitude , longitude , and MSL altitude .

The ECEF position is defined as

Longitude is calculated from the ECEF position by

Geodetic latitude  is calculated from the ECEF position using Bowring’s 
method, which typically converges after two or three iterations. The method 
begins with an initial guess for geodetic latitude  and reduced latitude . 
An initial guess takes the form:

where  is the equatorial radius,  the flattening of the planet, 
 the square of first eccentricity, and
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After the initial guesses are calculated, the reduced latitude  is 
recalculated using

and geodetic latitude  is reevaluated. This last step is repeated until  
converges.

The MSL altitude  is calculated with

where the radius of curvature in the vertical prime  is given by

s px
2 py

2
+=

β( )

β 1 f–( ) μsin
μcos

-----------------------------⎝ ⎠
⎛ ⎞atan=

μ( ) μ

h( )

h s μcos pz e2N μsin+[ ] μsin N–+=

N( )

N R

1 e2 μsin( )2
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---------------------------------------=
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Dialog Box

Units
Specifies the parameter and output units: 

This option is only available when Planet model is set to Earth (WGS84).

Units Position Equatorial Radius Altitude

Metric (MKS) Meters Meters Meters

English Feet Feet Feet
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Planet model
Specifies the planet model to use Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet.

This option is available only with Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The equatorial radius units 
should be the same as the desired units for ECEF position.

This option is available only with Planet model set to Custom.

Inputs and 
Outputs

The input is a 3-by-1 vector containing the position in ECEF frame.

The first output is a 2-by-1 vector containing geodetic latitude and longitude, 
in degrees.

The second output is a scalar value of altitude above mean sea-level (MSL), in 
the same units as the ECEF position.

Assumptions 
and Limitations

This implementation generates a geodetic latitude that lies between  
degrees, and longitude that lies between degrees. The planet is assumed 
to be ellipsoidal. By setting the flattening to 0, you model a spherical planet. 
Additionally, the calculated MSL altitude is approximate.

The implementation of the ECEF coordinate system assumes that its origin 
lies at the center of the planet, the x-axis intersects the prime (Greenwich) 
meridian and the equator, the z-axis is the mean spin axis of the planet 
(positive to the north), and the y-axis completes the right-handed system.

See “About Aerospace Coordinate Systems” on page 2-20.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA 
R-004-1992.

90±
180±
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See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude
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4Estimate Center of GravityPurpose Calculate the center of gravity location

Library Mass Properties

Description The Estimate Center of Gravity block calculates the center of gravity location 
and the rate of change of the center of gravity. 

Linear interpolation is used to estimate the location of center of gravity as a 
function of mass. The rate of change of center of gravity is a linear function of 
rate of change of mass.

Dialog Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full center of gravity
Specifies the center of gravity at gross mass of the craft.
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Empty center of gravity
Specifies the center of gravity at empty mass of the craft.

Inputs and 
Outputs

The first input is the mass.

The second input is the rate of change of mass.

The first output is the center of gravity location.

The second output is the rate of change of center of gravity location.

Examples See the aeroblk_vmm demo for an example of this block.

See Also Aerodynamic Forces and Moments

Estimate Inertia Tensor

Moments About CG Due to Forces
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4Estimate Inertia TensorPurpose Calculate the inertia tensor

Library Mass Properties

Description The Estimate Inertia Tensor block calculates the inertia tensor and the rate of 
change of the inertia tensor. 

Linear interpolation is used to estimate the inertia tensor as a function of 
mass. The rate of change of the inertia tensor is a linear function of rate of 
change of mass.

Dialog Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full inertia matrix
Specifies the inertia tensor at gross mass of the craft.
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Empty inertia matrix
Specifies the inertia tensor at empty mass of the craft.

Inputs and 
Outputs

The first input is mass.

The second input is rate of change of mass.

The first output is inertia tensor.

The second output is rate of change of inertia tensor.

See Also Estimate Center of Gravity

Symmetric Inertia Tensor
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4Euler Angles to Direction Cosine MatrixPurpose Convert Euler angles to direction cosine matrix

Library Utilities/Axes Transformations

Description The Euler Angles to Direction Cosine Matrix block converts the three Euler 
rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix 
performs the coordinate transformation of a vector in inertial axes 

 into a vector in body axes . The order of the axis 
rotations required to bring  into coincidence with  
is first a rotation about  through the roll angle  to axes . 
Second a rotation about  through the pitch angle  to axes , 
and finally a rotation about  through the yaw angle  to 
axes .

Combining the three axis transformation matrices defines the following DCM.
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles
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4Euler Angles to QuaternionsPurpose Convert Euler angles to a quaternion vector

Library Utilities/Axes Transformations

Description The Euler Angles to Quaternions block converts the rotation described by the 
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector 
(q0,q1,q2,q3). 

A quaternion vector represents a rotation about a unit vector ( ) 
through an angle . A unit quaternion itself has unit magnitude, and can be 
written in the following vector format.

An alternative representation of a quaternion is as a complex number, 

where, for the purposes of multiplication,

The benefit of representing the quaternion in this way is the ease with which 
the quaternion product can represent the resulting transformation after two or 
more rotations. The quaternion to represent the rotation through the three 
Euler angles is given below.

Expanding the preceding representation gives the four quaternion elements 
following.

μx μy μz
θ

q

q0

q1

q2

q3

θ 2⁄( )cos
θ 2⁄( )μxsin

θ 2⁄( )μysin

θ 2⁄( )μzsin

= =

q q0 iq1 jq2 kq3+ + +=

i2 j2 k2 1–= = =

ij ji– k= =

jk kj– i
ki

,

ik– j
= =

= =

q qφqθqψ
φ
2
---⎝ ⎠
⎛ ⎞ i φ

2
---⎝ ⎠
⎛ ⎞sin–cos⎝ ⎠

⎛ ⎞ θ
2
---⎝ ⎠
⎛ ⎞ j θ

2
---⎝ ⎠
⎛ ⎞sin–cos⎝ ⎠

⎛ ⎞ ψ
2
----⎝ ⎠
⎛ ⎞ k ψ

2
----⎝ ⎠
⎛ ⎞sin–cos⎝ ⎠

⎛ ⎞= =



Euler Angles to Quaternions

4-234

Dialog Box

Inputs and 
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 4-by-1 quaternion vector.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles
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4Flat Earth to LLAPurpose Estimate geodetic latitude, longitude, and altitude from flat Earth position

Library Utilities/Axes Transformations

Description The Flat Earth to LLA block converts a 3-by-1 vector of Flat Earth position  
into geodetic latitude , longitude , and altitude . The flat Earth 
coordinate system assumes the z-axis is downwards positive. The estimation 
begins by transforming the flat Earth x and y coordinates to North and East 
coordinates. The transformation has the form of

where  is the angle in degrees clockwise between the x-axis and north.

To convert the North and East coordinates to geodetic latitude and longitude, 
the radius of curvature in the prime vertical  and the radius of curvature 
in the meridian  are used.  and  are defined by the following 
relationships:

where  is the equatorial radius of the planet and  is the flattening of the 
planet.

Small changes in the in latitude and longitude are approximated from small 
changes in the North and East positions by
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The output latitude and longitude are simply the initial latitude and longitude 
plus the small changes in latitude and longitude. 

The altitude is the negative flat Earth z-axis value minus the reference height 
.

μ μo dμ+=

ι ιo dι+=

href( )

h pz– href–=
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Dialog Box
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Units
Specifies the parameter and output units: 

This option is only available when Planet model is set to Earth (WGS84).

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with 
Planet model Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial 
radius parameter should be the same as the units for flat Earth position. 
This option is only available with Planet model Custom.

Initial geodetic latitude and longitude
Specifies the reference location, in degrees of latitude and longitude, for the 
origin of the estimation and the origin of the flat Earth coordinate system.

Direction of flat Earth x-axis (degrees clockwise from north)
Specifies angle used for converting flat Earth x and y coordinates to North 
and East coordinates. 

Inputs and 
Outputs

The first input is a 3-by-1 vector containing the position in flat Earth frame.

The second input is a scalar value of reference altitude in the same units for 
flat Earth position.

The first output is a 2-by-1 vector containing geodetic latitude and longitude, 
in degrees.

Units Position Equatorial Radius Altitude

Metric (MKS) Meters Meters Meters

English Feet Feet Feet
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The second output is a scalar value of altitude above the input reference 
altitude, in same units as flat Earth position.

Assumptions 
and Limitations

This estimation method assumes the flight path and bank angle are zero.

This estimation method assumes the flat Earth z-axis is normal to the Earth 
at the initial geodetic latitude and longitude only. This method has higher 
accuracy over small distances from the initial geodetic latitude and longitude, 
and nearer to the equator. The longitude will have higher accuracy the smaller 
the variations in latitude. Additionally, longitude is singular at the poles.

Example See the asbhl20 demo for an example of this block.

References Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, New York, NY, 
1972.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second 
Edition, John Wiley & Sons, New York, NY, 2003.

See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

ECEF Position to LLA

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude
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4FlightGear Preconfigured 6DoF AnimationPurpose Connect your model to FlightGear Flight Simulator

Library Animation/Flight Simulator Interfaces

Description The FlightGear Preconfigured 6DoF Animation block lets you drive position 
and attitude values to a FlightGear Flight Simulator vehicle given double 
precision values for longitude , latitude (L), altitude (h), roll , pitch , 
and yaw  respectively. 

The block is a masked subsystem containing principally a Pack net_fdm Packet 
for FlightGear block set for 6DoF inputs, a Send net_fdm Packet to FlightGear 
block, and a Simulation Pace block. To access the full capabilities of these 
blocks, use the individual corresponding blocks from the Aerospace Blockset 
library. 

The block is additionally configured as a SimViewingDevice, so that if you 
generate code for your model using Real-Time Workshop and connect to the 
running target code using the Real-Time Workshop External Mode available 
from the model's toolbar, then Simulink can obtain the data from the target on 
the fly and transmit position and attitude data to FlightGear. The 
SimViewingDevice facility is described in the Simulink documentation. 

λ( ) φ( ) θ( )
ψ( )
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Dialog Box

FlightGear version
Select your FlightGear software version: v0.9.3, v0.9.8, or v0.9.9.

Destination IP address
Specify your destination IP address.

Destination port
Specify your destination port.

Sample time
Specify the sample time (-1 for inherited).

Inputs and 
Outputs

The input is a vector containing longitude, latitude, altitude, roll, pitch, and 
yaw, in double precision. Units are degrees west/north for longitude and 
latitude, meters above mean sea level for altitude, and radians for attitude 
values. 



FlightGear Preconfigured 6DoF Animation

4-242

References Dr. Nathaniel Bowditch, American Practical Navigator, An Epitome of 
Navigation, US Navy Hydrographic Office, 1802.

See Also Generate Run Script

Pack net_fdm Packet for FlightGear

Send net_fdm Packet to FlightGear

Simulation Pace
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4Force ConversionPurpose Convert from force units to desired force units

Library Utilities/Axes Transformations

Description The Force Conversion block computes the conversion factor from specified 
input force units to specified output force units and applies the conversion 
factor to the input signal.

The Force Conversion block icon displays the input and output units selected 
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is force in initial force units. 

The output is force in final force units. 

lbf Pound force

N Newtons
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See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4Gain Scheduled Lead-LagPurpose Implement a first-order lead-lag with gain-scheduled coefficients

Library GNC/Controls

Description The Gain Scheduled Lead-Lag block implements a first-order lag of the form

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made 
dependent on flight condition or operating point. For example, they could be 
produced from the Look-Up Table (n-D) Simulink block.

Dialog Box

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state, 
the initial output is given by

Inputs and 
Outputs

The first input is the filter input.

The second input is the numerator coefficient.

The third input is the denominator coefficient.

The output is the filter output

u 1 as+
1 bs+
----------------e=

u t 0=
xinitial ae+

b
--------------------------------=
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4Generate Run ScriptPurpose Generate FlightGear run script on current platform

Library Animation/Flight Simulator Interfaces

Description The Generate Run Script block generates a customized FlightGear run script 
on the current platform.

To generate the run script, fill the required information into the dialog’s fields, 
then click Generate Script.

Fields in the dialog marked with an asterisk (*) are evaluated as MATLAB 
expressions. The other fields are treated as literal text.

For More Information About FlightGear
See “Creating a FlightGear Run Script” on page 2-43 for more about 
FlightGear.
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Dialog Box

Generate Script
Click to generate a run script for FlightGear. Do not click this button until 
you have entered the correct information in the dialog fields.
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Output file name
Specify the name of the output file. The file name is the name of the 
command you will use to start FlightGear with these initial parameters. 
The file must have the .bat extension.

FlightGear base directory
Specify the name of your FlightGear installation directory.

FlightGear geometry model name
Specify the name of the folder containing the desired model geometry in the 
FlightGear\data\Aircraft directory.

Destination port
Specify your network flight dynamics model (fdm) port. For more 
information, see the Send net_fdm Packet to FlightGear block reference.

Airport ID
Specify the airport ID. The list of supported airports is available in the 
FlightGear interface, under Location.

Runway ID
Specify the runway ID.

Initial altitude
Specify the initial altitude of the aircraft, in feet.

Initial heading
Specify the initial heading of the aircraft, in degrees.

Offset distance
Specify the offset distance of the aircraft from the airport, in miles.

Offset azimuth
Specify the offset azimuth of the aircraft, in degrees.

Examples See the asbhl20 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

Pack net_fdm Packet for FlightGear

Send net_fdm Packet to FlightGear



Geocentric to Geodetic Latitude

4-249

4Geocentric to Geodetic LatitudePurpose Convert geocentric latitude to geodetic latitude

Library Utilities/Axes Transformations

Description The Geocentric to Geodetic Latitude block converts a geocentric latitude  
into geodetic latitude . There are a number of geometric relationships that 
are used to calculate the geodetic latitude in this non-iterative method. There 
are a number angles and points involved in the calculation which are shown in 
following figure.

Given geocentric latitude  and the radius from the center of the planet 
(O) to the center of gravity (P), this non-iterative method starts by computing 
values for the point of  that intercepts the surface of the planet (S). By 
rearranging the equation for an ellipse, the horizontal coordinate,  is 

λ( )
μ( )

λ( ) r( )

r
xa( )
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determined. When equatorial radius , polar radius  and , 
are substituted for semi-major axis, semi-minor axis and vertical coordinate 

, the resulting equation for  has the following form:

To determine the geodetic latitude at S , the equation for an ellipse with 
equatorial radius , polar radius  is used again. This time it is used 
to define  in terms of .

Additionally, the relationship between geocentric latitude at the planet’s 
surface and geodetic latitude is used.

Using the relationship  and the two equations above, the 
resulting equation for  is obtained.

  

The correct sign of  is determined by testing  and if  is less than zero  
changes sign accordingly.

In order to calculate the geodetic latitude of P, a number of geometric 
relationships are required to be calculated. These calculations follow.

The radius  from the center of the planet (O) to the surface of the planet (S) 
is calculated by using trigonometric relationship.
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The distance from S to P is defined by: 

The angular difference between geocentric latitude and geodetic latitude at S 
 is defined by:

Using  and , the mean sea-level altitude  is estimated.

The equation for the radius of curvature in the Meridian  at  is 

Using , , , and , the angular difference between geodetic latitude at S 
 and geodetic latitude at P  is defined as:

Subtracting  from  then gives .

l r ra–=

δλ( )

δλ μa λ–=

l δλ h( )

h l δλcos=

ρa( ) μa

ρa
R 1 f–( )2

1 2f f2
–( ) μ2

asin–( )
3 2⁄

--------------------------------------------------------------=

l δλ h ρa
μ( ) μa( )

δμ l δλsin
ρa h+
------------------⎝ ⎠
⎛ ⎞atan=

δμ μa μ

μ μa δμ–=
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Dialog Box

Units
Specifies the parameter and output units: 

This option is only available when Planet model is set to Earth (WGS84).

