
User’s Guide
Version 2

For Use with Simulink®

Aerospace
Blockset

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset User’s Guide
© COPYRIGHT 2002–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

July 2002 Online only New for Version 1.0 (Release 13)
July 2003 Online only Revised for Version 1.5 (Release 13SP1)
June 2004 Online only Revised for Version 1.6 (Release 14)
October 2004 Online only Revised for Version 1.6.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.6.2 (Release 14SP2)
May 2005 Online only Revised for Version 2.0 (Release 14SP2+)
September 2005 First printing Revised for Version 2.0.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.1 (Release 2006a)

Notice

THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR CERTIFIED BY
ANY GOVERNMENT AGENCY OR INDUSTRY REGULATORY ORGANIZATION OR
ANY OTHER THIRD PARTY. THE PROGRAMS SHOULD NOT BE RELIED ON AS
THE SOLE BASIS TO SOLVE A PROBLEM WHOSE INCORRECT SOLUTION
COULD RESULT IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE
NOT DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE FOR
USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR OTHER
INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF WHICH CAN
REASONABLY BE EXPECTED TO CAUSE DEATH OR PERSONAL INJURY OR
PROPERTY OR ENVIRONMENTAL DAMAGE. LICENSEE AGREES THAT PRIOR
TO USING, INCORPORATING OR DISTRIBUTING THE PROGRAMS IN ANY
PRODUCT, IT WILL THOROUGHLY TEST THE PRODUCT AND THE
FUNCTIONALITY OF THE PROGRAMS IN THAT PRODUCT AND BE SOLELY
RESPONSIBLE FOR ANY PROBLEMS OR FAILURES.

i

Contents

1
Getting Started

What Is the Aerospace Blockset? . 1-2

Related Products . 1-3

Running a Demo Model . 1-4
What This Demo Illustrates . 1-4
Opening the Model . 1-4
Key Subsystems . 1-6
Running the Demo . 1-8
Modifying the Model . 1-12

Learning More . 1-16
Using the MATLAB Help System for Documentation
 and Demos . 1-16
Finding Aerospace Blockset Help . 1-16

2
Using the Aerospace Blockset

Introducing the Aerospace Blockset Libraries 2-2
Opening the Aerospace Blockset in Windows 2-2
Opening the Aerospace Blockset on UNIX Platforms 2-5
Summary of Aerospace Block Libraries 2-5

Creating Aerospace Models . 2-9

Building a Simple Actuator System . 2-10
Building the Model . 2-10
Running the Simulation . 2-18

ii Contents

About Aerospace Coordinate Systems 2-20
Fundamental Coordinate System Concepts 2-20
Coordinate Systems for Modeling . 2-21
Coordinate Systems for Navigation . 2-23
Coordinate Systems for Display . 2-26
References . 2-28

Introducing the Flight Simulator Interface 2-29
About the FlightGear Interface . 2-29
Obtaining FlightGear . 2-29
Configuring Your Computer for FlightGear 2-30
Installing and Starting FlightGear . 2-33

Working with the Flight Simulator Interface 2-34
About Aircraft Geometry Models . 2-34
Working with Aircraft Geometry Models 2-37
Running FlightGear with Simulink . 2-39
Running the NASA HL-20 Demo with FlightGear 2-48

3
Case Studies

Ideal Airspeed Correction . 3-2
Airspeed Correction Models . 3-2
Measuring Airspeed . 3-3
Modeling Airspeed Correction . 3-4
Simulating Airspeed Correction . 3-7

1903 Wright Flyer . 3-9
Wright Flyer Model . 3-10
Airframe Subsystem . 3-10
Environment Subsystem . 3-14
Pilot Subsystem . 3-15
Running the Simulation . 3-16
References . 3-17

iii

NASA HL-20 Lifting Body Airframe . 3-19
NASA HL-20 Lifting Body . 3-19
The HL-20 Airframe and Controller Model 3-21
References . 3-32

Missile Guidance System . 3-33
Missile Guidance System Model . 3-33
Modeling Airframe Dynamics . 3-34
Modeling a Classical Three-Loop Autopilot 3-41
Modeling the Homing Guidance Loop . 3-43
Simulating the Missile Guidance System 3-49
Extending the Model . 3-51
References . 3-52

4
Block Reference

Blocks — Categorical List . 4-2
Actuators Library . 4-3
Aerodynamics Library . 4-3
Animation Library . 4-3
Environment Library . 4-3
Flight Parameters Library . 4-5
Equations of Motion Library . 4-5
GNC Library . 4-6
Mass Properties Library . 4-8
Propulsion Library . 4-8
Utilities Library . 4-8

iv Contents

Blocks — Alphabetical List . 4-11

A
Aerospace Units

Index

1

Getting Started

The Aerospace Blockset lets you model aerospace systems for use with Simulink® and MATLAB®.

What Is the Aerospace Blockset? (p. 1-2) Introduction to the Aerospace Blockset and the
Simulink environment

Related Products (p. 1-3) Products you might want to use with the Aerospace
Blockset and requirements for virtual reality
visualization

Running a Demo Model (p. 1-4) Learn how to run an aerospace model in Simulink,
examine the results, and modify the model settings
and parameters

Learning More (p. 1-16) Where to get online help

1 Getting Started

1-2

What Is the Aerospace Blockset?
The Aerospace Blockset brings the full power of Simulink to aerospace system
design, integration, and simulation by providing key aerospace subsystems
and components in the adaptable Simulink block format. From environmental
models to equations of motion, from gain scheduling to animation, the blockset
gives you the core components to assemble a broad range of large aerospace
system architectures rapidly and efficiently.

You can use the Aerospace Blockset and Simulink to develop your aerospace
system concepts and to efficiently revise and test your models throughout the
life cycle of your design. Use the Aerospace Blockset with Real-Time
Workshop® to automatically generate code for real-time execution in rapid
prototyping and for hardware-in-the-loop systems.

Related Products

1-3

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Aerospace Blockset. In particular, the
Aerospace Blockset requires current versions of these products:

• MATLAB

• Control System Toolbox

• Simulink

For more information about any of these products

• Consult the online documentation for that product

• Visit the MathWorks Web site, at www.mathworks.com; see the “Products”
section

Virtual Reality Visualization
The optional virtual reality visualization blocks in the Aerospace Blockset
require the Virtual Reality Toolbox. The Virtual Reality Toolbox includes a
default viewer compatible with all the platforms supported by MATLAB.

See the Virtual Reality Toolbox documentation for more information about
virtual reality viewers.

http://www.mathworks.com
http://www.mathworks.com/products/control/
http://www.mathworks.com/products/virtualreality/
http://www.mathworks.com/access/helpdesk/help/toolbox/vr/

1 Getting Started

1-4

Running a Demo Model
This section introduces a missile guidance model that uses blocks from the
Aerospace Blockset to simulate a three-degrees-of-freedom missile guidance
system, in conjunction with other Simulink blocks.

The model simulates a missile guidance system with a target acquisition and
interception subsystem. The model implements a nonlinear representation of
the rigid body dynamics of the missile airframe, including aerodynamic forces
and moments. The missile autopilot is based on the trimmed and linearized
missile airframe. The missile homing guidance system regulates missile
acceleration and measures the distance between the missile and its target.

For more information on this model, see Chapter 3, “Case Studies.”

What This Demo Illustrates
The missile guidance demo illustrates the following features of the blockset:

• Representing bodies and degrees of freedom with the Equations of Motion
library blocks

• Using the Aerospace Blockset with other Simulink blocks

• Using the Aerospace Blockset with Stateflow®

• Feeding in and feeding out Simulink signals to and from Aerospace Blockset
blocks with Actuator and Sensor blocks

• Encapsulating groups of blocks into subsystems

• Visualizing and animating an aircraft with the Animation library blocks

Note The Stateflow module in this demo is precompiled and does not require
Stateflow to be installed.