Units Radius from CG to 
Center of Planet

Equatorial Radius

Metric (MKS) Meters Meters

English Feet Feet
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Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with 
Planet model set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial 
radius parameter should be the same as the units for radius. This option is 
only available with Planet model set to Custom.

Inputs and 
Outputs

The first input is a scalar value of geocentric latitude, in degrees.

The second input is a scalar value of radius from center of the planet to the 
center of gravity.

The output is a scalar value of geodetic latitude, in degrees.

Assumptions 
and Limitations

This implementation generates a geodetic latitude that lies between 
degrees.

References Jackson, E. B., Manual for a Workstation-based Generic Flight Simulation 
Program (LaRCsim) Version 1.4, NASA TM 110164, April, 1995.

Hedgley, D. R., Jr., “An Exact Transformation from Geocentric to Geodetic 
Coordinates for Nonzero Altitudes,” NASA TR R-458, March, 1976.

Clynch, J. R., “Radius of the Earth - Radii Used in Geodesy,” Naval 
Postgraduate School, 2002, 
http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992.

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry 2nd 
Edition, Prentice-Hall, Englewood Cliffs, NJ, 1986.

90±



Geocentric to Geodetic Latitude

4-254

See Also ECEF Position to LLA

Flat Earth to LLA

Geodetic to Geocentric Latitude

LLA to ECEF Position
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4Geodetic to Geocentric LatitudePurpose Convert geodetic latitude to geocentric latitude

Library Utilities/Axes Transformations

Description The Geodetic to Geocentric Latitude block converts a geodetic latitude  into 
geocentric latitude . Geocentric latitude at the planet surface is defined 
by flattening , and geodetic latitude in the following relationship.

Geocentric latitude is defined by mean sea-level altitude , geodetic latitude, 
radius of the planet  and geocentric latitude at the planet surface in the 
following relationship.

     

μ( )
λ( ) λs( )

f( )

λs 1 f–( )2 μtan( )atan=

h( )
rs( )

λ
h μsin rs λssin+

h μcos rs λscos+
-------------------------------------------⎝ ⎠
⎛ ⎞atan=
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Dialog Box

Units
Specifies the parameter and output units: 

This option is only available when Planet model is set to Earth (WGS84).

Units Altitude Equatorial Radius

Metric (MKS) Meters Meters

English Feet Feet
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Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with 
Planet model set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial 
radius parameter should be the same as the units for altitude. This option 
is only available with Planet model set to Custom.

Inputs and 
Outputs

The first input is a scalar value of geodetic latitude, in degrees.

The second input is a scalar value of mean sea-level altitude (MSL).

The output is a scalar value of geocentric latitude, in degrees.

Assumptions 
and Limitations

This implementation generates a geocentric latitude that lies between 
degrees.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also ECEF Position to LLA

Flat Earth to LLA

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

90±
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4Horizontal Wind ModelPurpose Transform horizontal wind into body-axes coordinates

Library Environment/Wind

Description The Horizontal Wind Model block computes the wind velocity in body-axes 
coordinates. 

The wind is specified by wind speed and wind direction in Earth axes. The 
speed and direction can be constant or variable over time. The direction of the 
wind is in degrees clockwise from the direction of the Earth x-axis (north). The 
wind direction is defined as the direction from which the wind is coming. Using 
the direction cosine matrix (DCM), the wind velocities are transformed into 
body-axes coordinates.

Dialog Box

Units
Specifies the input and output units: 

Units Wind Speed Wind Velocity

Metric (MKS) Meters per second Meters per second

English (Velocity in ft/s) Feet per second Feet per second

English (Velocity in kts) Knots Knots
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Wind speed source
Specify source of wind speed:

Wind speed at altitude (m/s)
Constant wind speed used if internal wind speed source is selected.

Wind direction source
Specify source of wind direction:

Wind direction at altitude (degrees clockwise from north)
Constant wind direction used if internal wind direction source is selected. 
The direction of the wind is in degrees clockwise from the direction of the 
Earth x-axis (north). The wind direction is defined as the direction from 
which the wind is coming.

Inputs and 
Outputs

The first input is direction cosine matrix.

The second optional input is the wind speed in selected units.

The third optional input is the wind direction in degrees.

The output of the block is the wind velocity in body-axes, in selected units.

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model

External Variable wind speed input to block

Internal Constant wind speed specified in mask

External Variable wind direction input to block

Internal Constant wind direction specified in mask
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4Ideal Airspeed CorrectionPurpose Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true 
airspeed (TAS) from each other

Library Flight Parameters

Description The Ideal Airspeed Correction block calculates one of the following airspeeds: 
equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS), 
from one of the other two airspeeds. 

Three equations are used to implement the Ideal Airspeed Correction block. 
The first equation shows TAS as a function of EAS, relative pressure ratio at 
altitude (δ), and speed of sound at altitude (a).

Using the compressible form of Bernoulli’s equation and assuming isentropic 
conditions, the last two equations for EAS and CAS are derived. 

In order to generate a correction table and its approximate inverse, these two 
equations were solved for dynamic pressure (q). Having values of q by a 
function of EAS and ambient pressure at altitude (P) or by a function of CAS, 
allows the two equations to be solved using the other’s solution for q, thus 
creating a solution for EAS that depends on P and CAS and a solution for CAS 
that depends on P and EAS.

TAS EAS a×
a0 δ

-----------------------=

EAS 2γP
γ 1–( )ρ0

----------------------- q
P
---- 1+⎝ ⎠
⎛ ⎞ γ 1–( ) γ⁄

1–=

CAS
2γP0

γ 1–( )ρ0
----------------------- q

P0
------ 1+⎝ ⎠
⎛ ⎞ γ 1–( ) γ⁄

1–=
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Dialog Box

Units
Specifies the input and output units: 

Airspeed input
Specify the airspeed input type:

Units Airspeed 
Input

Speed of 
Sound

Air Pressure Airspeed 
Output

Metric (MKS) Meters per 
second

Meters per 
second

Pascal Meters per 
second

English (Velocity 
in ft/s)

Feet per 
second

Feet per 
second

Pound force per 
square inch

Feet per 
second

English (Velocity 
in kts)

Knots Knots Pound force per 
square inch

Knots

TAS True airspeed

EAS Equivalent airspeed

CAS Calibrated airspeed
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Airspeed output
Specify the airspeed output type:

Action for out of range input
Specify if an out of range input (supersonic airspeeds) invokes a warning, 
an error, or no action.

Inputs and 
Outputs

The first input is the selected airspeed in the selected units.

The second input is the speed of sound in the selected units.

The third input is the static pressure in the selected units.

The output of the block is the selected airspeed in the selected units.

Assumptions 
and Limitations

This block assumes that the air flow is compressible, isentropic (subsonic flow), 
dry air with constant specific heat ratio, γ.

Examples See the aeroblk_indicated model and the aeroblk_calibrated model for 
examples of this block. 

References Lowry, J. T., Performance of Light Aircraft, AIAA Education Series, 
Washington, DC, 1999.

Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, 
August, 1986.

Velocity Input Velocity Output

TAS EAS (Equivalent airspeed)

CAS (Calibrated airspeed)

EAS TAS (True airspeed)

CAS (Calibrated airspeed)

CAS TAS (True airspeed)

EAS (Equivalent airspeed)
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4Incidence & AirspeedPurpose Calculate incidence and air speed

Library Flight Parameters

Description The Incidence & Airspeed block supports the 3DoF equations of motion model 
by calculating the angle between the velocity vector and the body, and also the 
total air speed from the velocity components in the body-fixed coordinate 
frame.

 

Dialog Box

Inputs and 
Outputs

The input to the block is the two-element vector containing the velocity of the 
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the air speed of the body.

Examples See the aeroblk_guidance model and the aero_guidance_airframe model for 
examples of this block. 

See Also Incidence, Sideslip & Airspeed

α w
u
----⎝ ⎠
⎛ ⎞

V

atan

u2 w2
+

=

=
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4Incidence, Sideslip & AirspeedPurpose Calculate incidence, sideslip, and air speed

Library Flight Parameters

Description The Incidence, Sideslip & Airspeed block supports the 6DoF (Euler Angles) and 
6DoF (Quaternion) models by calculating the angles between the velocity 
vector and the body, and also the total air speed from the velocity components 
in the body-fixed coordinate frame.

 

Dialog Box

Inputs and 
Outputs

The input to the block is the three-element vector containing the velocity of the 
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle in radians.

The second output of the block is the sideslip angle in radians.

The third output is the air speed of the body.

Examples See Airframe in the aeroblk_HL20 model for an example of this block. 

See Also Incidence & Airspeed

α w
u
----⎝ ⎠
⎛ ⎞

β v
V
----⎝ ⎠
⎛ ⎞

V

asin=

atan

u2 v2 w+
2

+

=

=
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4Interpolate Matrix(x)Purpose Return an interpolated matrix for given input x

Library GNC/Controls

Description The Interpolate Matrix(x) block interpolates a one-dimensional array of 
matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number 
of values of an independent variable x = [ x1 x2 x3 ... xi  xi+1 ... xn ]. Then for 
xi < x < xi+1, the block output is given by

where the interpolation fraction is defined as

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be three dimensional, the first two 
dimensions corresponding to the matrix at each value of x. For example, if 
you have three matrices A, B, and C defined at x = 0, x = 0.5, and 
x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;

matrix(:,:,2) = B;

matrix(:,:,3) = C;

Inputs and 
Outputs

The first input is the first independent variable.

The output is the interpolated matrix.

1 λ–( )M xi( ) λM xi 1+( )+

λ x xi–( ) xi 1+ xi–( )⁄=
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Assumptions 
and Limitations

This block must be driven from the Simulink PreLook-up Index Search block.

Examples See the following Aerospace Blockset blocks: 1D Controller 
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D 
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)

Interpolate Matrix(x,y,z)
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4Interpolate Matrix(x,y)Purpose Return an interpolated matrix for given inputs x and y

Library GNC/Controls

Description The Interpolate Matrix(x,y) block interpolates a two-dimensional array of 
matrices.

This two-dimensional case assumes the matrix is defined as a function of two 
independent variables, x = [ x1 x2 x3 ... xi  xi+1 ... xn ] and y = [ y1 y2 y3 ... yj yj+1 
... ym]. For given values of x and y, four matrices are interpolated. Then for 
xi < x < xi+1 and yj < y < yj+1, the output matrix is given by

where the two interpolation fractions are denoted by

 

and

 

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be four dimensional, the first two 
dimensions corresponding to the matrix at each value of x and y. For 
example, if you have four matrices A, B, C, and D defined at 
(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and 
(x = 1.0,y = 3.0), then the input matrix is given by

1 λy–( ) 1 λx–( )M xi yj,( ) λxM xi 1+ yj,( )+[ ]

λy 1 λx–( )M xi yj 1+,( ) λxM xi 1+ yj 1+,( )+[ ]

+

λx x xi–( ) xi 1+ xi–( )⁄=

λy y yj–( ) yj 1+ yj–( )⁄=
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matrix(:,:,1,1) = A;

matrix(:,:,1,2) = B;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

Inputs and 
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The output is the interpolated matrix.

Assumptions 
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 2D Controller 
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D 
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y,z)
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4Interpolate Matrix(x,y,z)Purpose Return an interpolated matrix for given inputs x, y, and z

Library GNC/Controls

Description The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of 
matrices.

This three-dimensional case assumes the matrix is defined as a function of 
three independent variables

For given values of x, y, and z, eight matrices are interpolated. Then for 

the output matrix is given by

where the three interpolation fractions are denoted by

In the three-dimensional case, the interpolation is carried out first on x, then 
y, and finally z.

x = [ x1 x2 x3 ... xi  xi+1 ... xn ], y = [ y1 y2 y3 ... yj yj+1 ... ym]

z = [ z1 z2 z3 ... zk  zk+1 ... zp ]

xi < x < xi+1, yj < y < yj+1 

zk < z < zk+1

1 λ– z( ) 1 λy–( ) 1 λx–( )M xi yj zk, ,( ) λxM xi 1+ yj zk, ,( )+[ ]

λy 1 λx–( )M xi yj 1+ zk,,( ) λxM xi 1+ yj 1+ zk,,( )+[ ]

+{

}

λz 1 λy–( ) 1 λx–( )M xi yj zk 1+, ,( ) λxM xi 1+ yj zk 1+, ,( )+[ ]

λy 1 λx–( )M xi yj 1+ zk 1+,,( ) λxM xi 1+ yj 1+ zk 1+,,( )+[ ]

+{

}

+

λx x xi–( ) xi 1+ xi–( )⁄=

λy y yj–( ) yj 1+ yj–( )⁄=

λz z zk–( ) zk 1+ zk–( )⁄=
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Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two 
dimensions corresponding to the matrix at each value of x, y, and z. For 
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at 
the following values of x, y, and z, then the corresponding input matrix is 
given by

Inputs and 
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The third input is the third independent variable.

The output is the interpolated matrix.

Assumptions 
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;

(x = 0.0,y = 1.0,z = 0.5) matrix(:,:,1,1,2) = B;

(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;

(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;

(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;

(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;

(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;

(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;
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Examples See the following Aerospace Blockset blocks: 3D Controller 
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 3D 
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y)
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4Invert 3x3 MatrixPurpose Compute the inverse of 3-by-3 matrix using determinant formula

Library Utilities/Math Operations

Description The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix using 
determinant formula. 

The inverse of the matrix is calculated by

If the , an error is thrown and the simulation will stop.

Dialog Box

Inputs and 
Outputs

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 matrix inverse of input matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

Determinant of 3x3 Matrix

inv A( ) adj A( )
det A( )
-------------------=

det A( ) 0=
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4ISA Atmosphere ModelPurpose Implement the International Standard Atmosphere (ISA)

Library Environment/Atmosphere

Description The ISA Atmosphere Model block implements the mathematical 
representation of the international standard atmosphere values for ambient 
temperature, pressure, density, and speed of sound for the input geopotential 
altitude. 

The ISA Atmosphere Model block icon displays the input and output metric 
units.

Dialog Box

Change atmospheric parameters
Select to customize various atmospheric parameters to be different from 
the ISA values.

Inputs and 
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air 
density.

Assumptions 
and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of 
20 km, temperature and pressure values are held. Density and speed of sound 
are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 
Washington, D.C.

See Also COESA Atmosphere Model, Lapse Rate Model
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4Julian Epoch to Besselian EpochPurpose Transform position and velocity components from the Standard Julian Epoch 
(J2000) to the discontinued Standard Besselian Epoch (B1950) 

Library Utilities/Axes Transformations

Description The Julian Epoch to Besselian Epoch block transforms two 3-by-1 vectors of 
Julian Epoch position ,and Julian Epoch velocity  into 
Besselian Epoch position , and Besselian Epoch velocity . The 
transformation is calculated using:

where  are defined as:

rJ2000( ) vJ2000( )
rB1950( ) vB1950( )

rB1950

vB1950

Mrr Mvr

Mrv Mvv

T
rJ2000

vJ2000

=

Mrr Mvr Mrv Mvv, , ,( )

0.9999256782 -0.0111820611 -0.0048579477

0.0111820610  0.9999374784 -0.0000271765

0.0048579479 -0.0000271474  0.9999881997

Mrr =

0.00000242395018 -0.00000002710663 -0.00000001177656

0.00000002710663  0.00000242397878 -0.00000000006587

0.00000001177656 -0.00000000006582  0.00000242410173

Mvr =

Mrv

0.000551– 0.238565– 0.435739
0.238514 0.002667– 0.008541–

0.435623– 0.012254 0.002117

=

Mvv

0.99994704 0.01118251– 0.00485767–

0.01118251 0.99995883 0.00002718–

0.00485767 0.00002714– 1.00000956

=
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Dialog Box

Inputs and 
Outputs

The first input is a 3-by-1 vector containing the position in Standard Julian 
Epoch (J2000).