Opening the Model
Open the Demos browser, then locate and open the missile guidance demo. You
can also open it by entering the demo name, aeroblk_guidance, at the
MATLAB command line. The model opens.

http://www.mathworks.com/products/stateflow/

Running a Demo Model

1-5

A Stateflow chart for the guidance control processor also appears.

1 Getting Started

1-6

Key Subsystems
The model implements the missile environment, airframe, autopilot, and
homing guidance system in subsystems.

• The Airframe & Autopilot subsystem implements the ISA Atmosphere Model
block, the Incidence & Airspeed block, and the 3DoF (Body Axes) block, along
with other Simulink blocks.

The airframe model is a nonlinear representation of rigid body dynamics.
The aerodynamic forces and moments acting on the missile body are
generated from coefficients that are nonlinear functions of both incidence
and Mach number.

• The model implements the missile autopilot as a classical three-loop design
using measurements from an accelerometer located ahead of the missile’s
center of gravity and from a rate gyro to provide additional damping.

Running a Demo Model

1-7

• The model implements the homing guidance system as two subsystems: the
Guidance subsystem and the Seeker/Tracker subsystem.

- The Guidance subsystem uses a Stateflow state chart to control the
tracker directly by sending demands to the seeker gimbals.

1 Getting Started

1-8

- The Seeker/Tracker subsystem consists of Simulink blocks that control the
seeker gimbals to keep the seeker dish aligned with the target and provide
the guidance law with an estimate of the sight line rate.

Running the Demo
Running a demo lets you observe the model simulation in real time. After you
run the demo, you can examine the resulting data in plots, graphs, and other
visualization tools. To run the missile guidance model, follow these steps:

1 If it is not already open, open the aeroblk_guidance demo.

2 From the Simulation menu, select Start. In Windows, you can also click the
start button in the model window toolbar.

The simulation proceeds until the missile intercepts the target, which takes
approximately 3 seconds. Once the interception has occurred, four scope
figures open to display the following data:

Running a Demo Model

1-9

a A three-dimensional animation of the missile and target interception
course

1 Getting Started

1-10

b Plots that measure flight parameters over time, including Mach number,
fin demand, acceleration, and degree of incidence

Running a Demo Model

1-11

c A plot that measures gimbal versus true look angles

d A plot that measures missile and target trajectories

1 Getting Started

1-12

Modifying the Model
You can adjust the missile guidance model settings and examine the effects on
simulation performance. Here are two modifications that you can try. The first
modification adjusts the missile engine thrust (dynamic pressure). The second
modification changes the camera point of view for the interception animation.

Adjusting the Thrust
As in any Simulink model, you can adjust aerospace model parameters from
the MATLAB workspace. To demonstrate this, change the Thrust variable in
the model workspace and evaluate the results in the simulation.

1 Open the aeroblk_guidance model.

2 In the MATLAB desktop, find the Thrust variable in the Workspace pane.

The Thrust variable is defined in the aeroblk_guid_dat.m file, which the
aeroblk_guidance model uses to populate parameter and variable values.
By default, the Thrust variable should be set to 10000.

3 Single-click the Thrust variable to select it. To edit the value, right-click the
Thrust variable and select Edit Value. Change the value to 5000.

Before you run the demo again, locate the Miss Distance block display in the
aeroblk_guidance model.

Running a Demo Model

1-13

Start the demo, and after it finishes, note the miss distance display again. The
miss distance should become greater than the original distance. You can
experiment with different values in the Thrust variable and assess the effects
on missile accuracy.

Changing the Animation Point of View
By default, the missile animation view is Fly Alongside, which means the
view tracks with the missile’s flight path. You can easily change the animation
point of view by adjusting a parameter of the 3DoF Animation block:

1 Open the aeroblk_guidance model, and double-click the 3DoF Animation
block. The Block Parameters dialog box appears.

Miss
Distance
display

1 Getting Started

1-14

2 Change the view to Cockpit.

3 Click the OK button.

Run the demo again, and watch the animation. Instead of moving alongside the
missile’s flight path, the animation point of view lies in the cockpit. Upon target
interception, the screen fills with blue, the target’s color.

Enter view

Running a Demo Model

1-15

You can experiment with different views to watch the animation from different
perspectives.

1 Getting Started

1-16

Learning More
You can get help online in a number of ways to assist you while using the
Aerospace Blockset.

Using the MATLAB Help System for Documentation
and Demos
The MATLAB Help browser allows you to access the documentation and demo
models for all the MathWorks products that you have installed. The online help
includes an online index and search system.

Consult the Help for Using MATLAB section of the Using MATLAB
documentation for more about the MATLAB help system.

Opening Aerospace Demos
To open an Aerospace Blockset demo from the Help browser, open the Demos
library in the Help browser by clicking the Demos tab in the Help Navigator
pane on the left.

You can also open the Aerospace Blockset demos from the Start button of the
MATLAB desktop:

1 Click the Start button.

2 Select Blocksets, then Aerospace, and then Demos.

This opens the Help browser with Demos selected in the Help Navigator
pane.

Alternatively, you can open the Demos window by entering demos at the
MATLAB command line.

Finding Aerospace Blockset Help
This user’s guide also includes a reference chapter.

• “Aerospace Units” explains the unit systems used by the blockset.

2
Using the Aerospace
Blockset

Constructing a simple model with the Aerospace Blockset is easy to learn if you know how to create
Simulink models. If you are not familiar with Simulink, please see the Simulink documentation.

Introducing the Aerospace Blockset Libraries
(p. 2-2)

Overview of the Aerospace Blockset libraries and
how to access them

Creating Aerospace Models (p. 2-9) Summary of the most important steps for building
models with the Aerospace Blockset

Building a Simple Actuator System (p. 2-10) Tutorial to model and simulate a simple actuator
system

About Aerospace Coordinate Systems (p. 2-20) Overview of coordinate systems for representing
aircraft and spacecraft motion

Introducing the Flight Simulator Interface
(p. 2-29)

Obtaining and installing the third-party
FlightGear flight simulator

Working with the Flight Simulator Interface
(p. 2-34)

Tutorial on the FlightGear interface, included with
the Aerospace Blockset

2 Using the Aerospace Blockset

2-2

Introducing the Aerospace Blockset Libraries
The Aerospace Blockset is organized into hierarchical libraries of closely
related blocks for use in Simulink. The following sections explain how to access
the libraries from MATLAB and summarize the blocks in each library.

• “Opening the Aerospace Blockset in Windows”

• “Opening the Aerospace Blockset on UNIX Platforms” on page 2-5

• “Summary of Aerospace Block Libraries” in Chapter 2

View the details for each block in Chapter 4, “Block Reference.”

Opening the Aerospace Blockset in Windows
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the button in the MATLAB toolbar, or enter

simulink

at the command line.

Simulink Libraries
The libraries in the Simulink Library Browser contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset
On Windows platforms, the Simulink Library Browser opens when you start
Simulink. The left pane contains a list of all the blocksets that you currently
have installed.

Introducing the Aerospace Blockset Libraries

2-3

2 Using the Aerospace Blockset

2-4

The first item in the list is Simulink itself, which is already expanded to show
the available Simulink libraries. Click the symbol to the left of any blockset
name to expand the hierarchical list and display that blockset’s libraries within
the browser.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

Double-click any library in the window to display its contents. The following
figure shows the Aerospace Blockset library window.

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — By Category” on page 4-2.

See the Simulink documentation for a complete description of the Simulink
Library Browser.

Introducing the Aerospace Blockset Libraries

2-5

Opening the Aerospace Blockset on UNIX Platforms
On UNIX platforms, the Simulink Library window opens when you start
Simulink. To open the Aerospace Blockset, double-click the Aerospace
Blockset icon to open the Aerospace Blockset.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

Double-click any library in the window to display its contents. The following
figure shows the Aerospace Blockset library window.

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — By Category” on page 4-2.

Summary of Aerospace Block Libraries
The blocks of the Aerospace Blockset are organized into these libraries.

Actuators Library
The Actuators library provides blocks for representing linear and nonlinear
actuators with saturation and rate limits.

2 Using the Aerospace Blockset

2-6

Aerodynamics Library
The Aerodynamics library provides the Aerodynamic Forces and Moments
block using the aerodynamic coefficients, dynamic pressure, center of gravity,
and center of pressure.

Animation Library
The Animation library provides the animation blocks for visualizing flight
paths and trajectories and for working with a flight simulator interface. The
Animation library contains the MATLAB-Based Animation, Flight Simulator
Interfaces, and Animation Support Utilities sublibraries.

MATLAB-Based Animation Sublibrary. The MATLAB-Based Animation sublibrary
provides the 3DoF Animation block and the 6DoF Animation block. Using the
animation blocks, you can visualize flight paths and trajectories.

Flight Simulator Interfaces Sublibrary. The Flight Simulator Interfaces sublibrary
provides the interface blocks to connect Aerospace Blockset to the third-party
FlightGear flight simulator.

Animation Support Utilities Sublibrary. The Animation Support Utilities sublibrary
provides additional blocks for running the FlightGear flight simulator. It
contains a joystick interface for Windows platform and a block that lets you set
the simulation pace.

Environment Library
The Environment library provides blocks that simulate aspects of an aircraft
and spacecraft environment, such as atmospheric conditions, gravity, magnetic
fields, and wind. The Environment library contains the Atmosphere, Gravity,
and Wind sublibraries.

Atmosphere Sublibrary. The Atmosphere sublibrary provides general
atmospheric models, such as ISA and COESA, and other blocks, including
nonstandard day simulations, lapse rate atmosphere, and pressure altitude.

Gravity Sublibrary. The Gravity sublibrary provides blocks that calculate the
gravity and magnetic fields for any point on the Earth.

Wind Sublibrary. The Wind sublibrary provides blocks for wind-related
simulations, including turbulence, gust, shear, and horizontal wind.

Introducing the Aerospace Blockset Libraries

2-7

Equations of Motion Library
The Equations of Motion library provides blocks for implementing the
equations of motion to determine body position, velocity, attitude, and related
values.The Equations of Motion library contains the 3DoF, 6DoF, and Point
Mass sublibraries.

3DoF Sublibrary. The 3DoF sublibrary provides blocks for implementing
three-degrees-of-freedom equations of motion in your simulations, including
custom variable mass models.

6DoF Sublibrary. The 6DoF sublibrary provides blocks for implementing
six-degrees-of-freedom equations of motion in your simulations, using Euler
angles and quaternion representations.

Point Mass Sublibrary. The Point Mass sublibrary provides blocks for
implementing point mass equations of motion in your simulations.

Flight Parameters Library
The Flight Parameters library provides blocks for various parameters,
including ideal airspeed correction, Mach number, and dynamic pressure.

GNC Library
The GNC library provides blocks for creating control and guidance systems,
including various controller models. The GNC library contains the Control,
Guidance, and Navigation sublibraries.

Control Sublibrary. The Control sublibrary provides blocks for simulating various
control types, such as one-dimensional, two-dimensional, and
three-dimensional models.

Guidance Sublibrary. The Guidance sublibrary provides the Calculate Range
block, which computes the range between two vehicles.

Navigation Sublibrary. The Navigation sublibrary provides blocks for three-axis
measurement of accelerations, angular rates, and inertias.

Mass Properties Library
The Mass Properties library provides blocks for simulating the center of
gravity and inertia tensors.

2 Using the Aerospace Blockset

2-8

Propulsion Library
The Propulsion library provides the Turbofan Engine System block, which
simulates an engine system and controller.

Utilities Library
The Utilities library contains miscellaneous blocks useful in building models.
The library contains the Axes Transformations, Math Operations, and Unit
Conversions sublibraries.

Axes Transformations Sublibrary. The Axes Transformations sublibrary provides
blocks for transforming axes of coordinate systems to different types, such as
Euler angles to quaternions and vice versa.

Math Operations Sublibrary. The Math Operations sublibrary provides blocks for
common mathematical and matrix operations, including sine and cosine
generation and various 3-by-3 matrix operations.

Unit Conversions Sublibrary. The Unit Conversions sublibrary provides blocks for
converting common measurement units from one system to another, such as
converting velocity from feet per second to meters per second and vice versa.

Creating Aerospace Models

2-9

Creating Aerospace Models
Regardless of the model’s complexity, you use the same essential steps for
creating an aerospace model as you would for creating any other Simulink
model. For general model-building rules, see the Simulink documentation.

1 Select and position the blocks. You must first select the blocks that you need
to build your model, and then position the blocks in the model window. For
the majority of Simulink models, you select one or more blocks from each of
the following categories:

a Source blocks generate or import signals into the model, such as a sine
wave, a clock, or limited-band white noise.

b Simulation blocks can consist of almost any type of block that performs
an action in the simulation. A simulation block represents a part of the
model functionality to be simulated, such as an actuator block, a
mathematical operation, a block from the Aerospace Blockset, and so on.

c Signal Routing blocks route signals from one point in a model to another.
If you need to combine or redirect two or more signals in your model, you
will probably use a Signal Routing block, such as Mux and Demux.

d Sink blocks display, write, or save model output. To see the results of the
simulation, you must use a Sink block.

2 Configure the blocks. Most blocks feature configuration options that let you
customize block functionality to specific simulation parameters. For
example, the ISA Atmosphere Model block provides configuration options
for setting the height of the troposphere, tropopause, and air density at sea
level.

3 Connect the blocks. To create signal pathways between blocks, you connect
the blocks to each other. You can do this manually by clicking and dragging,
or you can connect blocks automatically.

4 Encapsulate subsystems. Systems made with the Aerospace Blockset can
function as subsystems of larger, more complex models, like subsystems in
any Simulink model.

2 Using the Aerospace Blockset

2-10

Building a Simple Actuator System
In this tutorial, you drag, drop, and configure a some basic blocks to drive,
simulate, and measure an aerospace actuator. The tutorial guides you through
these aspects of model building:

• “Building the Model” on page 2-10

• “Running the Simulation” on page 2-18

By the end of the tutorial, you will have constructed a simple actuator model
that measures the actuator’s position in relation to a sine wave.

Building the Model
Simulink is a software environment for modeling, simulating, and analyzing
dynamic systems. Try building a simple model that drives an actuator with a
sine wave and displays the actuator’s position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of
building it, enter aeroblktutorial at the MATLAB command line.

The following sections explain how to build a model on Windows and UNIX
platforms:

• “Creating a Model on Windows Platforms” on page 2-11

• “Creating a Model on UNIX Platforms” on page 2-15

Building a Simple Actuator System

2-11

Creating a Model on Windows Platforms

1 Click the button in the MATLAB toolbar or enter simulink at the
MATLAB command line. The Simulink library browser appears.

2 Select New > Model from the File menu in the Library Browser. A new
model window appears on your screen.

2 Using the Aerospace Blockset

2-12

3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink
Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the symbol next to Aerospace Blockset in the Library Browser
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator
library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink
Sinks library.

b Drag the Scope block from the Sinks library into the model window.

7 Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

Building a Simple Actuator System

2-13

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

c Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

b Click OK.

2 Using the Aerospace Blockset

2-14

c Double-click the Second Order Linear Actuator block.

In this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

Building a Simple Actuator System

2-15

Creating a Model on UNIX Platforms
The steps for creating a model in UNIX are similar to the steps in Windows.