The second input is a 3-by-1 vector containing the velocity in Standard Julian 
Epoch (J2000).

The first output is a 3-by-1 vector containing the position in Standard 
Besselian Epoch (B1950).

The second output is a 3-by-1 vector containing the velocity in Standard 
Besselian Epoch (B1950).

References “Supplement to Department of Defense World Geodetic System 1984 Technical 
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,” 
DMA TR8350.2-A. 

See Also Besselian Epoch to Julian Epoch
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4Lapse Rate ModelPurpose Implement lapse rate model for atmosphere

Library Environment/Atmosphere

Description The Lapse Rate Model block implements the mathematical representation of 
the lapse rate atmospheric equations for ambient temperature, pressure, 
density, and speed of sound for the input geopotential altitude. You can 
customize this atmospheric model, described below, by specifying atmospheric 
properties in the block dialog.

The following equations define the troposphere

The following equations define the tropopause (lower stratosphere)
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------⎝ ⎠
⎛ ⎞

g
LR
--------

⋅=

ρ ρo
T
To
------⎝ ⎠
⎛ ⎞

g
LR
-------- 1–

⋅=

a γRT=

T To L hts⋅–=

P Po
T
To
------⎝ ⎠
⎛ ⎞

g
LR
--------

e⋅ ⋅
g

RT
--------- hts h–( )

=

ρ ρo
T
To
------⎝ ⎠
⎛ ⎞

g
LR
-------- 1–

e

g
RT
--------- hts h–( )

⋅ ⋅=

a γRT=



Lapse Rate Model

4-277

where: 

The Lapse Rate Model block icon displays the input and output metric units.

Absolute temperature at mean sea level in kelvin (K)

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Altitude in m

Height of the troposphere in m

Absolute temperature at altitude h in kelvin (K)

ρ Air density at altitude h in kg/m3

Static pressure at altitude h in N/m2

Speed of sound at altitude h in m/s2

Lapse rate in K/m

Characteristic gas constant J/kg-K

Specific heat ratio

Acceleration due to gravity in m/s2

T0

ρ0

P0

h

hts

T

P

a

L

R

γ

g
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Dialog Box

Change atmospheric parameters
When selected, the following atmospheric parameters can be customized to 
be different from the ISA values.

Acceleration due to gravity
Specify the acceleration due to gravity (g).

Ratio of specific heats
Specify the ratio of specific heats (γ).

Characteristic gas constant
Specify the characteristic gas constant (R).
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Lapse rate
Specify the lapse rate of the troposphere (L).

Height of troposphere
Specify the upper altitude of the troposphere, a range of decreasing 
temperature.

Height of tropopause
Specify the upper altitude of the tropopause, a range of constant 
temperature.

Air density at mean sea level
Specify the air density at sea level ( ).

Ambient pressure at mean sea level
Specify the ambient pressure at sea level ( ).

Ambient temperature at mean sea level
Specify the ambient temperature at sea level ( ).

Inputs and 
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air 
density.

Assumptions 
and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of 
the tropopause, temperature and pressure values are held. Density and speed 
of sound are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 
Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

ρ0

P0

T0
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4Length ConversionPurpose Convert from length units to desired length units

Library Utilities/Unit Conversions

Description The Length Conversion block computes the conversion factor from specified 
input length units to specified output length units and applies the conversion 
factor to the input signal.

The Length Conversion block icon displays the input and output units selected 
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is length in initial length units. 

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles
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The output is length in final length units. 

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4LLA to ECEF Position Purpose Calculate Earth-centered Earth-fixed (ECEF) position from geodetic latitude, 
longitude, and altitude above mean sea-level (MSL) 

Library Utilities/Axes Transformations

Description The LLA to ECEF Position block converts geodetic latitude , longitude , 
and MSL altitude  into a 3-by-1 vector of ECEF position . The ECEF 
position is calculated from geocentric latitude at mean sea-level  and 
longitude using:

where geocentric latitude at mean sea-level and the radius at a surface point 
 are defined by flattening , and equatorial radius  in the following 

relationships.

μ( ) ι( )
h( ) p( )

λs( )

p

px

py

pz

rs λs ιcoscos h μ ιcoscos+

rs λs ιsincos h μ ιsincos+

rs λssin h μsin+

= =

rs( ) f( ) R( )

λs 1 f–( )2 μtan( )atan=

rs
R2

1 1 1 f–( )2⁄ 1–[ ] λ2
ssin+

--------------------------------------------------------------------=
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Dialog Box

Units
Specifies the parameter and output units: 

This option is only available when Planet model is set to Earth (WGS84).

Units Altitude Equatorial Radius Position

Metric (MKS) Meters Meters Meters

English Feet Feet Feet
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Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with 
Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial 
radius parameter should be the same as the units for altitude. This option 
is only available with Planet model set to Custom.

Inputs and 
Outputs

The first input is a 2-by-1 vector containing geodetic latitude and longitude, in 
degrees.

The second input is a scalar value of altitude above mean sea-level (MSL).

The output is a 3-by-1 vector containing the position in ECEF frame, in same 
units as altitude.

Assumptions 
and Limitations

The planet is assumed to be ellipsoidal by setting flattening to 0.0 a spherical 
planet can be achieved. 

The implementation of the ECEF coordinate system assumes that the origin is 
at the center of the planet, the x-axis intersects the Greenwich meridian and 
the equator, the z-axis being the mean spin axis of the planet, positive to the 
north, and the y-axis completes the right hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA 
R-004-1992. 

See Also Direction Cosine Matrix ECEF to NED
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Direction Cosine Matrix ECEF to NED to Latitude and Longitude

ECEF Position to LLA

Flat Earth to LLA

Radius at Geocentric Latitude
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4Mach NumberPurpose Compute Mach number using velocity and speed of sound

Library Flight Parameters

Description The Mach Number block computes Mach number.

Mach number is defined as

where  is speed of sound and V is velocity vector.

Dialog Box

Inputs and 
Outputs

The first input is the velocity vector.

The second input is the speed of sound.

The output of the block is the Mach number.

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also Aerodynamic Forces and Moments

Dynamic Pressure

Mach V V⋅
a

-----------------=

a



Mass Conversion

4-287

4Mass ConversionPurpose Convert from mass units to desired mass units

Library Utilities/Unit Conversions

Description The Mass Conversion block computes the conversion factor from specified 
input mass units to specified output mass units and applies the conversion 
factor to the input signal.

The Mass Conversion block icon displays the input and output units selected 
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is the mass in initial mass units. 

The output is the mass in final mass units. 

See Also Acceleration Conversion

Angle Conversion

lbm Pound mass

kg Kilograms

slug Slugs
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Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion
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4Moments About CG Due to ForcesPurpose Compute moments about center of gravity due to forces that are applied at 
point CP, not the center of gravity

Library Mass Properties

Description The Moments about CG due to Forces block computes moments about center of 
gravity due to forces that are applied at point CP not the center of gravity.

Dialog Box

Inputs and 
Outputs

The first input is the forces applied at point CP.

The second input is the center of gravity.

The third input is the application point of forces.

The output of the block is moments at the center of gravity in x-axes, y-axes and 
z-axes.

See Also Aerodynamic Forces and Moments

Estimate Center of Gravity
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4Non-Standard Day 210CPurpose Implement the MIL-STD-210C climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 210C block implements a portion of the climatic data 
of the MIL-STD-210C worldwide air environment to 80 km (geometric or 
approximately 262,000 feet geometric) for absolute temperature, pressure, 
density, and speed of sound for the input geopotential altitude. 

The Non-Standard Day 210C block icon displays the input and output units 
selected from the Units list.

Dialog Box
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Units
Specifies the input and output units: 

Specification
Specify the atmosphere model type from one of the following atmosphere 
models. The default is MIL-STD-210C. 

Atmospheric model type
Select the representation of the atmospheric data. 

Units Height Temperature Speed of Sound Air Pressure Air Density

Metric 
(MKS)

Meters Kelvin Meters per 
second

Pascal Kilograms 
per cubic 
meter

English 
(Velocity 
in ft/s)

Feet Degrees 
Rankine

Feet per second Pound force 
per square 
inch

Slug per 
cubic foot

English 
(Velocity 
in kts)

Feet Degrees 
Rankine

Knots Pound force 
per square 
inch

Slug per 
cubic foot

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See 
the block reference for more information.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the 
block reference for more information.

MIL-STD-210C

Profile Realistic atmospheric profiles associated with extremes at 
specified altitudes. Recommended for simulation of 
vehicles vertically traversing the atmosphere or when the 
total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude. 
Recommended for vehicles only horizontally traversing 
the atmosphere without much change in altitude.
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Extreme parameter
Select the atmospheric parameter that is the extreme value. 

Frequency of occurrence
Select percent of time the values would occur. 

Altitude of extreme value
Select geometric altitude at which the extreme values occur. Applies to the 
profile atmospheric model only. 

High temperature

Low temperature

High density

Low density

High pressure This option is available only when Envelope is 
selected for Atmospheric model type

Low pressure This option is available only when Envelope is 
selected for Atmospheric model type

Extreme values This option is available only when Envelope is 
selected for Atmospheric model type.

1%

5% This option is available only when Envelope is 
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is 
selected for Atmospheric model type.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)
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Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and 
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air 
density.

Assumptions 
and Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above the 
geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope 
atmospheric model has a few exceptions where values are held below the 
geometric altitude of 1 kilometer (approximately 3,281 feet) and above the 
geometric altitude of 30,000 meters (approximately 98,425 feet). These 
exceptions are due to lack of data in MIL-STD-210C for these conditions.

In general, temperature values are extrapolated linearly and density values 
are extrapolated logarithmically. Pressure and speed of sound are calculated 
using a perfect gas relationship. The envelope atmospheric model has a few 
exceptions where the extreme value is linearly interpolated and it is the only 
value provided as an output. These envelope atmospheric model exceptions 
apply to all cases of high and low pressure, high and low temperature, and high 
and low density, excluding the extreme values and 1% frequency of occurrence. 
These exceptions are due to lack of data in MIL-STD-210C for these conditions.

A limitation is that climatic data for the region south of 60°S latitude is 
excluded from consideration in MIL-STD-210C.

References Global Climatic Data for Developing Military Products (MIL-STD-210C), 9 
January 1987, Department of Defense, Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 310
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4Non-Standard Day 310Purpose Implement the MIL-HDBK-310 climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 310 block implements a portion of the climatic data of 
the MIL-HDBK-310 worldwide air environment to 80 km (geometric or 
approximately 262,000 feet geometric) for absolute temperature, pressure, 
density, and speed of sound for the input geopotential altitude. 

The Non-Standard Day 310 block icon displays the input and output units 
selected from the Units list.

Dialog Box
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Units
Specifies the input and output units: 

Specification
Specify the atmosphere model type from one of the following atmosphere 
models. The default is MIL-HDBK-310. 

Atmospheric model type
Select the representation of the atmospheric data. 

Units Height Temperature Speed of Sound Air Pressure Air Density

Metric 
(MKS)

Meters Kelvin Meters per 
second

Pascal Kilograms 
per cubic 
meter

English 
(Velocity 
in ft/s)

Feet Degrees 
Rankine

Feet per second Pound force 
per square 
inch

Slug per 
cubic foot

English 
(Velocity 
in kts)

Feet Degrees 
Rankine

Knots Pound force 
per square 
inch

Slug per 
cubic foot

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See 
the block reference for more information.

MIL-HDBK-310

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the 
block reference for more information.

Profile Realistic atmospheric profiles associated with extremes 
at specified altitudes. Recommended for simulation of 
vehicles vertically traversing the atmosphere or when 
the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude. 
Recommended for vehicles only horizontally traversing 
the atmosphere without much change in altitude.
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Extreme parameter
Select the atmospheric parameter which is the extreme value. 

Frequency of occurrence
Select percent of time the values would occur. 

Altitude of extreme value
Select geometric altitude at which the extreme values occur. Applies to the 
profile atmospheric model only. 

High temperature

Low temperature

High density

Low density

High pressure This option is available only when Envelope 
is selected for Atmospheric model type.

Low pressure This option is available only when Envelope 
is selected for Atmospheric model type.

Extreme values This option is available only when Envelope is 
selected for Atmospheric model type.

1%

5% This option is available only when Envelope is 
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is 
selected for Atmospheric model type.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)
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Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and 
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air 
density.

Assumptions 
and Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above the 
geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope 
atmospheric model has a few exceptions where values are held below the 
geometric altitude of 1 kilometer (approximately 3,281 feet) and above the 
geometric altitude of 30,000 meters (approximately 98,425 feet). These 
exceptions are due to lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are extrapolated linearly and density values 
are extrapolated logarithmically. Pressure and speed of sound are calculated 
using a perfect gas relationship. The envelope atmospheric model has a few 
exceptions where the extreme value is linearly interpolated and it is the only 
value provided as an output. These envelope atmospheric model exceptions 
apply to all cases of high and low pressure, high and low temperature, and high 
and low density, excluding the extreme values and 1% frequency of occurrence. 
These exceptions are due to lack of data in MIL-HDBK-310 for these 
conditions.

A limitation is that climatic data for the region south of 60°S latitude is 
excluded from consideration in MIL-HDBK-310.

References Global Climatic Data for Developing Military Products (MIL-HDBK-310), 23 
June 1997, Department of Defense, Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 210C
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4Pack net_fdm Packet for FlightGearPurpose Generate net_fdm packet for FlightGear

Library Animation/Flight Simulator Interfaces

Description The Pack net_fdm Packet for FlightGear block creates, from separate inputs, a 
FlightGear net_fdm data packet compatible with a particular version of 
FlightGear Flight Simulator. All the signals supported by the FlightGear 
net_fdm data packet for FlightGear versions 0.9.3, 0.9.8/0.9.8a, 0.9.9 are 
supported by this block. The signals are arranged into six groups. Any group 
can be turned on or off. Zeros are inserted for packet values that are part of 
inactive signal groups.

See “Inputs and Outputs” on page 4-299 for details on signals and signal 
groups.

Dialog Box

FlightGear version
Select your FlightGear software version: v0.9.3, v0.9.8, or v0.9.9.
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Show position/altitude inputs
Select this check box to include the position and altitude inputs (signal 
group 1) into the FlightGear net_fdm data packet.

Show velocity/acceleration inputs
Select this check box to include the velocity and acceleration inputs (signal 
group 2) into the FlightGear net_fdm data packet.

Show control surface position inputs
Select this check box to include the control surface position inputs (signal 
group 3) into the FlightGear net_fdm data packet.

Show engine/fuel inputs
Select this check box to include the engine and fuel inputs (signal group 4) 
into the FlightGear net_fdm data packet.

Show landing gear inputs
Select this check box to include the landing gear inputs (signal group 5) 
into the FlightGear net_fdm data packet.

Show environment inputs
Select this check box to include the environment inputs (signal group 6) 
into the FlightGear net_fdm data packet.

Sample time
Specify the sample time (-1 for inherited).