1 Enter simulink at the MATLAB command line. The Simulink library
window appears.

2 Select New > Model from the File menu in the Simulink Library window. A
new model window appears on your screen.

3 Add a Sine Wave block to the model.

a Double-click Sources in the Simulink Library window to view the blocks
in the Simulink Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

2 Using the Aerospace Blockset

2-16

4 Add a Second Order Linear Actuator block to the model.

a Double-click Aerospace Blockset in the Simulink Library browser. This
opens the Aerospace Blockset block libraries.

b In the Aerospace Blockset block libraries, click Actuators to view the
blocks in the Actuator library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Double-click Signal Routing in the Simulink Library to view the Signal
Routing blocks.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Double-click Sinks in the Simulink Library window to view the blocks in
the Simulink Sinks library.

b Drag the Scope block from the Sinks library into the model window.

7 Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

c Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.

Building a Simple Actuator System

2-17

Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

In this example, configure the block to generate a 10 rad/sec sine wave by
entering 10 for the Frequency parameter. The sinusoid has the default
amplitude of 1 and phase of 0 specified by the Amplitude and Phase
offset parameters.

b Click OK.

2 Using the Aerospace Blockset

2-18

c Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

Running the Simulation
You can now run the model that you built to see how the system behaves in
time:

1 Double-click the Scope block if the Scope window is not already open on your
screen. The Scope window appears.

2 Select Start from the Simulation menu in the model window. The signal
containing the 10 rad/s sinusoid and the signal containing the actuator
position are plotted on the scope.

3 Adjust the Scope block’s display. While the simulation is running, right-click
the y-axis of the scope and select Autoscale. The vertical range of the scope
is adjusted to better fit the signal.

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open
its parameter dialog box. This causes the simulation to pause.

Building a Simple Actuator System

2-19

b You can then change the frequency of the sinusoid. Try entering 1 or
20 in the Frequency field. Close the Sine Wave dialog box to enter your
change and allow the simulation to continue. You can then observe the
changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s
dimensions or sample rate. However, there are some parameters, like the Sine
Wave Frequency parameter, that you can tune without stopping the
simulation.

Note Opening a dialog box for a source block causes the simulation to pause.
While the simulation is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow the simulation to
continue.

Running a Simulation from an M-File
You can also modify and run a Simulink simulation from a MATLAB M-file. By
doing this, you can automate the variation of model parameters to explore a
large number of simulation conditions rapidly and efficiently. For information
on how to do this, see the Simulink documentation.

2 Using the Aerospace Blockset

2-20

About Aerospace Coordinate Systems
Coordinate systems allow you to keep track of an aircraft or spacecraft’s
position and orientation in space. This section introduces important
terminology and the major coordinate systems used by the Aerospace Blockset.

• “Fundamental Coordinate System Concepts”

• “Coordinate Systems for Modeling” on page 2-21

• “Coordinate Systems for Navigation” on page 2-23

• “Coordinate Systems for Display” on page 2-26

The “References” on page 2-28 point you to further information.

Fundamental Coordinate System Concepts
The Aerospace Blockset coordinate systems are based on these underlying
concepts from geodesy, astronomy, and physics.

Definitions
The Aerospace Blockset uses right-handed (RH) Cartesian coordinate systems.
The right-hand rule establishes the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. Loosely
speaking, acceleration is defined with respect to the distant cosmos. In an
inertial frame, Newton’s second law (force = mass X acceleration) holds.

Strictly defined, an inertial frame is a member of the set of all frames not
accelerating relative to one another. A noninertial frame is any frame
accelerating relative to an inertial frame. Its acceleration, in general, includes
both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The blockset models the Earth’s shape (the geoid) as an oblate spheroid, a
special type of ellipsoid with two longer axes equal (defining the equatorial
plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator is
the intersection of the equatorial plane and the Earth’s surface. The geographic
poles are the intersection of the Earth’s surface and the geopolar axis. In
general, the Earth’s geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero
longitude or prime meridian passes through Greenwich, England.

About Aerospace Coordinate Systems

2-21

Approximations
The Aerospace Blockset makes three standard approximations in defining
coordinate systems relative to the Earth.

• The Earth’s surface or geoid is an oblate spheroid, defined by its longer
equatorial and shorter geopolar axes. In reality, the Earth is slightly
deformed with respect to the standard geoid.

• The Earth’s rotation axis and equatorial plane are perpendicular, so that the
rotation and geopolar axes are identical. In reality, these axes are slightly
misaligned, and the equatorial plane wobbles as the Earth rotates. This
effect is negligible in most applications.

• The only noninertial effect in Earth-fixed coordinates is due to the Earth’s
rotation about its axis. This is a rotating, geocentric system. The blockset
ignores the Earth’s motion around the Sun, the Sun’s motion in the Galaxy,
and the Galaxy’s motion through cosmos. In most applications, only the
Earth’s rotation matters.

This approximation must be changed for spacecraft sent into deep space, i.e.,
outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets
The Aerospace Blockset uses the standard WGS-84 geoid to model the Earth.
You can change the equatorial axis length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body
that is well approximated by an oblate spheroid by changing the spheroid size,
flattening, and rotation rate. If the celestial body is rotating westward
(retrogradely), make the rotation rate negative.

Coordinate Systems for Modeling
Modeling aircraft and spacecraft is simplest if you use a coordinate system
fixed in the body itself. In the case of aircraft, the forward direction is modified
by the presence of wind, and the craft’s motion through the air is not the same
as its motion relative to the ground.

See the “Equations of Motion Library” on page 4-6 for further details on how
the Aerospace Blockset implements body and wind coordinates.

2 Using the Aerospace Blockset

2-22

Body Coordinates
The noninertial body coordinate system is fixed in both origin and orientation
to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

• The x-axis points through the nose of the craft.

• The y-axis points to the right of the x-axis (facing in the pilot’s direction of
view), perpendicular to the x-axis.

• The z-axis points down through the bottom the craft, perpendicular to the x-y
plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving along these
axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles P, Q, R
or φ, θ, ψ. They are

• P or φ: Roll about the x-axis

• Q or θ: Pitch about the y-axis

• R or ψ: Yaw about the z-axis

About Aerospace Coordinate Systems

2-23

Wind Coordinates
The noninertial wind coordinate system has its origin fixed in the rigid aircraft.
The coordinate system orientation is defined relative to the craft’s velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.

• The x-axis points in the direction of V.

• The y-axis points to the right of the x-axis (facing in the direction of V),
perpendicular to the x-axis.

• The z-axis points perpendicular to the x-y plane in whatever way needed to
satisfy the RH rule with respect to the x- and y-axes.

Translational Degrees of Freedom. Translations are defined by moving along these
axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles φ, γ, χ.
They are

• φ: Bank angle about the x-axis

• γ: Flight path about the y-axis

• χ: Heading angle about the z-axis

Coordinate Systems for Navigation
Modeling aerospace trajectories requires positioning and orienting the aircraft
or spacecraft with respect to the rotating Earth. Navigation coordinates are
defined with respect to the center and surface of the Earth.

2 Using the Aerospace Blockset

2-24

Geocentric and Geodetic Latitudes
The geocentric latitude λ on the Earth’s surface is defined by the angle
subtended by the radius vector from the Earth’s center to the surface point
with the equatorial plane.

The geodetic latitude μ on the Earth’s surface is defined by the angle subtended
by the surface normal vector n and the equatorial plane.

About Aerospace Coordinate Systems

2-25

NED Coordinates
The north-east-down (NED) system is a noninertial system with its origin fixed
at the aircraft or spacecraft’s center of gravity. Its axes are oriented along the
geodetic directions defined by the Earth’s surface.

• The x-axis points north parallel to the geoid surface, in the polar direction.

• The y-axis points east parallel to the geoid surface, along a latitude curve.

• The z-axis points downward, toward the Earth’s surface, antiparallel to the
surface’s outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth’s
surface.

ECI Coordinates
The Earth-centered inertial (ECI) system is a mixed inertial system. It is
oriented with respect to the Sun. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward in the Earth’s equatorial plane exactly at the Sun.
(This rule ignores the Sun’s oblique angle to the equator, which varies with
season. The actual Sun always remains in the x-z plane.)

• The y-axis points into the eastward quadrant, perpendicular to the x-z plane
so as to satisfy the RH rule.

2 Using the Aerospace Blockset

2-26

Earth-Centered Coordinates

ECEF Coordinates
The Earth-center, Earth-fixed (ECEF) system is a noninertial system that
rotates with the Earth. Its origin is fixed at the center of the Earth.

• The z-axis points northward along the Earth’s rotation axis.

• The x-axis points outward along the intersection of the Earth’s equatorial
plane and prime meridian.

• The y-axis points into the eastward quadrant, perpendicular to the x-z plane
so as to satisfy the RH rule.

Coordinate Systems for Display
Several display tools are available for use with the Aerospace Blockset. Each
has a specific coordinate system for rendering motion.

About Aerospace Coordinate Systems

2-27

MATLAB Graphics Coordinates
See the MATLAB Graphics documentation for more information about the
MATLAB Graphics coordinate axes.

MATLAB Graphics uses this default coordinate axis orientation:

• The x-axis points out of the screen.

• The y-axis points to the right.

• The z-axis points up.

FlightGear Coordinates
FlightGear is an open-source, third-party flight simulator with an interface
supported by Aerospace Blockset.

• “Working with the Flight Simulator Interface” on page 2-34 discusses the
blockset interface to FlightGear.

• See the FlightGear documentation at www.flightgear.org for complete
information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the
standard body coordinate system about the y-axis by −180 degrees:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive toward the right of the vehicle.

• The z-axis is positive upward, e.g., wheels typically have the lowest z values.

http://www.flightgear.org/

2 Using the Aerospace Blockset

2-28

AC3D Coordinates
AC3D is a low-cost, widely used, geometry editor available from www.ac3d.org.
Its body-fixed coordinates are formed by inverting the three standard body
coordinate axes:

• The x-axis is positive toward the back of the vehicle.

• The y-axis is positive upward, e.g., wheels typically have the lowest y values.

• The z-axis is positive to the left of the vehicle.

References
Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate
Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox User’s Guide, The MathWorks, Inc., Natick, Massachusetts.
www.mathworks.com/access/helpdesk/help/toolbox/map/.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA,
Reston, Virginia, 2000.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed.,
Aircraft Control and Simulation, Wiley-Interscience, New York, 2003.

Thomson, W. T., Introduction to Space Dynamics, John Wiley & Sons, New
York, 1961/Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84), www.wgs84.com.

http://www.mathworks.com/access/helpdesk/help/toolbox/map/
http://www.wgs84.com/
http://www.ac3d.org

Introducing the Flight Simulator Interface

2-29

Introducing the Flight Simulator Interface
The Aerospace Blockset supports an interface to the third-party FlightGear
flight simulator, an open source software package available through a GNU
General Public License (GPL).

• “About the FlightGear Interface”

• “Obtaining FlightGear”

• “Configuring Your Computer for FlightGear” on page 2-30

• “Installing and Starting FlightGear” on page 2-33

About the FlightGear Interface
The FlightGear flight simulator interface included with Aerospace Blockset is
a unidirectional transmission link from Simulink to FlightGear using
FlightGear’s published net_fdm binary data exchange protocol. Data is
transmitted via UDP network packets to a running instance of FlightGear.

FlightGear is a separate software entity neither created, owned, nor
maintained by The MathWorks.

• To report bugs or request enhancements to the Aerospace Blockset
FlightGear interface blocks, contact MathWorks Technical Support by
sending e-mail to support@mathworks.com or suggest@mathworks.com,
respectively.

• To report bugs or request enhancements to FlightGear itself, visit
www.flightgear.org and use the contact page.

Obtaining FlightGear
You can obtain FlightGear from www.flightgear.org in the download area or
by ordering CDs from FlightGear. The download area contains extensive
documentation for installation and configuration. Because FlightGear is an
open source project, source downloads are also available for customization and
porting to custom environments.

Aerospace Blockset supports the standard binary distributions of FlightGear
versions 0.9.3, 0.9.8a, and 0.9.9. If you would like to use other stable releases
with Aerospace Blockset, send e-mail to suggest@mathworks.com.

http://www.flightgear.org
http://www.flightgear.org

2 Using the Aerospace Blockset

2-30

Configuring Your Computer for FlightGear
You must have a high performance graphics card with stable drivers to use
FlightGear. For more information, see the FlightGear CD distribution or the
hardware requirements and documentation areas of the FlightGear Web site,
www.flightgear.org.

MathWorks tests of FlightGear’s performance and stability indicate significant
sensitivity to computer video cards, driver versions, and driver settings. You
need OpenGL support with hardware acceleration activated. The OpenGL
settings are particularly important. Without proper setup, performance can
drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.

Graphics Recommendations for Windows
The MathWorks recommends the following for Windows users:

• Choose a graphics card with good OpenGL performance.

• Always use the latest tested and stable driver release for your video card.
Test the driver thoroughly on a few computers before deploying to others.

For Microsoft Windows 2000 or XP systems running on x86 (32-bit) or
AMD-64/EM64T chip architectures, the graphics card operates in the
unprotected kernel space known as Ring Zero. This means that glitches in
the driver can cause Windows to lock or crash. Before buying a large number
of computers for 3-D applications, test, with your vendor, one or two
computers to find a combination of hardware, operating system, drivers, and
settings that are stable for your applications.

Setting Up OpenGL Graphics on Windows
For complete information on OpenGL settings, go to the OpenGL Web site:
www.opengl.org/documentation/index.html.

Follow these steps to optimize your video card settings. Your driver’s panes
might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on your
video card. On Windows, access this configuration through Start > Settings
> Control Panel > Display, which opens the following dialog box. Select the
Settings tab.

http://www.opengl.org/documentation/index.html
http://www.flightgear.org

Introducing the Flight Simulator Interface

2-31

2 Click the Advanced button in the lower right of the dialog box, which brings
up the graphics card’s custom configuration dialog box, and go to the
OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL
pane looks like this:

2 Using the Aerospace Blockset

2-32

3 For best performance, move the Main Settings slider near the top of the
dialog box to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in
the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known
as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon
9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2
fps are achieved in 32-bit color mode.

Setup on Linux, Macintosh, and Other Platforms
FlightGear distributions are available for Linux, Macintosh, and other UNIX
platforms from the FlightGear Web site, www.flightgear.org. Installation on
these platforms, like Windows, requires careful configuration of graphics cards
and drivers. Consult the documentation and hardware requirements sections
at the FlightGear Web site.

http://www.flightgear.org

Introducing the Flight Simulator Interface

2-33

Using MATLAB Graphics Controls to Configure Your OpenGL Settings
You can also control your OpenGL rendering from the MATLAB command line
with the MATLAB Graphics opengl command. Consult the opengl command
reference for more information.

Installing and Starting FlightGear
The extensive FlightGear documentation guides you through the installation
in detail. Consult the documentation section of the FlightGear Web site for
complete installation instructions: www.flightgear.org.

Keep the following points in mind:

• Generous central processor speed, system and video RAM, and virtual
memory are essential for good flight simulator performance.

The MathWorks recommends a minimum of 512 megabytes of system RAM
and 128 megabytes of video RAM for reasonable performance.

• Be sure to have sufficient disk space for the FlightGear download and
installation.

• The MathWorks recommends configuring your computer’s graphics card
before you install FlightGear. See the preceding section, “Configuring Your
Computer for FlightGear” on page 2-30.