Inputs and 
Outputs

Input Signals Supported for FlightGear 0.9.3
This table lists all the input signals supported for Version 0.9.3:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

longitude rad double 1 Geodetic longitude

latitude rad double 1 Geodetic altitude

altitude m double 1 Altitude above sea level

phi rad single 1 Roll

theta rad single 1 Pitch
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psi rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

phidot rad/sec single 1 Roll rate

thetadot rad/sec single 1 Pitch rate

psidot rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in 
local/body frame

v_east ft/sec single 1 East velocity in 
local/body frame

v_down ft/sec single 1 Down/vertical velocity 
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity 
relative to local airmass

v_wind_body_east ft/sec single 1 Body east velocity 
relative to local airmass

v_wind_body_down ft/sec single 1 Body down/vertical 
velocity relative to local 
airmass

stall_warning - single 1 0.0-1.0, indicating the 
amount of stall

A_X_pilot ft/sec2 single 1 X acceleration in body 
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body 
frame

A_Z_pilot ft/sec2 single 1 Z acceleration in body 
frame

Name Units Type Width Description



Pack net_fdm Packet for FlightGear

4-301

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific units

single 1 Elevator position

flaps geometry-
specific units

single 1 Flaps position

left_aileron geometry-
specific units

single 1 Left aileron position

right_aileron geometry-
specific units

single 1 Right aileron position

rudder geometry-
specific units

single 1 Rudder position

speedbrake geometry-
specific units

single 1 Speed brake position

spoilers geometry-
specific units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines - int32 1 Number of valid 
engines

eng_state enum int32 4 Engine state (0=off, 
1=cranking, 2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

num_tanks - int32 1 Max number of fuel 
tanks

fuel_quantity - single 4 Amount of fuel in tanks 
(0-1 fraction)

Name Units Type Width Description
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Input Signals Supported for FlightGear 0.9.8/0.9.8a
This table lists all the input signals supported for Versions 0.9.8/0.9.8a:

Signal Group 5: ShowLandingGearInputs

num_wheels - int32 1 Maximum number of 
wheels

wow - boolean 3 Weight on wheels 
signal (1=wheel is on 
ground)

gear_pos - single 3 Landing gear position 
(0-1, indicating amount 
deployed)

gear_steer - single 3 Landing gear steering 
angle

gear_compression - single 3 Landing gear 
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec int32 1 Current UNIX time

warp sec int32 1 Offset in seconds to 
UNIX time

visibility m single 1 Visibility in meters (for 
visual effects)

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

longitude rad double 1 Geodetic longitude

latitude rad double 1 Geodetic atitude

altitude m double 1 Altitude above sea level

phi rad single 1 Roll

Name Units Type Width Description
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theta rad single 1 Pitch

psi rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

alpha rad single 1 Angle of attack

beta rad single 1 Side slip angle

phidot rad/sec single 1 Roll rate

thetadot rad/sec single 1 Pitch rate

psidot rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in 
local/body frame

v_east ft/sec single 1 East velocity in 
local/body frame

v_down ft/sec single 1 Down/vertical velocity 
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity 
relative to local airmass

v_wind_body_east ft/sec single 1 Body east velocity 
relative to local airmass

v_wind_body_down ft/sec single 1 Body down/vertical 
velocity relative to local 
airmass

A_X_pilot ft/sec2 single 1 X acceleration in body 
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body 
frame

Name Units Type Width Description
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A_Z_pilot ft/sec2 single 1 Z acceleration in body 
frame

stall_warning - single 1 0.0-1.0, indicating the 
amount of stall

slip_deg deg single 1 Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific units

single 1 Elevator position

elevator_trim_tab geometry-
specific units

single 1 Elevator trim position

left_flap geometry-
specific units

single 1 Left flap position

right_flap geometry-
specific units

single 1 Right flap position

left_aileron geometry-
specific units

single 1 Left aileron position

right_aileron geometry-
specific units

single 1 Right aileron position

rudder geometry-
specific units

single 1 Rudder position

nose_wheel geometry-
specific units

single 1 Nose wheel position

speedbrake geometry-
specific units

single 1 Speed brake position

spoilers geometry-
specific units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines - int32 1 Number of valid 
engines

Name Units Type Width Description
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eng_state enum int32 4 Engine state (0=off, 
1=cranking, 2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

cht oF single 4 Cylinder head 
temperature

mp_osi psi single 4 Manifold pressure

tit oF single 4 Turbine inlet 
temperature

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

num_tanks - int32 1 Max number of fuel 
tanks

fuel_quantity - single 4 Amount of fuel in tanks 
(0-1 fraction)

Signal Group 5: ShowLandingGearInputs

num_wheels - int32 1 Maximum number of 
wheels

wow - boolean 3 Weight on wheels signal 
(1=wheel is on ground)

gear_pos - single 3 Landing gear position 
(0-1, indicating amount 
deployed)

gear_steer - single 3 Landing gear steering 
angle

gear_compression - single 3 Landing gear 
compression

Name Units Type Width Description
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Input Signals Supported for FlightGear 0.9.9
This table lists all the input signals supported for Version 0.9.9:

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec int32 1 Current UNIX time

warp sec int32 1 Offset in seconds to 
UNIX time

visibility m single 1 Visibility in meters (for 
visual effects)

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

longitude rad double 1 Geodetic longitude

latitude rad double 1 Geodetic latitude

altitude m double 1 Altitude above sea level

phi rad single 1 Roll

theta rad single 1 Pitch

psi rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

alpha rad single 1 Angle of attack

beta rad single 1 Side slip angle

phidot rad/sec single 1 Roll rate

thetadot rad/sec single 1 Pitch rate

psidot rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

Name Units Type Width Description
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v_north ft/sec single 1 North velocity in 
local/body frame

v_east ft/sec single 1 East velocity in 
local/body frame

v_down ft/sec single 1 Down/vertical velocity 
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity 
relative to local airmass

v_wind_body_east ft/sec single 1 Body east velocity 
relative to local airmass

v_wind_body_down ft/sec single 1 Body down/vertical 
velocity relative to local 
airmass

A_X_pilot ft/sec2 single 1 X acceleration in body 
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body 
frame

A_Z_pilot ft/sec2 single 1 Z acceleration in body 
frame

stall_warning - single 1 0.0-1.0, indicating the 
amount of stall

slip_deg deg single 1 Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific units

single 1 Elevator position

elevator_trim_tab geometry-
specific units

single 1 Elevator trim position

left_flap geometry-
specific units

single 1 Left flap position

Name Units Type Width Description
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right_flap geometry-
specific units

single 1 Right flap position

left_aileron geometry-
specific units

single 1 Left aileron position

right_aileron geometry-
specific units

single 1 Right aileron position

rudder geometry-
specific units

single 1 Rudder position

nose_wheel geometry-
specific units

single 1 Nose wheel position

speedbrake geometry-
specific units

single 1 Speed brake position

spoilers geometry-
specific units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines - uint32 1 Number of valid 
engines

eng_state enum uint32 4 Engine state (0=off, 
1=cranking, 2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

cht oF single 4 Cylinder head 
temperature

mp_osi psi single 4 Manifold pressure

tit oF single 4 Turbine inlet 
temperature

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

Name Units Type Width Description
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Output Signal
The output signal is the FlightGear net_fdm data packet.

Examples See the asbhl20 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

num_tanks - uint32 1 Max number of fuel 
tanks

fuel_quantity - single 4 Amount of fuel in tanks 
(0-1 fraction)

Signal Group 5: ShowLandingGearInputs

num_wheels - uint32 1 Maximum number of 
wheels

wow - uint32 3 Weight on wheels signal 
(1=wheel is on ground)

gear_pos - single 3 Landing gear position 
(0-1, indicating amount 
deployed)

gear_steer - single 3 Landing gear steering 
angle

gear_compression - single 3 Landing gear 
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec uint32 1 Current UNIX time

warp sec int32 1 Offset in seconds to 
UNIX time

visibility m single 1 Visibility in meters (for 
visual effects)

Name Units Type Width Description
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Generate Run Script

Send net_fdm Packet to FlightGear
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4Pilot JoystickPurpose Use joystick interface for Windows platform

Library Animation/Animation Support Utilities

Description The Pilot Joystick block provides a pilot joystick interface for a Windows 
platform. Roll, pitch, yaw, and throttle are mapped to the joystick X, Y, R, and 
Z channels respectively.

You can also configure it to output all channels by setting the Output 
configuration parameter to AllOutputs.

Dialog Box

Joystick ID
Specify the joystick ID: Joystick 1, Joystick 2, or None.

Output configuration
Specify the output configuration: FourAxis or AllOutputs.

Sample time
Specify the sample time (-1 for inherited).
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Inputs and 
Outputs

The block has the following outputs:

• Four Axis mode (all double precision values) 

• All Outputs mode (values are double precision except for buttons) 

Port 
number

Output 
range

Joystick Description

1 [-1, 1] [left,right] Roll command

2 [-1, 1] [forward/down, 
back/up]

Pitch command

3 [-1, 1] [left, right] Yaw command

4 [ 0, 1] [min, max] Throttle command

Port 
number

Array 
number

Channel Output 
Range

Joystick Description

1 1 X [-1, 1] [left,right] Roll command

1 2 Y [-1, 1] [forward/down, 
back/up]

Pitch command

1 3 Z [ 0, 1] [min, max] Throttle command

1 4 R [-1, 1] [left, right] Yaw command

1 5 U [ 0, 1] [min, max] U channel value

1 6 V [ 0, 1] [min, max] V channel value

2 buttons uint32 flagword 
containing up to 32 
button states.  Bit 
0 is button 1, etc.

3 POV Point-of-view hat 
value in degrees as 
a double. Zero 
degrees is straight 
ahead, 90 is to the 
left, etc.
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Output values are [-1,1] for centered values, [0,1] for non-centered values, and 
uint32 for the buttons in All Outputs mode. Output sense is positive for 
right-hand rule rotations on centered values (roll, pitch, and yaw).

Assumptions 
and Limitations

If the joystick does not support an R (rudder or “twist”) channel, yaw output is 
set to zero. Outputs are of type double except for the buttons output in 
AllOutputs mode, which is a uint32 flagword of bits. On non-Windows 
platforms, this block currently outputs zeros. 

Note  Pitch value has the opposite sense as that delivered by FlightGear’s 
joystick interface.

See Also Simulation Pace
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4Pressure AltitudePurpose Calculate pressure altitude based on ambient pressure

Library Environment/Atmosphere

Description The Pressure Altitude block computes the pressure altitude based on ambient 
pressure. Pressure altitude is the altitude in the 1976 Committee on the 
Extension of the Standard Atmosphere (COESA) United States with specified 
ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.

The Pressure Altitude block icon displays the input and output units selected 
from the Units list.

Dialog Box

Units
Specifies the input units: 

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and 
Outputs

The input is the static pressure.

The output is the pressure altitude.

Units Pstatic Alt_p

Metric (MKS) Pascal Meters

English Pound force per square inch Feet
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Assumptions 
and Limitations 

Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above the 
pressure of 101325 Pa (approximately 14.7 psi), altitude values are 
extrapolated logarithmically.

Air is assumed to be dry and an ideal gas.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 
Washington, D.C.

See Also COESA Atmosphere Model
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4Pressure ConversionPurpose Convert from pressure units to desired pressure units

Library Utilities/Unit Conversions

Description The Pressure Conversion block computes the conversion factor from specified 
input pressure units to specified output pressure units and applies the 
conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units 
selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is the pressure in initial pressure units. 

The output is the pressure in final pressure units. 

psi Pound mass per square inch

Pa Pascals

psf Pound mass per square foot

atm Atmospheres
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See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Temperature Conversion

Velocity Conversion
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4Quaternion ConjugatePurpose Calculate the conjugate of a quaternion

Library Utilities/MathOperations

Description The Quaternion Conjugate block calculates the conjugate for a given 
quaternion.

The quaternion has the form of 

The quaternion conjugate has the form of

 

Dialog Box

Inputs and 
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1, 
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion conjugate or vector of quaternion conjugates in the 
form of [q0’, r0’, … , q1’, r1’, … , q2’, r2’, … , q3’, r3’, …]. 

See Also Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

q′ q0 iq1 jq2 kq3–––=
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4Quaternion DivisionPurpose Divide a quaternion by another quaternion

Library Utilities/Math Operations

Description The Quaternion Division block divides a given quaternion by another.

The quaternions have the form of 

   and

The resulting quaternion from the division has the form of

 

where 

Dialog Box

Inputs and 
Outputs

The first input is a quaternion or vector of quaternions in the form of [q0, p0, 
…, q1, p1, … , q2, p2, … , q3, p3, …].

q q0 iq1 jq2 kq3+ + +=

r r0 ir1 jr2 kr3+ + +=

t q
r
--- t0 it1 jt2 kt3+ + += =

t0
r0q0 r1q1 r2q2 r3q3+ + +( )

r0
2 r1

2 r2
2 r3

2
+ + +

------------------------------------------------------------------------=

t1
r0q1 r1q0– r2q3 r3q2+–( )

r0
2 r1

2 r2
2 r3

2
+ + +

-----------------------------------------------------------------------=

t2
r0q2 r1q3 r2q0 r3q1––+( )

r0
2 r1

2 r2
2 r3

2
+ + +

-----------------------------------------------------------------------=

t3
r0q3 r1q2– r2q1 r3q0–+( )

r0
2 r1

2 r2
2 r3

2
+ + +

-----------------------------------------------------------------------=
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The second input is a quaternion or vector of quaternions in the form of [s0, r0, 
…, s1, r1, … , s2, r2, … , s3, r3, …].

The output is the resulting quaternion from the division or vector of resulting 
quaternions from division. 

See Also Quaternion Conjugate

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation
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4Quaternion InversePurpose Calculate the inverse of a quaternion

Library Utilities/Math Operations

Description The Quaternion Inverse block calculates the inverse for a given quaternion.

The quaternion has the form of 

 

The quaternion inverse has the form of

Dialog Box

Inputs and 
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1, 
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion inverse or vector of quaternion inverses. 

See Also Quaternion Conjugate

Quaternion Division

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

q 1– q0 iq1 jq2 kq3–––

q0
2 q1

2 q2
2 q3

2
+ + +

----------------------------------------------------=
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4Quaternion ModulusPurpose Calculate the modulus of a quaternion

Library Utilities/Math Operations

Description The Quaternion Modulus block calculates the magnitude for a given 
quaternion.

The quaternion has the form of 

 

The quaternion modulus has the form of

Dialog Box

Inputs and 
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1, 
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion modulus or vector of quaternion modulus in the 
form of [|q|, |r|, …]. 

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

q q0
2 q1

2 q2
2 q3

2
+ + +=
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4Quaternion MultiplicationPurpose Calculate the product of two quaternions

Library Utilities/Math Operations

Description The Quaternion Multiplication block calculates the product for two given 
quaternions.

The quaternions have the form of 

   and

 

The quaternion product has the form of

where

Dialog Box

Inputs and 
Outputs

The first input is a quaternion or vector of quaternions in the form of [q0, p0, 
…, q1, p1, … , q2, p2, … , q3, p3, …].

The second input is a quaternion or vector of quaternions in the form of [s0, r0, 
…, s1, r1, … , s2, r2, … , s3, r3, …].

The output is a quaternion product or vector of quaternion products. 

q q0 iq1 jq2 kq3+ + +=

r r0 ir1 jr2 kr3+ + +=

t q r× t0 it1 jt2 kt3+ + += =

t0 r0q0 r1q1 r2q2 r3q3–––( )=

t1 r0q1 r1q0 r2q3 r3q2+–+( )=

t2 r0q2 r1q3 r2q0 r3q1–+ +( )=

t3 r0q3 r1q2– r2q1 r3q0+ +( )=
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See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Norm

Quaternion Normalize

Quaternion Rotation



Quaternion Norm

4-325

4Quaternion NormPurpose Calculate the norm of a quaternion

Library Utilities/Math Operations

Description The Quaternion Norm block calculates the norm for a given quaternion.

The quaternion has the form of 

 

The quaternion norm has the form of

 

Dialog Box

Inputs and 
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1, 
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion norm or vector of quaternion norms in the form of 
[norm(q), norm(r), …]. 

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

norm q( ) q0
2 q1

2 q2
2 q3

2
+ + +=
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4Quaternion NormalizePurpose Normalize a quaternion

Library Utilities/Math Operations

Description The Quaternion Normalize block calculates a normalized quaternion for a 
given quaternion.

The quaternion has the form of 

 

The normalized quaternion has the form of

 

Dialog Box

Inputs and 
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1, 
r1, … , q2, r2, … , q3, r3, …].

The output is a normalized quaternion or vector of normalized quaternions. 

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

normal q( )
q0 iq1 jq2 kq3+ + +

q0
2 q1

2 q2
2 q3

2
+ + +

-----------------------------------------------------=
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4Quaternion RotationPurpose Rotate a vector by a quaternion

Library Utilities/Math Operations

Description The Quaternion Rotation block rotates a vector by a quaternion.

The quaternion has the form of 

 

The vector has the form of 

 

The rotated vector has the form of

Dialog Box

Inputs and 
Outputs

The first input is a quaternion or vector of quaternions in the form of [q0, r0, …, 
q1, r1, … , q2, r2, … , q3, r3, …].

The second input is a vector or vector of vectors in the form of [v1, u1, … , v2, 
u2, … , v3, u3, …].

The output is a rotated vector or vector of rotated vectors.

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

q q0 iq1 jq2 kq3+ + +=

v iv1 jv2 kv3+ +=

v′
v1′

v2′

v3′

1 2q2
2 2q3

2
––( ) 2 q1q2 q0q3+( ) 2 q1q3 q0q2–( )

2 q1q2 q0q3–( ) 1 2q1
2

– 2q3
2

–( ) 2 q2q3 q0q1+( )

2 q1q3 q0q2+( ) 2 q2q3 q0q1–( ) 1 2q1
2

– 2q2
2

–( )

v1

v2

v3

= =
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Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize
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4Quaternions to Direction Cosine MatrixPurpose Convert quaternion vector to direction cosine matrix

Library Utilities/Axes Transformations

Description The Quaternions to Direction Cosine Matrix block transforms the four-element 
unit quaternion vector (q0,q1,q2,q3) into a 3-by-3 direction cosine matrix 
(DCM). The outputted DCM performs the coordinate transformation of a vector 
in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a 
quaternion q, it changes to P’ given by the following relationship:

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in 
terms of P in the vector quaternion format:

Since individual terms in P’ are linear combinations of terms in x, y, and z, a 
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from 
the preceding. This matrix rotates a vector in inertial axes, and hence is 
transposed to generate the DCM that performs the coordinate transformation 
of a vector in inertial axes into body axes.

P′ qPqc

q q0 iq1 jq2 kq3

qc
+ + +=

q0 iq1– jq2– kq3

P

–

0 ix jy kz+ + +

=

=

=

P′

0
x′
y′
z′

0

q0
2 q1

2 q2
2

– q3
2

–+( )x 2 q1q2 q0q3–( )y 2 q1q3 q0q2+( )z+ +

2 q0q3 q1q2+( )x q0
2 q1

2
– q2

2 q3
2

–+( )y 2 q2q3 q0q1–( )z+ +

2 q1q3 q0q2–( )x 2 q0q1 q2q3+( )y q0
2 q1

2
– q2

2
– q3

2
+( )z+ +

= =
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Dialog Box

Inputs and 
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Euler Angles

DCM

q0
2 q1

2 q2
2 q3

2
––+( ) 2 q1q2 q0q3+( ) 2 q1q3 q0q2–( )

2 q1q2 q0q3–( ) q0
2 q1

2
– q2

2 q3
2

–+( ) 2 q2q3 q0q1+( )

2 q1q3 q0q2+( ) 2 q2q3 q0q1–( ) q0
2 q1

2
– q2

2 q3
2

+–( )

=
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4Quaternions to Euler AnglesPurpose Convert quaternion vector to Euler angles

Library Utilities/Axes Transformations

Description The Quaternions to Euler Angles block converts the four-element unit 
quaternion (q0,q1,q2,q3) into the equivalent three Euler angle rotations (roll, 
pitch, yaw).

The conversion is generated by comparing elements in the direction cosine 
matrix (DCM), as functions of the Euler rotation angles, with elements in the 
DCM, as functions of a unit quaternion vector:

From the preceding, you can derive the following relationships between DCM 
elements and individual Euler angles:

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–( ) φ θ ψsinsinsin φ ψcoscos+( ) φ θcossin
φ θ ψcossincos φ ψsinsin+( ) φ θ ψsinsincos φ ψcossin–( ) φ θcoscos

=

DCM

q0
2 q1

2 q2
2 q3

2
––+( ) 2 q1q2 q0q3+( ) 2 q1q3 q0q2–( )

2 q1q2 q0q3–( ) q0
2 q1

2
– q2

2 q3
2

–+( ) 2 q2q3 q0q1+( )

2 q1q3 q0q2+( ) 2 q2q3 q0q1–( ) q0
2 q1

2
– q2

2 q3
2

+–( )

=

φ DCM 2 3,( ) DCM 3 3,( ),( )atan=

2 q2q3 q0q1+( ) q0
2 q1

2
– q2

2 q3
2

+–( ),( )atan=

θ D– CM 1 3,( )( )asin=
2– q1q3 q0q2–( )( )asin=

ψ DCM 1 2,( ) DCM 1 1,( ),( )atan=

2 q1q2 q0q3+( ) q0
2 q1

2 q2
2 q3

2
––+( ),( )atan=
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Dialog Box

Inputs and 
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

Assumptions 
and Limitations

This implementation generates a pitch angle that lies between  degrees, 
and roll and yaw angles that lie between degrees.

The Euler angle solution is singular when the pitch angle θ is equal to  
degrees.

Examples See aero_six_dof for an example of the use of the Quaternions to Euler Angles 
block in an implementation of the equations of motion of a rigid body.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

90±
180±

90±
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4Radius at Geocentric LatitudePurpose Estimate radius of ellipsoid planet at geocentric latitude

Library Flight Parameters

Description The Radius at Geocentric Latitude block estimates the radius  of an 
ellipsoid planet at a particular geocentric latitude .

The following equation estimates the ellipsoid radius  using flattening , 
geocentric latitude , and equatorial radius .

 

rs( )
λs( )

rs( ) f( )
λs( ) R( )

rs
R2

1 1 1 f–( )2⁄ 1–[ ] λ2
ssin+

--------------------------------------------------------------------=
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Dialog Box

Units
Specifies the parameter and output units: 

This option is only available when Planet model is set to Earth (WGS84).

Planet model
Specifies the planet model to use:

Custom

Units Equatorial Radius Radius at Geocentric Latitude

Metric (MKS) Meters Meters

English Feet Feet
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Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with 
Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. This option is only 
available with Planet model set to Custom.

Inputs and 
Outputs

The input is geocentric latitude, in degrees.

The output is radius of planet at geocentric latitude, in the same as the units 
as flattening.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000. 

See Also ECEF Position to LLA

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

Geodetic to Geocentric Latitude

LLA to ECEF Position
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4Relative RatioPurpose Calculate relative atmospheric ratios

Library Flight Parameters

Description The Relative Ratio block computes the relative atmospheric ratios, including 
relative temperature ratio (θ), , relative pressure ratio (δ), and relative 
density ratio (σ). 

θ represents the ratio of the air stream temperature at a chosen reference 
station relative to sea level standard atmospheric conditions.

δ represents the ratio of the air stream pressure at a chosen reference station 
relative to sea level standard atmospheric conditions. 

σ represents the ratio of the air stream density at a chosen reference station 
relative to sea level standard atmospheric conditions. 

The Relative Ratio block icon displays the input units selected from the Units 
list.

Dialog Box

θ

θ T
To
------=

δ P
Po
------=

σ ρ
ρo
-----=
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Units
Specifies the input units: 

Theta
When selected, the θ is calculated and static temperature is a required 
input.

Square root of theta
When selected, the  is calculated and static temperature is a required 
input. 

Delta
When selected, the δ is calculated and static pressure is a required input.

Sigma
When selected, the σ is calculated and static density is a required input.

Inputs and 
Outputs

The four possible inputs are Mach number, static temperature, static pressure, 
and static density.

The four possible outputs are θ, , δ, and σ.

Assumptions For cases in which total temperature, total pressure, or total density ratio is 
desired (Mach number is nonzero), the total temperature, total pressure, and 
total densities are calculated assuming perfect gas (with constant molecular 
weight, constant pressure specific heat, and constant specific heat ratio) and 
dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, 
August, 1986.

Units Tstatic Pstatic rho_static

Metric (MKS) Kelvin Pascal Kilograms per 
cubic meter

English Degrees Rankine Pound force per 
square inch

Slug per cubic foot

θ

θ
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4Second Order Linear ActuatorPurpose Implement a second-order linear actuator

Library Actuators

Description The Second Order Linear Actuator block outputs the actual actuator position 
using the input demanded actuator position and other dialog parameters that 
define the system. 

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are 
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Initial position
The initial position of the actuator. The units of initial position should be 
the same as the units of demanded actuator position.

Inputs and 
Outputs

The input is the demanded actuator position. 

The output is the actual actuator position.

See Also Second Order Nonlinear Actuator
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4Second Order Nonlinear ActuatorPurpose Implement a second-order actuator with rate and deflection limits

Library Actuators

Description The Second Order Nonlinear Actuator block outputs the actual actuator 
position using the input demanded actuator position and other dialog 
parameters that define the system.

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are 
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection
The largest actuator position allowable. The units of maximum deflection 
should be the same as the units of demanded actuator position.
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Minimum deflection
The smallest actuator position allowable. The units of minimum deflection 
should be the same as the units of demanded actuator position.

Maximum rate
The fastest speed allowable for actuator motion. The units of maximum 
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be 
the same as the units of demanded actuator position.

Inputs and 
Outputs

The input is the demanded actuator position. 

The output is the actual actuator position.

Examples See the aero_guidance model and the Actuators subsystem in the 
aeroblk_HL20 model for an example of this block.

See Also Second Order Linear Actuator
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4Self-Conditioned [A,B,C,D]Purpose Implement a state-space controller in a self-conditioned form

Library GNC/Controls

Description The Self-Conditioned [A,B,C,D] block can be used to implement the state-space 
controller defined by 

in the self-conditioned form 

The input umeas is a vector of the achieved actuator positions, and the output 
udem is the vector of controller actuator demands. In the case that the actuators 
are not limited, then umeas = udem and substituting the output equation into 
the state equation returns the nominal controller. In the case that they are not 
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track umeas but 
at the same time not so fast that noise on e is propagated to udem. The matrix 
H is designed by a callback to the Control System Toolbox command place to 
place the poles at defined locations.

x· Ax Be+=

u Cx De+=

z· A HC–( )z B HD–( )e Humeas++=

udem Cz De+=
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Dialog Box

A-matrix
A-matrix of the state-space implementation.

B-matrix
B-matrix of the state-space implementation.

C-matrix
C-matrix of the state-space implementation.

D-matrix
D-matrix of the state-space implementation.

Initial state, x_initial
This is a vector of initial states for the controller, i.e., initial values for the 
state vector, z. It should have length equal to the size of the first dimension 
of A.

Poles of A-H*C
This is a vector of the desired poles of A-H*C. Hence the number of pole 
locations defined should be equal to the dimension of the A-matrix.
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Inputs and 
Outputs

The first input is the control error.

The second input is the measured actuator position.

The output is the actuator demands. 

Assumptions 
and Limitations

This block requires the Control System Toolbox.

Examples This Simulink model shows a state-space controller implemented in both 
self-conditioned and standard state-space forms. The actuator authority limits 
of +/- 0.5 units are modeled by the saturation block.
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Notice that the A-matrix has a zero in the 1,1 element, indicating integral 
action.

The top trace shows the conventional state-space implementation. The output 
of the controller winds up well past the actuator upper authority limit of +0.5. 
The lower trace shows that the self-conditioned form results in an actuator 
demand that tracks the upper authority limit, which means that when the sign 
of the control error, e, is reversed, the actuator demand responds immediately.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols, 
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,” 
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]
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4Send net_fdm Packet to FlightGearPurpose Transmit net_fdm packet to destination IP address and port for FlightGear 
session

Library Animation/Flight Simulator Interfaces

Description The Send net_fdm Packet to FlightGear block transmits the net_fdm packet to 
FlightGear on the current computer, or a remote computer on the network. The 
packet is constructed using the Pack net_fdm Packet for FlightGear block. The 
destination port should be an unused port that you can use when you launch 
FlightGear with the FlightGear command line flag: 
--fdm=network,localhost,5501,5502,5503 (the second port in the list, 5502, is 
the network flight dynamics model (fdm) port). You can use one of several 
techniques to determine the destination IP address, such as: 

• Use 127.0.0.1 for “this” computer 

• Ping another computer from a Windows cmd.exe (or UNIX shell) prompt:
C:\> ping andyspc

Pinging andyspc [144.213.175.92] with 32 bytes of data:

Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253

Ping statistics for 144.213.175.92:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 20ms, Maximum =  30ms, Average =  22ms

• On a Windows machine, type ipconfig and use the returned IP Address:
H:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

        Connection-specific DNS Suffix  . :
        IP Address. . . . . . . . . . . . : 192.168.42.178
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        Subnet Mask . . . . . . . . . . . : 255.255.255.0
        Default Gateway . . . . . . . . . : 192.168.42.254

Dialog Box

Destination IP address
Specify your destination IP address.

Destination port
Specify your destination port.

Sample time
Specify the sample time (-1 for inherited).

Inputs and 
Outputs

The input signal is the FlightGear net_fdm data packet.

Examples See the asbhl20 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

Generate Run Script

Pack net_fdm Packet for FlightGear
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4Simple Variable Mass 3DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to body 
axes

Library Equations of Motion/3DoF

Description The Simple Variable Mass 3DoF (Body Axes) block considers the rotation in the 
vertical plane of a body-fixed coordinate frame about an Earth-fixed reference 
frame.
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The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body, 

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

θ0( )

α0( )
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Initial position (x,z)
A two-element vector containing the initial location of the body in the 
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity 
source is selected. If gravity is to be neglected in the simulation, this value 
can be set to 0.

Inputs and 
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth input to the block is the rate of change of mass, .

The fifth optional input to the block is gravity in the selected units.  

The first output from the block is the pitch attitude, in radians .

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx( )

Fz( )

m( )·

θ( )
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The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second 
squared .

The fourth output is a two-element vector containing the location of the body, 
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body 
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body 
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar element containing a flag for fuel tank status, 
(Fuel): 

• 1 indicates that the tank is full. 

• 0 indicates that the integral is neither full nor empty. 

• -1 indicates that the tank is empty. 

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Wind Axes)

q·( )
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4Simple Variable Mass 3DoF (Wind Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to wind 
axes

Library Equations of Motion/3DoF

Description The Simple Variable Mass 3DoF (Wind Axes) block considers the rotation in 
the vertical plane of a wind-fixed coordinate frame about an Earth-fixed 
reference frame.
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The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial flight path angle of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body, 

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

γ0( )

α0( )
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Initial position (x,z)
A two-element vector containing the initial location of the body in the 
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity 
source is selected. If gravity is to be neglected in the simulation, this value 
can be set to 0.

Inputs and 
Outputs

The first input to the block is the force acting along the wind x-axis, .

The second input to the block is the force acting along the wind z-axis, .

The third input to the block is the applied pitch moment in body axes, (M).

The fourth input to the block is the rate of change of mass, .

The fifth optional input to the block is gravity in the selected units.