• Shutting down all running applications (including MATLAB) before
installing FlightGear is recommended.

• MathWorks tests indicate that the operational stability of FlightGear is
especially sensitive during startup. It is best to not move, resize, mouse over,
overlap, or cover up the FlightGear window until the initial simulation scene
appears after the startup splash screen fades out.

• The current releases of FlightGear are optimized for flight visualization at
altitudes below 100,000 feet. FlightGear does work well or at all with very
high altitude and orbital views.

http://www.flightgear.org

2 Using the Aerospace Blockset

2-34

Working with the Flight Simulator Interface
Use this section to learn how to use the FlightGear flight simulator and
Aerospace Blockset to visualize your Simulink aircraft models:

• “About Aircraft Geometry Models”

• “Working with Aircraft Geometry Models” on page 2-37

• “Running FlightGear with Simulink” on page 2-39

• “Running the NASA HL-20 Demo with FlightGear” on page 2-48

If you have not yet installed FlightGear, see “Introducing the Flight Simulator
Interface” on page 2-29.

Simulink-Driven HL-20 Model in a Landing Flare at KSFC

About Aircraft Geometry Models
Before you can visualize your aircraft’s dynamics, you need to create or obtain
an aircraft model file compatible with FlightGear. This section explains how to
do this.

Working with the Flight Simulator Interface

2-35

Aircraft Geometry Editors and Formats
You have a competitive choice of over twelve 3-D geometry file formats
supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format,
which has the suffix *.ac. AC3D is a low-cost geometry editor available from
www.ac3d.org. Another popular 3-D editor for aircraft models is Flight Sim
Design Studio, distributed by Abacus Publications at www.abacuspub.com.

Aircraft Model Structure and Requirements
Aircraft models live in the FlightGearRoot/data/Aircraft/ directory and
subdirectories. A complete aircraft model must contain a directory linked
through the required aircraft master file named model-set.xml.

All other model elements are optional. This is a partial list of the optional
elements you can put in an aircraft data directory:

• Vehicle objects and their shapes and colors

• Vehicle objects’ surface bitmaps

• Variable geometry descriptions

• Cockpit instrument 3-D models

• Vehicle sounds to tie to events (e.g., engine, gear, wind noise)

• Flight dynamics model

• Simulator views

• Submodels (independently movable items) associated with the vehicle

Model behavior reverts to defaults when these elements are not used. For
example,

• Default sound: no vehicle-related sounds are emitted.

• Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you always
run FlightGear from the cockpit view, the aircraft geometry is often secondary
to the instrument geometries.

A how-to document for including optional elements is included in the
FlightGear documentation at:

http://www.flightgear.org/Docs/fgfs-model-howto.html

http://www.ac3d.org
http://www.abacuspub.com
http://www.flightgear.org/Docs/fgfs-model-howto.html

2 Using the Aerospace Blockset

2-36

Required Flight Dynamics Model Specification
The flight dynamics model (FDM) specification is a required element for an
aircraft model. To set Simulink as the source of the flight dynamics model data
stream for a given geometry model, you put this line in
data/Aircraft/model/model-set.xml:

<flight-model>network</flight-model>

Obtaining and Modifying Existing Aircraft Models
You can quickly build models from scratch by referencing instruments, sounds,
and other optional elements from existing FlightGear models. Such models
provide examples of geometry, dynamics, instruments, views, and sounds. It is
simple to copy an aircraft directory to a new name, rename the model-set.xml
file, modify it for network flight dynamics, and then run FlightGear with the
aircraft flag set to the name in model-set.xml.

Many existing 3-D aircraft geometry models are available for use with
FlightGear. Visit the download area of www.flightgear.org to see some of the
aircraft models available. Additional models can be obtained via Web search.
Search key words such as “flight gear aircraft model” are a good starting point.
Be sure to comply with copyrights when distributing these files.

Hardware Requirements for Aircraft Geometry Rendering
When creating your own geometry files, keep in mind that your graphics card
can efficiently render a limited number of surfaces. Some cards can efficiently
render fewer than 1000 surfaces with bitmaps and specular reflections at the
nominal rate of 30 frames per second. Other cards can easily render on the
order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect
of geometric complexity on graphics performance by varying the number of
aircraft model surfaces. An easy way to check this is to replace the full aircraft
geometry file with a simple shape, such as a single triangle, then test
FlightGear with this simpler geometry. If a geometry file is too complex for
smooth display, use a 3-D geometry editor to simplify your model by reducing
the number of surfaces in the geometry.

http://www.flightgear.org/Docs/fgfs-model-howto.html
http://www.flightgear.org

Working with the Flight Simulator Interface

2-37

Working with Aircraft Geometry Models
Once you have obtained, modified, or created an aircraft data file, you need to
put it in the correct directory for FlightGear to see it.

Importing Aircraft Models into FlightGear
To install a compatible model into FlightGear:

1 Go to your installed FlightGear directory. Open the data directory, then the
Aircraft directory: /FlightGear/data/Aircraft/.

2 Make a subdirectory /model/ here for your aircraft data.

3 Put model-set.xml in that subdirectory, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files
(/model/), instruments (/instruments/), and sounds (/sounds/).

Example: Animating Vehicle Geometries
This example illustrates how to prepare hinge line definitions for animated
elements such as vehicle control surfaces and landing gear. To enable
animation, each element must be a named entity in a geometry file. The
resulting code forms part of the HL20 lifting body model presented in “Running
the NASA HL-20 Demo with FlightGear” on page 2-48.

1 The standard body coordinates used in FlightGear geometry models form a
right-handed system, rotated from the standard body coordinate system in
Y by −180 degrees:

- X = positive toward the back of the vehicle

- Y = positive toward the right of the vehicle

- Z = positive is up, e.g., wheels typically have the lowest Z values.

See “About Aerospace Coordinate Systems” on page 2-20 for more details.

2 Find two points that lie on the desired named-object hinge line in body
coordinates and write them down as XYZ triplets or put them into a
MATLAB calculation like this:

a = [2.98, 1.89, 0.53];
b = [3.54, 2.75, 1.46];

2 Using the Aerospace Blockset

2-38

3 Calculate the difference between the points:

pdiff = b - a
pdiff =

0.5600 0.8600 0.9300

4 The hinge point is either of the points in step 2 (or the midpoint as shown
here):

mid = a + pdiff/2
mid =

3.2600 2.3200 0.9950

5 Put the hinge point into the animation scope in model-set.xml:

<center>
<x-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>

</center>

6 Use the difference from step 3 to define the relative motion vector in the
animation axis:

<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>

</axis>

7 Put these steps together to obtain the complete hinge line animation used in
the HL20 demo model:

<animation>
<type>rotate</type>
<object-name>RightAileron</object-name>
<property>/surface-positions/right-aileron-pos-norm</property>
<factor>30</factor>
<offset-deg>0</offset-deg>
<center>
<x-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>

Working with the Flight Simulator Interface

2-39

</center>
<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>

</axis>
</animation>

Running FlightGear with Simulink
To run a Simulink model of your aircraft and simultaneously animate it in
FlightGear with an aircraft data file model-set.xml, you need to configure the
aircraft data file and modify your Simulink model with some new blocks.

These are the main steps to connecting and using FlightGear with Simulink:

• “Setting the Flight Dynamics Model to Network in the Aircraft Data File” on
page 2-39 explains how to create the network connection you need.

• “Obtaining the Destination IP Address” on page 2-40 starts by determining
the IP address of the computer running FlightGear.

• “Adding and Connecting Interface Blocks” on page 2-40 shows how to add
and connect interface and pace blocks to your Simulink model.

• “Creating a FlightGear Run Script” on page 2-43 shows how to write a
FlightGear run script compatible with your Simulink model.

• “Starting FlightGear” on page 2-46 guides you through the final steps to
making Simulink work with FlightGear.