The first output from the block is the flight path angle, in radians .

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx( )

Fz( )

m( )·

γ( )
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The second output is the pitch angular rate, in radians per second .

The third output is the pitch angular acceleration, in radians per second 
squared .

The fourth output is a two-element vector containing the location of the body, 
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body 
resolved into the wind-fixed coordinate frame, (V,0).

The sixth output is a two-element vector containing the acceleration of the body 
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, .

The eighth output is a scalar element containing a flag for fuel tank status, 
(Fuel): 

• 1 indicates that the tank is full. 

• 0 indicates that the integral is neither full nor empty. 

• -1 indicates that the tank is empty. 

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992. 

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

ωy( )

dωy dt⁄( )

α( )



Simple Variable Mass 6DoF (Euler Angles)

4-359

4Simple Variable Mass 6DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations 
of motion

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF (Euler Angles) block considers the rotation of 
a body-fixed coordinate frame about an Earth-fixed reference 
frame . The origin of the body-fixed coordinate frame is the center 
of gravity of the body, and the body is assumed to be rigid, an assumption that 
eliminates the need to consider the forces acting between individual elements 
of mass. The Earth-fixed reference frame is considered inertial, a simplification 
that allows the forces due to the Earth’s motion relative to a star-fixed 
reference system to be neglected.

The translational motion of the body-fixed coordinate frame is given below, 
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

Xb Yb Zb, ,( )
Xe Ye Ze, ,( )

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of 
Gravity

O

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+( ) m· Vb+=
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The rotational dynamics of the body-fixed frame are given below, where the 
applied moments are [L M N]T, and the inertia tensor  is with respect to the 
origin O. 

The inertia tensor is determined using a table lookup which linearly 
interpolates between Ifull and Iempty based on mass (m). While the rate of 
change of the inertia tensor is estimated by the following equation.

The relationship between the body-fixed angular velocity vector, [p q r]T, and 
the rate of change of the Euler angles, [  ]T, can be determined by 
resolving the Euler rates into the body-fixed coordinate frame.

Inverting  then gives the required relationship to determine the Euler rate 
vector.
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ω,
p
q
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L
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.
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The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in 
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status: 

• 1 indicates that the tank is full. 

• 0 indicates that the integral is neither full nor empty. 

• -1 indicates that the tank is empty. 

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)
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Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Simple Variable Mass 6DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational 
dynamics, see the block description for the Simple Variable Mass 6DoF (Euler 
Angles) block. 

The integration of the rate of change of the quaternion vector is given below. 
The gain  drives the norm of the quaternion state vector to 1.0 should  
become nonzero. You must choose the value of this gain with care, because a 
large value improves the decay rate of the error in the norm, but also slows the 
simulation because fast dynamics are introduced. An error in the magnitude in 
one element of the quaternion vector is spread equally among all the elements, 
potentially increasing the error in the state vector.
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed 
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch, 
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.
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The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles 
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in 
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status: 

• 1 indicates that the tank is full. 

• 0 indicates that the integral is neither full nor empty. 

• -1 indicates that the tank is empty. 

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
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Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Simple Variable Mass 6DoF ECEF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF ECEF (Quaternion) block considers the 
rotation of a Earth-Centered Earth-Fixed (ECEF) coordinate frame 

 about an Earth-Centered Inertial (ECI) reference 
frame . The origin of the ECEF coordinate frame is the 
center of the Earth, additionally the body of interest is assumed to be rigid, an 
assumption that eliminates the need to consider the forces acting between 
individual elements of mass. The representation of the rotation of ECEF frame 
from ECI frame is simplified to consider only the constant rotation of the 
ellipsoid Earth  including an initial celestial longitude . This 
simplification allows the forces due to the Earth’s complex motion relative to a 
star-fixed reference system to be neglected.

XECEF YECEF ZECEF, ,( )
XECI YECI ZECI, ,( )

ωe( ) LG 0( )( )
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The translational motion of the ECEF coordinate frame is given below, where 
the applied forces [Fx Fy Fz]

T are in the body frame.

where the change of position in ECI  is calculated by

and the velocity in body-axis , angular rates in body-axis . Earth 
rotation rate , and relative angular rates in body-axis  are defined as

The rotational dynamics of the body defined in body-fixed frame are given 
below, where the applied moments are [L M N]T, and the inertia tensor  is 
with respect to the origin O.  
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The inertia tensor is determined using a table lookup which linearly 
interpolates between Ifull and Iempty based on mass (m). The rate of change of 
the inertia tensor is estimated by the following equation.

The integration of the rate of change of the quaternion vector is given below.
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Units
Specifies the input and output units: 

Mass type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic 
reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity in the body-fixed 
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll, 
pitch, yaw], in radians.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.
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Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available when 
Planet model is set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial 
radius parameter should be the same as the units for ECEF position. This 
option is only available when Planet model is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/sec. This option is 
only available when Planet model is set to Custom.
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Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude: 

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of the ECI 
frame.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
body-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the ECEF 
reference frame.

The second output is a three-element vector containing the position in the 
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic 
latitude, longitude and altitude, in degrees, degrees and selected units of 
length respectively.

The fourth output is a three-element vector containing the body rotation angles 
[roll, pitch, yaw], in radians.

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI 
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from 
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from 
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the 
body-fixed frame.

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.
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The ninth output is a three-element vector containing the relative angular 
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in 
body-fixed axes.

The thirteenth output is a scalar element containing a flag for fuel tank status: 

• 1 indicates that the tank is full. 

• 0 indicates that the integral is neither full nor empty. 

• -1 indicates that the tank is empty. 

Assumptions 
and Limitations

This implementation assumes that the applied forces are acting at the center 
of gravity of the body.

This implementation generates a geodetic latitude that lies between  
degrees, and longitude that lies between degrees. Additionally, the MSL 
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical 
planet can be achieved. The Earth’s precession, nutation, and polar motion are 
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal 
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is 
at the center of the planet, the x-axis intersects the Greenwich meridian and 
the equator, the z-axis is the mean spin axis of the planet, positive to the north, 
and the y-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at 
the center of the planet, the x-axis is the continuation of the line from the 
center of the Earth through the center of the Sun toward the vernal equinox, 
the z-axis points in the direction of the mean equatorial plane’s north pole, 
positive to the north, and the y-axis completes the right-hand system.

90±
180±
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References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & 
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA 
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical 
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,” 
DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
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Simple Variable Mass 6DoF Wind (Wind Angles)
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4Simple Variable Mass 6DoF Wind (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of 
motion with respect to wind axes

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF Wind (Quaternion) block considers the 
rotation of a wind-fixed coordinate frame about an Earth-fixed 
reference frame . The origin of the wind-fixed coordinate frame is 
the center of gravity of the body, and the body is assumed to be rigid, an 
assumption that eliminates the need to consider the forces acting between 
individual elements of mass. The Earth-fixed reference frame is considered 
inertial, a simplification that allows the forces due to the Earth’s motion 
relative to a star-fixed reference system to be neglected.

The translational motion of the wind-fixed coordinate frame is given below, 
where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame.

Xw Yw Zw, ,( )
Xe Ye Ze, ,( )

Fw

Fx

Fy

Fz

= m Vw
· ωw Vw×+( ) m· Vw+=
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The rotational dynamics of the body-fixed frame are given below, where the 
applied moments are [L M N]T, and the inertia tensor  is with respect to the 
origin O. Inertia tensor I is much easier to define in body-fixed frame.   

The inertia tensor is determined using a table lookup which linearly 
interpolates between Ifull and Iempty based on mass (m). While the rate of 
change of the inertia tensor is estimated by the following equation.

The integration of the rate of change of the quaternion vector is given below. 
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Dialog Box
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip 
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight 
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body, in 
body-fixed axes.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed 
axes.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
wind-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The third input is a scalar containing the rate of change of mass.
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The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles 
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and 
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of 
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in 
body-fixed axes.

The eleventh output is a scalar element containing a flag for fuel tank status: 

• 1 indicates that the tank is full. 

• 0 indicates that the integral is neither full nor empty. 

• -1 indicates that the tank is empty. 

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 
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Stevens, B. L., and F. L. Lewis, “Aircraft Control and Simulation,” John Wiley 
& Sons, New York, NY, 1992. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Simple Variable Mass 6DoF Wind (Wind Angles)Purpose Implement a wind angle representation of six-degrees-of-freedom equations of 
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational 
dynamics, see the block description for the Simple Variable Mass 6DoF 
(Quaternion) block. 

The relationship between the wind angles, [  ]T, can be determined by 
resolving the wind rates into the wind-fixed coordinate frame.

Inverting  then gives the required relationship to determine the wind rate 
vector.

The body-fixed angular rates are related to the wind-fixed angular rate by the 
following equation.  

Using this relationship in the wind rate vector equations, gives the 
relationship between the wind rate vector and the body-fixed angular rates.
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Units
Specifies the input and output units: 

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described 
equations of motion.

Representation
Select the representation to use:

The Wind Angles selection conforms to the previously described equations 
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric 
(MKS)

Newton Newton 
meter

Meters per 
second 
squared

Meters 
per 
second

Meters Kilogram Kilogram 
meter 
squared

English 
(Velocity 
in ft/s)

Pound Foot 
pound

Feet per 
second 
squared

Feet per 
second

Feet Slug Slug foot 
squared

English 
(Velocity 
in kts)

Pound Foot 
pound

Feet per 
second 
squared

Knots Feet Slug Slug foot 
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass 
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.
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Initial position in inertial axes
The three-element vector for the initial location of the body in the 
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip 
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight 
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians 
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body, in 
body-fixed axes.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed 
axes.

Inputs and 
Outputs

The first input to the block is a vector containing the three applied forces in 
wind-fixed axes.

The second input is a vector containing the three applied moments in 
body-fixed axes.

The third input is a scalar containing the rate of change of mass.
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The first output is a three-element vector containing the velocity in the 
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the 
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles 
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from 
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the 
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and 
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of 
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular 
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in 
body-fixed axes.

The eleventh output is a scalar element containing a flag for fuel tank status: 

• 1 indicates that the tank is full. 

• 0 indicates that the integral is neither full nor empty. 

• -1 indicates that the tank is empty. 

Assumptions 
and Limitations

The block assumes that the applied forces are acting at the center of gravity of 
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink 
Helper, Edizioni Libreria CLUP, 1998. 
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Stevens, B. L., and F. L. Lewis, “Aircraft Control and Simulation,” John Wiley 
& Sons, New York, NY, 1992. 

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
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Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)
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4Simulation PacePurpose Set the simulation pace for FlightGear Flight Simulator

Library Animation/Animation Support Utilities

Description The Simulation Pace block lets you run the simulation at the specified pace so 
that connected animations appear aesthetically pleasing.

Use the Sample time parameter to set how often Simulink synchronizes with 
the wall clock.

The sample time of this block should be considered for human interaction with 
visualizations. The default is 1/30 sec, chosen to correspond to a 30 
frames-per-second visualization rate (typical for common systems). Choose as 
slow of a sample time as needed for smooth animation, since oversampling has 
little benefit and undersampling can cause “jumpiness” in animations and 
potentially problematic blocking of MATLAB’s main thread. 

Dialog Box
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Simulation pace
Specifies the ratio of simulation time to clock time. The default is 1 second 
of simulation time per second of clock time.

Sleep mode
Setting the Sleep mode parameter to off lets you disable the pace 
functionality and run as fast as possible.

Output pace error
If you select this check box, the block outputs the “pace error” value 
(simulationTime minus ClockTime), in seconds. The pace error is positive 
if the simulation is running faster than the specified pace and negative if 
slower than the specified pace. 

Sample time
Specify the sample time (-1 for inherited). Larger sample times result in 
more efficient simulations, but less “smoothness” in output pace when 
there are multiple Simulink time steps between pacer block samples. If the 
Sample time is too large, MATLAB may become less responsive as 
MATLAB and Simulink calculations are blocked from running when the 
block puts MATLAB to sleep.

Inputs and 
Outputs

The block optionally outputs the “pace error” value (simulationTime minus 
ClockTime), in seconds. The pace error is positive if the simulation is running 
faster than the specified pace and negative if slower than the specified pace.

Outputting the pace error from the block lets you record the overall pace 
achieved during the simulation or routing the signal to other blocks to make 
decisions about the simulation if the simulation is too slow to keep up with the 
specified pace. 

Assumptions 
and Limitations

The simulation pace is implemented by putting the entire MATLAB thread to 
sleep until it needs to run again to keep up the pace. Simulink is single 
threaded and runs on the one MATLAB thread, so only one Simulation Pace 
block can be active at a time. 

Examples See the asbhl20 demo for an example of this block.

See Also Pilot Joystick
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4SinCosPurpose Compute the sine and cosine of the input angle

Library Utilities/Math Operations

Description The SinCos block computes the sine and cosine of the input angle, theta.

Dialog Box

Inputs and 
Outputs

The first input is an angle, in radians.

The first output is the sine of the input angle.

The second output is the cosine of the input angle.
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4Symmetric Inertia TensorPurpose Create an inertia tensor from moments and products of inertia

Library Mass Properties

Description The Symmetric Inertia Tensor block creates an inertia tensor from moments 
and products of inertia. Each input corresponds to an element of the tensor. 

The inertia tensor has the form of 

Dialog Box

Inputs and 
Outputs

The first input is the moment of inertia about the x-axis.

The second input is the product of inertia in the xy plane.

The third input is the product of inertia in the xz plane.

The fourth input is the moment of inertia about the y-axis.

The fifth input is the product of inertia in the yz plane.

The sixth input is the moment of inertia about the z-axis.

The output of the block is a symmetric 3-by-3 inertia tensor.

See Also Create 3x3 Matrix

Inertia
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4Temperature ConversionPurpose Convert from temperature units to desired temperature units

Library Utilities/Unit Conversions

Description The Temperature Conversion block computes the conversion factor from 
specified input temperature units to specified output temperature units and 
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units 
selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

Inputs and 
Outputs

The input is the temperature in initial temperature units. 

The output is the temperature in final temperature units. 

K Kelvin

F Degrees Fahrenheit

C Degrees Celsius

R Degrees Rankine
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See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Velocity Conversion
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4Three-Axis AccelerometerPurpose Implement a three-axis accelerometer

Library GNC/Navigation

Description The Three-Axis Accelerometer block implements an accelerometer on each of 
the three axes. The ideal measured accelerations  include the 
acceleration in body axes at the center of gravity , lever arm effects due to 
the accelerometer not being at the center of gravity, and, optionally, gravity in 
body axes can be removed.   

where  are body-fixed angular rates,  are body-fixed angular 
accelerations and  is the lever arm. The lever arm  is defined as the 
distances that the accelerometer group is forward, right and below the center 
of gravity.

The orientation of the axes used to determine the location of the accelerometer 
group  and center of gravity  is from the zero 
datum (typically the nose) to aft, to the right of the vertical centerline and 
above the horizontal centerline. The x-axis and z-axis of this measurement axes 
are opposite the body-fixed axes producing the negative signs in the lever arms 
for x-axis and z-axis.

Measured accelerations  output by this block contain error sources 
and are defined as  

where  is a 3-by-3 matrix of scaling factors on the diagonal and 
misalignment terms in the nondiagonal, and  are the biases.
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Optionally discretizations can be applied to the block inputs and dynamics 
along with nonlinearizations of the measured accelerations via a Saturation 
block.

Dialog Box
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Units
Specifies the input and output units:

Accelerometer location
The location of the accelerometer group is measured from the zero datum 
(typically the nose) to aft, to the right of the vertical centerline and above 
the horizontal centerline. This measurement reference is the same for the 
center of gravity input. The units are in selected length units.

Units Acceleration Length

Metric (MKS) Meters per second squared Meters

English Feet per second squared Feet
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Subtract gravity
Select to subtract gravity from acceleration readings.

Second order dynamics
Select to apply second-order dynamics to acceleration readings.

Natural frequency (rad/sec)
The natural frequency of the accelerometer. The units of natural frequency 
are radians per second.

Damping ratio
The damping ratio of the accelerometer. A dimensionless parameter.

Scale factors and cross-coupling
The 3-by-3 matrix used to skew the accelerometer from body axes and to 
scale accelerations along body axes.

Measurement bias
The three-element vector containing long-term biases along the 
accelerometer axes. The units are in selected acceleration units.

Update rate (sec)
Specify the update rate of the accelerometer. An update rate of 0 will create 
a continuous accelerometer. If noise is selected and the update rate is 0, 
then the noise will be updated at the rate of 0.1. The units of update rate 
are seconds. 

Noise on
Select to apply white noise to acceleration readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of the 
accelerometer.

Noise power
The height of the PSD of the white noise for each axis of the accelerometer.

Lower and upper output limits
The six-element vector containing three minimum values and three 
maximum values of acceleration in each of the accelerometer axes. The 
units are in selected acceleration units.
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Inputs and 
Outputs

The first input is a three-element vector containing the actual accelerations in 
body-fixed axes, in selected units.

The second input is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second. 

The third input is a three-element vector containing the angular accelerations 
in body-fixed axes, in radians per second squared. 

The fourth input is a three-element vector containing the location of the center 
of gravity, in selected units.

The optional fifth input is a three-element vector containing the gravity, in 
selected units.

The output is a three-element vector containing the measured accelerations 
from the accelerometer, in selected units.

Assumptions 
and Limitations

Vibro-pendulous error and hysteresis effects are not accounted for in this block. 
Additionally, it is not the intention of this block to model the internal dynamics 
of differing forms of instrument.

This block requires the Control System Toolbox.

References Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA 
Education Series, 2000.

See Also Three-Axis Gyroscope

Three-Axis Inertial Measurement Unit
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4Three-Axis GyroscopePurpose Implement a three-axis gyroscope

Library GNC/Navigation

Description The Three-Axis Gyroscope block implements a gyroscope on each of the three 
axes. The measured body angular rates  include the body angular 
rates , errors, and optionally discretizations and nonlinearizations of the 
signals.   

where  is a 3-by-3 matrix of scaling factors on the diagonal and 
misalignment terms in the nondiagonal,  are the biases,  are the Gs 
on the gyroscope, and  are the g-sensitive biases.

Optionally discretizations can be applied to the block inputs and dynamics 
along with nonlinearizations of the measured body angular rates via a 
Saturation block.

ωmeas( )
ωb( )

ωmeas ωb ωSFCC⋅ ω+
bias

Gs ωgsens noise+⋅+=

ωSFCC
ωbias Gs( )

ωgsens
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Dialog Box
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Second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Natural frequency (rad/sec)
The natural frequency of the gyroscope. The units of natural frequency are 
radians per second.

Damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

Scale factors and cross-coupling
The 3-by-3 matrix used to skew the gyroscope from body axes and to scale 
angular rates along body axes.

Measurement bias
The three-element vector containing long-term biases along the gyroscope 
axes. The units are in radians per second.

G-sensitive bias
The three-element vector contains the maximum change in rates due to 
linear acceleration. The units are in radians per second per G’s.

Update rate (sec)
Specify the update rate of the gyroscope. An update rate of 0 will create a 
continuous gyroscope. If noise is selected and the update rate is 0, then the 
noise will be updated at the rate of 0.1. The units of update rate are 
seconds. 

Noise on
Select to apply white noise to gyroscope readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of the 
gyroscope.

Noise power
The height of the PSD of the white noise for each axis of the gyroscope.
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Lower and upper output limits
The six-element vector containing three minimum values and three 
maximum values of angular rates in each of the gyroscope axes. The units 
are in radians per second.

Inputs and 
Outputs

The first input is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second. 

The second input is a three-element vector containing the accelerations in 
body-fixed axes, in G’s. 

The output is a three-element vector containing the measured angular rates 
from the gyroscope, in radians per second.

Assumptions 
and Limitations

Anisoelastic bias and anisoinertial bias effects are not accounted for in this 
block. Additionally, it is not the intention of this block to model the internal 
dynamics of differing forms of instrument.

This block requires the Control System Toolbox.

References Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA 
Education Series, 2000.

See Also Three-Axis Accelerometer

Three-Axis Inertial Measurement Unit
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4Three-Axis Inertial Measurement UnitPurpose Implement a three-axis inertial measurement unit (IMU)

Library GNC/Navigation

Description The Three-Axis Inertial Measurement Unit block implements an inertial 
measurement unit (IMU) containing a three-axis accelerometer and a 
three-axis gyroscope.

For a description of the equations and application of errors, see the Three-Axis 
Accelerometer block and the Three-Axis Gyroscope block reference pages.   

Dialog Box
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Units
Specifies the input and output units:

IMU location
The location of the IMU, which is also the accelerometer group location, is 
measured from the zero datum (typically the nose) to aft, to the right of the 
vertical centerline and above the horizontal centerline. This measurement 
reference is the same for the center of gravity input. The units are in 
selected length units.

Update rate (sec)
Specify the update rate of the accelerometer and gyroscope. An update rate 
of 0 will create a continuous accelerometer and continuous gyroscope. If 

Units Acceleration Length

Metric (MKS) Meters per second squared Meters

English Feet per second squared Feet
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noise is selected and the update rate is 0, then the noise will be updated at 
the rate of 0.1. The units of update rate are seconds. 

Second order dynamics for accelerometer
Select to apply second-order dynamics to acceleration readings.

Accelerometer natural frequency (rad/sec)
The natural frequency of the accelerometer. The units of natural frequency 
are radians per second.

Accelerometer damping ratio
The damping ratio of the accelerometer. A dimensionless parameter.

Accelerometer scale factors and cross-coupling
The 3-by-3 matrix used to skew the accelerometer from body-axis and to 
scale accelerations along body-axis.

Accelerometer measurement bias
The three-element vector containing long-term biases along the 
accelerometer axes. The units are in selected acceleration units.

Accelerometer lower and upper output limits
The six-element vector containing three minimum values and three 
maximum values of acceleration in each of the accelerometer axes. The 
units are in selected acceleration units.

Gyro second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Gyro natural frequency (rad/sec)
The natural frequency of the gyroscope. The units of natural frequency are 
radians per second.

Gyro damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

Gyro scale factors and cross-coupling
The 3-by-3 matrix used to skew the gyroscope from body axes and to scale 
angular rates along body axes.
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Gyro measurement bias
The three-element vector containing long-term biases along the gyroscope 
axes. The units are in radians per second.

G-sensitive bias
The three-element vector contains the maximum change in rates due to 
linear acceleration. The units are in radians per second per G’s.

Gyro lower and upper output limits
The six-element vector containing three minimum values and three 
maximum values of angular rates in each of the gyroscope axes. The units 
are in radians per second.

Noise on
Select to apply white noise to acceleration and gyroscope readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of the 
accelerometer and gyroscope.

Noise power
The height of the PSD of the white noise for each axis of the accelerometer 
and gyroscope.

Inputs and 
Outputs

The first input is a three-element vector containing the actual accelerations in 
body-fixed axes, in selected units.

The second input is a three-element vector containing the angular rates in 
body-fixed axes, in radians per second. 

The third input is a three-element vector containing the angular accelerations 
in body-fixed axes, in radians per second squared. 

The fourth input is a three-element vector containing the location of the center 
of gravity, in selected units.

The fifth input is a three-element vector containing the gravity, in selected 
units.

The first output is a three-element vector containing the measured 
accelerations from the accelerometer, in selected units.
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The second output is a three-element vector containing the measured angular 
rates from the gyroscope, in radians per second.

Assumptions 
and Limitations

Vibro-pendulous error, hysteresis affects, anisoelastic bias and anisoinertial 
bias are not accounted for in this block. Additionally, it is not the intention of 
this block to model the internal dynamics of differing forms of instrument.

This block requires the Control System Toolbox.

Examples See the asbhl20 demo for an example of this block.

References Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA 
Education Series, 2000.

See Also Three-Axis Accelerometer

Three-Axis Gyroscope
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4Turbofan Engine SystemPurpose Implement a first-order representation of a turbofan engine with controller

Library Propulsion

Description The Turbofan Engine System block computes the thrust and the weight of fuel 
flow of a turbofan engine and controller at a specific throttle position, Mach 
number, and altitude.

This system is represented by a first-order system with unitless heuristic 
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine 
time constant. For the lookup table data, thrust is a function of throttle position 
and Mach number, TSFC is a function of thrust and Mach number, and engine 
time constant is a function of thrust. The unitless lookup table outputs are 
corrected for altitude using the relative pressure ratio δ and relative 
temperature ratio θ, and scaled by maximum sea level static thrust, fastest 
engine time constant at sea level static, sea level static thrust specific fuel 
consumption, and ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output units 
selected from the Units list.
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Dialog Box

Units
Specifies the input and output units: 

Initial thrust source
Specifies the source of initial thrust: 

Units Altitude Thrust Fuel Flow

Metric (MKS) Meters Newtons Kilograms per second

English Feet Pound force Pound mass per second

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.
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Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Fastest engine time at sea level.

Sea-level static thrust specific fuel consumption
Thrust specific fuel consumption at sea level, at Mach = 0, and at maximum 
thrust, in specified mass units per hour per specified thrust units.

Ratio of installed thrust to uninstalled thrust
Coefficient representing the loss in thrust due to engine installation.

Inputs and 
Outputs

The first input is the throttle position. Throttle position can vary from zero to 
one, corresponding to no to full throttle.

The second input is the Mach number.

The third input is the altitude in specified length units.

The first output is the thrust in specified force units.

The second output is the fuel flow in specified mass units per second.

Assumptions 
and Limitations

The atmosphere is at standard day conditions and an ideal gas.

The Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used 
as a reference model.

This engine system is assumed to have a high bypass ratio.

References Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney, 
August, 1986.

Raymer, D. P., Aircraft Design: A Conceptual Approach, AIAA Education 
Series, Washington, DC, 1989.

Hill, P. G., and C. R. Peterson, Mechanics and Thermodynamics of Propulsion, 
Addison-Wesley Publishing Company, Reading, MA, 1970.
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4Velocity ConversionPurpose Convert from velocity units to desired velocity units

Library Utilities/Unit Conversions

Description The Velocity Conversion block computes the conversion factor from specified 
input velocity units to specified output velocity units and applies the 
conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected 
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available: 

m/s Meters per second

ft/s Feet per second

km/s Kilometers per second

in/s Inches per second

km/h Kilometers per hour

mph Miles per hour

kts Nautical miles per hour

ft/min Feet per minute



Velocity Conversion

4-420

Inputs and 
Outputs

The input is the velocity in initial velocity units. 

The output is the velocity in final velocity units. 

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion
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4Von Karman Wind Turbulence Model  (Continuous)Purpose Generate continuous wind turbulence with the Von Kármán velocity spectra

Library Environment/Wind

Description The Von Kármán Wind Turbulence Model (Continuous) block uses the Von 
Kármán spectral representation to add turbulence to the aerospace model by 
passing band-limited white noise through appropriate forming filters. This 
block implements the mathematical representation in the Military 
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined 
by velocity spectra. For an aircraft flying at a speed V through a “frozen” 
turbulence field with a spatial frequency of  Ω radians per meter, the circular 
frequency ω is calculated by multiplying V by Ω. The following table displays 
the component spectra functions:

           MIL-F-8785C           MIL-HDBK-1797

Longitudinal

 Φu ω( )

 Φp ω( )

2σu
2Lu

πV
------------------ 1

1 1.339Lu
ω
V
----( )

2
+[ ]

5 6⁄
---------------------------------------------------------⋅

2σu
2Lu

πV
------------------ 1

1 1.339Lu
ω
V
----( )

2
+[ ]

5 6⁄
---------------------------------------------------------⋅

σw
2

VLw
------------

0.8
πLw
4b

-----------⎝ ⎠
⎛ ⎞

1
3
---

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

-----------------------------⋅ σw
2

2VLw
----------------

0.8
2πLw

4b
---------------⎝ ⎠
⎛ ⎞

1
3
---

1 4bw
πV

------------⎝ ⎠
⎛ ⎞ 2

+

--------------------------------⋅



Von Karman Wind Turbulence Model (Continuous)

4-422

The variable b represents the aircraft wingspan. The variables  
represent the turbulence scale lengths. The variables σu, σv, σw represent the 
turbulence intensities:

Lateral

Vertical
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The spectral density definitions of turbulence angular rates are defined in the 
references as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular 
rates. 

Keep in mind that the longitudinal turbulence angular rate spectrum, , 
is a rational function. The rational function is derived from curve-fitting a 
complex algebraic function, not the vertical turbulence velocity spectrum, 

, multiplied by a scale factor. Because the turbulence angular rate 
spectra contribute less to the aircraft gust response than the turbulence 
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral 
turbulence angular rate spectra. 
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To generate a signal with the correct characteristics, a unit variance, 
band-limited white noise signal is passed through forming filters. The forming 
filters are approximations of the Von Kármán velocity spectra which are valid 
in a range of normalized frequencies of less than 50 radians. These filters can 
be found in both the Military Handbook MIL-HDBK-1797 and the reference by 
Ly and Chan.

The following two tables display the transfer functions.
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Vertical

                         MIL-HDBK-1797

Longitudinal
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Divided into two distinct regions, the turbulence scale lengths and intensities 
are functions of altitude.

Note  The same transfer functions result after evaluating the turbulence 
scale lengths. The differences in turbulence scale lengths and turbulence 
transfer functions balance offset.

Lateral

Vertical
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Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low 
altitudes, where  is the altitude in feet, are represented in the following table: 

The turbulence intensities are given below, where  is the wind speed at 
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15 
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe” 
turbulence the wind speed is 45 knots. 

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative 
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical. 

At this altitude range, the output of the block is transformed into body 
coordinates.
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Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are 
based on the assumption that the turbulence is isotropic. In the military 
references, the scale lengths are represented by the following equations: 

The turbulence intensities are determined from a lookup table that provides 
the turbulence intensity as a function of altitude and the probability of the 
turbulence intensity being exceeded. The relationship of the turbulence 
intensities is represented in the following equation.

                  MIL-F-8785C               MIL-HDBK-1797
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The turbulence axes orientation in this region is defined as being aligned with 
the body coordinates:

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000 
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and 
turbulence angular rates are determined by linearly interpolating between the 
value from the low altitude model at 1000 feet transformed from mean 
horizontal wind coordinates to body coordinates and the value from the high 
altitude model at 2000 feet in body coordinates.
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Dialog Box

Units
Define the units of wind speed due to the turbulence.  

Units Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English 
(Velocity in 
ft/s)

Feet/second Feet Feet/second

English 
(Velocity in 
kts)

Knots Feet Knots
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Specification
Define which military reference to use. This affects the application of 
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Continuous Von Kármán (+q -r) Use continuous representation of Von 
Kármán velocity spectra with positive 
vertical and negative lateral angular 
rates spectra.

Continuous Von Kármán (+q 
+r)

Use continuous representation of Von 
Kármán velocity spectra with positive 
vertical and lateral angular rates 
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von 
Kármán velocity spectra with negative 
vertical and positive lateral angular 
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of 
Dryden velocity spectra with positive 
vertical and negative lateral angular 
rates spectra.

Continuous Dryden (+q +r) Use continuous representation of 
Dryden velocity spectra with positive 
vertical and lateral angular rates 
spectra.