• “Improving Performance” on page 2-48 helps you speed your model up.

Setting the Flight Dynamics Model to Network in the Aircraft Data File
Be sure to

• Remove any pre-existing flight dynamics model (FDM) data from the aircraft
data file.

• Indicate in the aircraft data file that its FDM is streaming from the network
by adding this line:

<flight-model>network</flight-model>

2 Using the Aerospace Blockset

2-40

Obtaining the Destination IP Address
You need the destination IP address for your Simulink model to stream its
flight data to FlightGear.

• If you know your computer’s name, enter at the MATLAB command line:
java.net.InetAddress.getByName('www.mathworks.com')

• If you are running FlightGear and Simulink on the same computer, get your
computer’s name by entering at the MATLAB command line:

java.net.InetAddress.getLocalHost

• If you are working in Windows, get your computer’s IP address by entering
at the DOS prompt:

ipconfig /all

Examine the IP address entry in the resulting output. There is one entry per
Ethernet device.

Adding and Connecting Interface Blocks
The easiest way to connect your model to FlightGear with the Aerospace
Blockset is to use the FlightGear Preconfigured 6DoF Animation block:

FlightGear Preconfigured 6DoF Animation Block

Working with the Flight Simulator Interface

2-41

The FlightGear Preconfigured 6DoF Animation block is a subsystem
containing the Pack net_fdm Packet for FlightGear and Send net_fdm Packet
to FlightGear blocks:

Pack and Send net_fdm Packet to FlightGear Blocks

These transmit data to a FlightGear session. The blocks are separate for
maximum flexibility and compatibility.

• The Pack net_fdm Packet for FlightGear block formats a binary structure
compatible with FlightGear from model inputs. In its default configuration,
only the 6DoF ports are shown, but you can configure the full FlightGear
interface supporting more than 50 distinct signals from the block dialog box:

2 Using the Aerospace Blockset

2-42

• The Send net_fdm Packet to FlightGear block transmits this packet via UDP
to the specified IP address and port where a FlightGear session awaits an
incoming datastream.

• The Simulation Pace block, available in the Animation Support Utilities
Sublibrary, slows down the simulation so that its aggregate run rate is 1
second of simulation time per second of clock time. You can also use it to
specify other ratios of simulation time to clock time.

Working with the Flight Simulator Interface

2-43

Creating a FlightGear Run Script
To start FlightGear with the desired initial conditions (location, date, time,
weather, operating modes), it is best to create a run script by using the
Generate Run Script block or the interface included in FlightGear.

If you make separate run scripts for each model you intend to link to
FlightGear and place them in separate directories, run the appropriate script
from MATLAB just before starting your Simulink model.

Using the Generate Run Script Block. The easiest way to create a run script is by
using the Generate Run Script block. Use the following procedure:

1 Open the Flight Simulator Interfaces Sublibrary of the Animation Library.

2 Create a new Simulink model or open an existing model.

3 Drag a Generate Run Script block into the Simulink diagram.

2 Using the Aerospace Blockset

2-44

4 Double-click the Generate Run Script block. Its dialog opens.

5 In the Output file name field, type the name of the output file. This name
should be the name of the command, with the .bat extension, you want to
use to start FlightGear with these initial parameters.

For example, if your filename is runfg.bat, use the runfg command to
execute the run script and start FlightGear.

6 In the FlightGear base directory field, specify the name of your FlightGear
installation directory.

Working with the Flight Simulator Interface

2-45

7 In the FlightGear geometry model name field, specify the name of the
subdirectory, in the FlightGear/data/Aircraft directory, containing the
desired model geometry.

8 Specify the initial conditions as needed.

9 Click the Generate Script button at the top of the Parameters area.

Aerospace Blockset generates the run script, and saves it in your MATLAB
working directory under the filename that you specified in the Output file
name field.

10 Repeat steps 5 through 9 to generate other run scripts, if needed.

11 Click OK to close the dialog box. You do not need to save the Generate Run
Script block with the Simulink model.

The Generate Run Script block saves the run script as a text file in your
working directory. This is an example of the contents of a run script file:

cd D:\Applications\FlightGear-0.9.8a

SET FG_ROOT=D:\Applications\FlightGear-0.9.8a\data

.\bin\win32\fgfs --aircraft=HL20
--fdm=network,localhost,5501,5502,5503 --fog-fastest
--disable-clouds --start-date-lat=2004:06:01:09:00:00
--disable-sound --in-air --enable-freeze --airport-id=KSFO
--runway=10L --altitude=7224 --heading=113 --offset-distance=4.72
--offset-azimuth=0

Using the Interface Provided with FlightGear. The FlightGear launcher GUI (part of
FlightGear, not Aerospace Blockset) lets you build simple and advanced
options into a visible FlightGear run command:

2 Using the Aerospace Blockset

2-46

Starting FlightGear
If your computer has enough computational power to run both Simulink and
FlightGear at the same time, a simple way to start FlightGear is to create a
MATLAB desktop button containing the following command to execute a run
script like the one created above:

dos('runfg &')

To create a desktop button:

1 From the Start button on your MATLAB desktop, click Shortcuts > New
Shortcut. The Shortcut Editor dialog opens.

2 Set the Label, Callback, Category, and Icon fields as shown in the
following figure.

Working with the Flight Simulator Interface

2-47

3 Click Save.

The FlightGear toolbar button appears in your MATLAB desktop. If you
click it, the runfg.bat file runs in the current directory.

Once you have completed the setup, start FlightGear and run your model:

1 Make sure your model is in a writable directory. Open the model, and update
the diagram. This step ensures that any referenced block code is compiled
and that the block diagram is compiled before running. Once you start
FlightGear, it uses all available processor power while it is running.

2 Click the FlightGear button or run the FlightGear run script manually.

2 Using the Aerospace Blockset

2-48

3 When FlightGear starts, it displays the initial view at the initial coordinates
specified in the run script. If you are running Simulink and FlightGear on
different computers, arrange to view the two displays at the same time.

4 Now begin the simulation and view the animation in FlightGear.

Improving Performance
If your Simulink model is complex and cannot run at the aggregate rate needed
for the visualization, you might need to

• Use the Simulink Accelerator to speed up your model execution.

• Free up processor power by running the Simulink model on one computer
and FlightGear on another computer. Use the Destination IP Address
parameter of the Send net_fdm Packet to FlightGear block to specify the
network address of the computer where FlightGear is running.

Running the NASA HL-20 Demo with FlightGear
Aerospace Blockset contains a demo model of the NASA HL-20 lifting body that
uses the FlightGear interface.

You need to have FlightGear installed and configured before attempting to
simulate this model. See “Introducing the Flight Simulator Interface” on
page 2-29.

To run this demo:

1 Copy the HL20 folder from matlabroot\toolbox\aeroblks\aerodemos\
directory to FlightGear\data\Aircraft\ directory. This folder contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml. The
file matlabroot\toolbox\aeroblks\aerodemos\HL20\models\HL20.xml
defines the geometry.

For more about this step, see “Importing Aircraft Models into FlightGear”
on page 2-37.

2 Start MATLAB. Open the demo either by entering asbhl20 in the MATLAB
Command Window or by finding the demo entry (NASA HL-20 with
FlightGear Interface) in the Demos browser and clicking Open this model
on its demo page. The model opens.

Working with the Flight Simulator Interface

2-49

3 If this is your first time running FlightGear for this model, double-click the
Generate Run Script block to create a run script. Make sure to specify your
FlightGear installation directory in the FlightGear base directory field.
For more information, see “Creating a FlightGear Run Script” on page 2-43.

4 Execute the script you just created manually by entering the following at the
MATLAB Command Line:

dos('runfg &')

If you created a FlightGear desktop button, you can click it instead to start
the run script and start FlightGear. For more information, see “Starting
FlightGear” on page 2-46.