Continuous Dryden (-q +r) Use continuous representation of 
Dryden velocity spectra with negative 
vertical and positive lateral angular 
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden 
velocity spectra with positive vertical 
and negative lateral angular rates 
spectra.
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The Continuous Von Kármán selections conform to the transfer function 
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 20 feet (6 meters) provides the 
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 20 feet (6 meters) is an angle to 
aid in transforming the low-altitude turbulence model into a body 
coordinates. 

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table 
that gives the turbulence intensity as a function of altitude and the 
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from 
the military references, a figure of 1750 feet is recommended for the 
longitudinal turbulence scale length of the Dryden spectra.

Note  An alternate scale length value changes the power spectral density 
asymptote and gust load. 

Wingspan
The wingspan is required in the calculation of the turbulence on the 
angular rates.

Discrete Dryden (+q +r) Use discrete representation of Dryden 
velocity spectra with positive vertical 
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden 
velocity spectra with negative vertical 
and positive lateral angular rates 
spectra.
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Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated. 

Noise seeds
There are four random numbers required to generate the turbulence 
signals, one for each of the three velocity components and one for the roll 
rate. The turbulences on the pitch and yaw angular rates are based on 
further shaping of the outputs from the shaping filters for the vertical and 
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and 
Outputs

The first input is the altitude in units selected.

The second input is the aircraft speed in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities, 
in the selected units.

The second output is a three-element signal containing the turbulence angular 
rates, in radians per second.

Assumptions 
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind 
velocity and the root-mean-square turbulence velocity, or intensity, are small 
relative to the aircraft’s ground speed.
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The turbulence model describes an average of all conditions for clear air 
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background 
Information and User Guide for MIL-F-8785B(ASG), ‘Military 
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell 
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education 
Series, 1988. 

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance 
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference, 
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic 
Control, Princeton University Press, July 1990. 

Moorhouse, D., Woodcock, R., “Background Information and User Guide for 
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,” 
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at 
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts 
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St. 
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the 
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin 
Engineering & Sciences, March 1998.
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See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model
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4WGS84 Gravity ModelPurpose Implement the 1984 World Geodetic System (WGS84) representation of Earth’s 
gravity

Library Environment/Gravity

Description The WGS84 Gravity Model block implements the mathematical representation 
of the geocentric equipotential ellipsoid of the World Geodetic System 
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity 
precision is controlled via the Type of gravity model parameter.

The WGS84 Gravity Model block icon displays the input and output units 
selected from the Units list.

Dialog Box

Type of gravity model
Specifies the method to calculate gravity:

-WGS84 Taylor Series

-WGS84 Close Approximation

-WGS84 Exact
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Units
Specifies the input and output units: 

Exclude Earth’s atmosphere
Select for the value for the Earth’s gravitational field to exclude the mass 
of the atmosphere. 

Clear for the value for the Earth’s gravitational field to include the mass of 
the atmosphere. 

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated using the 
International Astronomical Union (IAU) value of the Earth’s angular 
velocity and the precession rate in right ascension. In order to obtain the 
precession rate in right ascension, Julian centuries from Epoch J2000.0 is 
calculated using the dialog parameters of Month, Day, and Year. 

If cleared, the angular velocity of the Earth used is the value of the 
standard Earth rotating at a constant angular velocity. 

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian centuries from Epoch J2000.0. 

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact and only when Precessing reference 
frame is selected.

Day
Specifies the day used to calculate Julian centuries from Epoch J2000.0.

Units Height Gravity

Metric (MKS) Meters Meters per second squared

English Feet Feet per second squared
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This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact and only when Precessing reference 
frame is selected.

Year
Specifies the year used to calculate Julian centuries from Epoch J2000.0. 
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact and only when Precessing reference 
frame is selected.

No centrifugal effects
When selected, calculated gravity is based on pure attraction resulting 
from the normal gravitational potential. 

If cleared, calculated gravity includes the centrifugal force resulting from 
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close 
Approximation or WGS84 Exact.

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and 
Outputs

The first input is a scalar containing the altitude in specified length units.

The second input is a scalar containing the latitude in degrees.

The third input is a scalar containing the longitude in degrees. This input is 
only available with Type of Gravity Model WGS84 Close Approximation or 
WGS84 Exact.

The output is a scalar value of gravity with the direction normal to the Earth’s 
surface.
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Assumptions 
and Limitations

The WGS84 gravity calculations are based on the assumption of a geocentric 
equipotential ellipsoid of revolution. Since the gravity potential is assumed to 
be the same everywhere on the ellipsoid, there must be a specific theoretical 
gravity potential that can be uniquely determined from the four independent 
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic 
heights. It is sufficient near the surface when submicrogal precision is not 
necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic 
height of 20,000.0 m (approximately 65,620.0 feet). Below this height, it gives 
results with submicrogal precision.

Examples See the Airframe subsystem in the aeroblk_HL20 model for an example of this 
block.

References [1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its 
Definition and Relationship with Local Geodetic Systems.”
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4Wind Angles to Direction Cosine MatrixPurpose Convert wind angles to direction cosine matrix

Library Utilities/Axes Transformations

Description The Wind Angles to Direction Cosine Matrix block converts three wind rotation 
angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs 
the coordinate transformation of a vector in earth axes  into a 
vector in wind axes . The order of the axis rotations required to 
bring  into coincidence with  is first a rotation 
about  through the bank angle  to axes . Second a 
rotation about  through the flight path angle  to axes , 
and finally a rotation about  through the heading angle  to axes 

.

 

Combining the three axis transformation matrices defines the following DCM.
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Dialog Box

Inputs and 
Outputs

The input is a 3-by-1 vector of wind angles, in radians.

The output is a 3-by-3 direction cosine matrix which transforms earth vectors 
to wind vectors.

Assumptions 
and Limitations

This implementation generates a flight path angle that lies between  
degrees, and bank and heading angles that lie between degrees.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

90±
180±
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4Wind Angular RatesPurpose Calculate wind angular rates from body angular rates, angle of attack, sideslip 
angle, rate of change of angle of attack and rate of change of sideslip

Library Flight Parameters

Description The Wind Angular Rates block supports the equations of motion in wind-fixed 
frame models by calculating the wind-fixed angular rates . The 
body-fixed angular rates , angle of attack , sideslip angle , 
rate of change of angle of attack , and rate of change of sideslip  are 
related to the wind-fixed angular rate by the following equation.  

Dialog Box

Inputs and 
Outputs

The first input is the 2-by-1 vector containing angle of attack and sideslip, in 
radians.

The second input is the 2-by-1 vector containing rate of change of angle of 
attack and rate of change of sideslip, in radians per second.

The third input is the body angular rates, in radians per second.

The output is the wind angular rates, in radians per second.

See Also 3DoF (Body Axes)

6DoF Wind (Quaternion)

pw qw rw, ,( )
pb qb rb, ,( ) α( ) β( )

α·( ) β·( )

pw

qw

rw

α βcoscos βsin α βcossin
α βsincos– βcos α βsinsin–

αsin– 0 αcos

pb β· αsin–

qb α·–

rb β· αcos+

=
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6DoF Wind (Wind Angles)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)
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4Wind Shear ModelPurpose Calculate wind shear conditions

Library Environment/Wind

Description The Wind Shear Model block adds wind shear to the aerospace model. This 
implementation is based on the mathematical representation in the Military 
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by 
the following equation for the mean wind profile as a function of altitude and 
the measured wind speed at 20 feet (6 m) above the ground.

where uw is the mean wind speed, W20 is the measured wind speed at an 
altitude of 20 feet,  is the altitude, and  is a constant equal to 0.15 feet for 
Category C flight phases and 2.0 feet for all other flight phases. Category C 
flight phases are defined in reference [1] to be terminal flight phases, which 
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to 
body-fixed axis coordinates by multiplying by the direction cosine matrix 
(DCM) input to the block. The block output is the mean wind speed in the 
body-fixed axis.

uw W20

h
z0
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⎛ ⎞ln
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Dialog Box

Units

Define the units of wind shear. 

Flight phase
Select flight phase:

- Category C  Terminal Flight Phases

- Other

Wind speed at 6 m (20 feet) altitude (m/s, f/s, or knots)
The measured wind speed at an altitude of 20 feet (6 m) above the ground. 

Units Wind Altitude

Metric (MKS) Meters/second Meters

English (Velocity in ft/s) Feet/second Feet

English (Velocity in kts) Knots Feet
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Wind direction at 6 m (20 feet) altitude (degrees clockwise from north)
The direction of the wind at an altitude of 20 feet (6 m), measured in 
degrees clockwise from the direction of the Earth x-axis (north). The wind 
direction is defined as the direction from which the wind is coming.

Inputs and 
Outputs

The first input is the altitude in units selected.

The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame, 
in the selected units.

Examples See the Airframe subsystem in the aeroblk_HL20 model for an example of this 
block.

References U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Discrete Wind Gust Model

Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Von Karman Wind Turbulence Model (Continuous)
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4World Magnetic Model 2000Purpose Calculate the Earth’s magnetic field at a specific location and time using the 
World Magnetic Model 2000 (WMM2000)

Library Environment/Gravity

Description The WMM2000 block implements the mathematical representation of the 
National Geospatial Intelligence Agency (NGA) World Magnetic Model 2000. 
The WMM2000 block calculates the Earth’s magnetic field vector, horizontal 
intensity, declination, inclination, and total intensity at a specified location 
and time.

Dialog Box
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Units
Specifies the input and output units: 

Input decimal year
When selected, the decimal year is an input for the World Magnetic Model 
2000 block. Otherwise, a date must be specified using the dialog 
parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and the 
magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal plane and 
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

Units Height Magnetic Field Horizontal Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss
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Inputs and 
Outputs

The first input is the height, in selected units.

The second input is the latitude in degrees.

The third input is the longitude in degrees.

The fourth optional input is the desired year in a decimal format to include any 
fraction of the year that has already passed. The value is the current year plus 
the number of days that have passed in this year divided by 365.

The following code illustrates how to calculate the decimal year, 'dyear', for 
March 21, 2005: 

%%%BEGIN CODE%%% 
year = '2005'; 
year_selected = str2num(year); 
month = 'March'; 
day = '21'; 

if (mod(year_selected,400)&&~mod(year_selected,100)) 
% leapyear = false; 
ndays = 365; 
elseif ~mod(year_selected,4) 
% leapyear = true; 
ndays = 366; 
else 
% leapyear = false; 
ndays = 365; 
end 

day_of_year = datenum([day '-' month '-' 
year])-datenum(['1-january-' year]); 
dyear = year_selected + day_of_year/ndays; 
%%%END CODE%%%

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.

The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.
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Limitations The WMM2000 specification produces data that is reliable five years after the 
epoch of the model, which is January 1, 2000.

The internal calculation of decimal year does not take into account local time 
or leap seconds.

The WMM2000 specification describes only the long-wavelength spatial 
magnetic fluctuations due to the Earth's core. Intermediate and 
short-wavelength fluctuations, contributed from the crustal field (the mantle 
and crust), are not included. Also, the substantial fluctuations of the 
geomagnetic field, which occur constantly during magnetic storms and almost 
constantly in the disturbance field (auroral zones), are not included.

References Macmillian, S. and J. M. Quinn, 2000. “The Derivation of the World Magnetic 
Model 2000,” British Geological Survey Technical Report WM/00/17R.

http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml

See Also World Magnetic Model 2005
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4World Magnetic Model 2005Purpose Calculate the Earth’s magnetic field at a specific location and time using the 
World Magnetic Model 2005 (WMM2005)

Library Environment/Gravity

Description The WMM2005 block implements the mathematical representation of the 
National Geospatial Intelligence Agency (NGA) World Magnetic Model 2005. 
The WMM2005 block calculates the Earth’s magnetic field vector, horizontal 
intensity, declination, inclination, and total intensity at a specified location 
and time.

Dialog Box



World Magnetic Model 2005

4-452

Units
Specifies the input and output units: 

Input decimal year
When selected, the decimal year is an input for the World Magnetic Model 
2005 block. Otherwise, a date must be specified using the dialog 
parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and the 
magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal plane and 
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

Units Height Magnetic Field Horizontal Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss
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Inputs and 
Outputs

The first input is the height, in selected units.

The second input is the latitude in degrees.

The third input is the longitude in degrees.

The fourth optional input is the desired year in a decimal format to include any 
fraction of the year that has already passed. The value is the current year plus 
the number of days that have passed in this year divided by 365.

The following code illustrates how to calculate the decimal year, 'dyear', for 
March 21, 2005: 

%%%BEGIN CODE%%% 
year = '2005'; 
year_selected = str2num(year); 
month = 'March'; 
day = '21'; 

if (mod(year_selected,400)&&~mod(year_selected,100)) 
% leapyear = false; 
ndays = 365; 
elseif ~mod(year_selected,4) 
% leapyear = true; 
ndays = 366; 
else 
% leapyear = false; 
ndays = 365; 
end 

day_of_year = datenum([day '-' month '-' 
year])-datenum(['1-january-' year]); 
dyear = year_selected + day_of_year/ndays; 
%%%END CODE%%%

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.

The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.
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Limitations The WMM2005 specification produces data that is reliable five years after the 
epoch of the model, which is January 1, 2005.

The internal calculation of decimal year does not take into account local time 
or leap seconds.

The WMM2005 specification describes only the long-wavelength spatial 
magnetic fluctuations due to the Earth's core. Intermediate and 
short-wavelength fluctuations, contributed from the crustal field (the mantle 
and crust), are not included. Also, the substantial fluctuations of the 
geomagnetic field, which occur constantly during magnetic storms and almost 
constantly in the disturbance field (auroral zones), are not included.

References http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml

See Also World Magnetic Model 2000



 

A
Aerospace Units

The main blocks of the Aerospace Blockset support standard measurement 
systems. The Unit Conversion blocks support all units listed in this table. 

Quantity Metric (MKS) English

Acceleration meters/second2 (m/s2), 
kilometers/second2 (km/s2), 
(kilometers/hour)/second 
(km/h-s), g-unit (g's)

inches/second2 (in/s2), 
feet/second2 (ft/s2), 
(miles/hour)/second 
(mph/s), g-unit (g's)

Angle radian (rad), degree (deg), 
revolution

radian (rad), degree (deg), 
revolution

Angular 
acceleration

radians/second2 (rad/s2), 
degrees/second2 (deg/s2), 
revolutions/minute (rpm), 
revolutions/second (rps)

radians/second2 (rad/s2), 
degrees/second2 (deg/s2), 
revolutions/minute (rpm), 
revolutions/second (rps)

Angular 
velocity

radians/second (rad/s), 
degrees/second (deg/s), 
revolutions/minute (rpm)

radians/second (rad/s), 
degrees/second (deg/s), 
revolutions/minute (rpm)

Density kilogram/meter3 (kg/m3) pound mass/foot3 
(lbm/ft3), slug/foot3 
(slug/ft3), pound 
mass/inch3 (lbm/in3)

Force newton (N) pound (lb)

Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)

Length meter (m) inch (in), foot (ft), mile 
(mi), nautical mile (nm)

Mass kilogram (kg) slug (slug), pound mass 
(lbm)
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Pressure Pascal (Pa) pound/inch2 (psi), 
pound/foot2 (psf), 
atmosphere (atm)

Temperature kelvin (oK), Celsius (oC) degrees Fahrenheit (oF), 
degrees Rankine (oR)

Torque newton-meter (N-m) pound-feet (lb-ft)

Velocity meters/second (m/s), 
kilometers/second (km/s), 
kilometers/hour (km/h)

inches/second (in/sec), 
feet/second (ft/sec), 
feet/minute (ft/min), 
miles/hour (mph), knots

Quantity Metric (MKS) English
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