5 Now start the simulation and view the animation in FlightGear.

Tip With the FlightGear window in focus, press the V key to alternate
between the different aircraft views: cockpit view, helicopter view, chase view,
and so on.

2 Using the Aerospace Blockset

2-50

3

Case Studies

These case studies illustrate how to model realistic aerospace problems with Simulink and the
Aerospace Blockset.

Ideal Airspeed Correction (p. 3-2) Calculating indicated and true airspeed

1903 Wright Flyer (p. 3-9) Modeling the airframe, environment, and pilot of the first
aircraft, the Wright Flyer

NASA HL-20 Lifting Body Airframe
(p. 3-19)

Modeling the airframe of a NASA HL-20 lifting body, a
low-cost complement to the Space Shuttle orbiter

Missile Guidance System (p. 3-33) Designing and simulating a three-degrees-of-freedom
missile guidance system

3 Case Studies

3-2

Ideal Airspeed Correction
This case study simulates indicated and true airspeed. It constitutes a
fragment of a complete aerodynamics problem, including only measurement
and calibration.

The following sections demonstrate the details:

• “Airspeed Correction Models” shows how to open the models.

• “Measuring Airspeed” on page 3-3 describes the different types of airspeed.

• “Modeling Airspeed Correction” on page 3-4 describes how the Ideal
Airspeed Correction block is implemented.

• “Simulating Airspeed Correction” on page 3-7 runs the model.

Airspeed Correction Models
To view the airspeed correction models, enter the following at the MATLAB
command line:

aeroblk_indicated
aeroblk_calibrated

aeroblk_indicated Model

Ideal Airspeed Correction

3-3

aeroblk_calibrated Model

Measuring Airspeed
To measure airspeed, most light aircraft designs implement pitot-static
airspeed indicators based on Bernoulli’s principle. Pitot-static airspeed
indicators measure airspeed by an expandable capsule that expands and
contracts with increasing and decreasing dynamic pressure. This is known as
calibrated airspeed (CAS) and is what a pilot sees in the cockpit of an aircraft.

To compensate for measurement errors, it helps to distinguish three types of
airspeed.

Airspeed Type Description See Also

Calibrated Indicated airspeed
corrected for calibration
error

“Calibration Error” on
page 3-4

Equivalent Calibrated airspeed
corrected for
compressibility error

“Compressibility Error”
on page 3-4

True Equivalent airspeed
corrected for density error

“Density Error” on
page 3-4

3 Case Studies

3-4

Calibration Error
An airspeed sensor features a static vent to maintain its internal pressure
equal to atmospheric pressure. Position and placement of the static vent with
respect to the angle of attack and velocity of the aircraft determines the
pressure inside the airspeed sensor and therefore the calibration error. Thus,
a calibration error is specific to an aircraft’s design.

An airspeed calibration table, which is usually included in the pilot operating
handbook or other aircraft documentation, helps pilots convert the indicated
airspeed to the calibrated airspeed.

Compressibility Error
The density of air is not constant, and the compressibility of air increases with
altitude and airspeed, or when contained in a restricted volume. A pitot-static
airspeed sensor contains a restricted volume of air. At high altitudes and high
airspeeds, calibrated airspeed is always higher than equivalent airspeed.
Equivalent airspeed can be derived by adjusting the calibrated airspeed for
compressibility error.

Density Error
At high altitudes, airspeed indicators read lower than true airspeed because
the air density is lower. True airspeed represents the compensation of
equivalent airspeed for the density error, the difference in air density at
altitude from the air density at sea level, in a standard atmosphere.

Modeling Airspeed Correction
The aeroblk_indicated and aeroblk_calibrated models show how to take
true airspeed and correct it to indicated airspeed for instrument display in a
Cessna 150M Commuter light aircraft. The aeroblk_indicated model
implements a conversion to indicated airspeed. The aeroblk_calibrated
model implements a conversion to true airspeed.

Each model consists of two main components:

• “COESA Atmosphere Model Block” on page 3-5 calculates the change in
atmospheric conditions with changing altitude.

• “Ideal Airspeed Correction Block” on page 3-5 transforms true airspeed to
calibrated airspeed and vice versa.

Ideal Airspeed Correction

3-5

COESA Atmosphere Model Block
The COESA Atmosphere Model block is a mathematical representation of the
U.S. 1976 COESA (Committee on Extension to the Standard Atmosphere)
standard lower atmospheric values for absolute temperature, pressure,
density, and speed of sound for input geopotential altitude. Below 32,000
meters (104,987 feet), the U.S. Standard Atmosphere is identical with the
Standard Atmosphere of the ICAO (International Civil Aviation Organization).

The aeroblk_indicated and aeroblk_calibrated models use the COESA
Atmosphere Model block to supply the speed of sound and air pressure inputs
for the Ideal Airspeed Correction block in each model.

Ideal Airspeed Correction Block
The Ideal Airspeed Correction block compensates for airspeed measurement
errors to convert airspeed from one type to another type. The following table
contains the Ideal Airspeed Correction block’s inputs and outputs.

In the aeroblk_indicated model, the Ideal Airspeed Correction block
transforms true to calibrated airspeed. In the aeroblk_calibrated model, the
Ideal Airspeed Correction block transforms calibrated to true airspeed.

The following sections explain how the Ideal Airspeed Correction block
mathematically represents airspeed transformations:

• “True Airspeed Implementation” on page 3-6

• “Calibrated Airspeed Implementation” on page 3-6

• “Equivalent Airspeed Implementation” on page 3-6

Airspeed Input Airspeed Output

True Airspeed Equivalent airspeed

Calibrated airspeed

Equivalent Airspeed True airspeed

Calibrated airspeed

Calibrated Airspeed True airspeed

Equivalent airspeed

3 Case Studies

3-6

True Airspeed Implementation. True airspeed (TAS) is implemented as an input
and as a function of equivalent airspeed (EAS), expressible as

where

Calibrated Airspeed Implementation. Calibrated airspeed (CAS), derived using the
compressible form of Bernoulli’s equation and assuming isentropic conditions,
can be expressed as

where

Equivalent Airspeed Implementation. Equivalent airspeed (EAS) is the same as
CAS, except static pressure at sea level is replaced by static pressure at
altitude.

α Speed of sound at altitude in m/s

δ Relative pressure ratio at altitude

a0 Speed of sound at mean sea level in m/s

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Ratio of specific heats

Dynamic pressure at mean sea level in N/m2

TAS EAS a×
a0 δ

-----------------------=

CAS
2γP0

γ 1–()ρ0
----------------------- q

P0
------ 1+⎝ ⎠
⎛ ⎞ γ 1–() γ⁄

1–=

ρ0

P0

γ

q

Ideal Airspeed Correction

3-7

The symbols are defined as follows:

Simulating Airspeed Correction
In the aeroblk_indicated model, the aircraft is defined to be traveling at a
constant speed of 72 knots (true airspeed) and altitude of 500 feet. The flaps
are set to 40 degrees. The COESA Atmosphere Model block takes the altitude
as input and outputs the speed of sound and air pressure. Taking the speed of
sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction
block converts true airspeed to calibrated airspeed. Finally, the Calculate IAS
subsystem uses the flap setting and calibrated airspeed to calculate indicated
airspeed.

The model’s Display block shows both indicated and calibrated airspeeds.

In the aeroblk_calibrated model, the aircraft is defined to be traveling at a
constant speed of 70 knots (indicated airspeed) and altitude of 500 feet. The

Air density at mean sea level in kg/m3

Static pressure at altitude in N/m2

Ratio of specific heats

Dynamic pressure at mean sea level in N/m2

EAS 2γP
γ 1–()ρ0

----------------------- q
P
---- 1+⎝ ⎠
⎛ ⎞ γ 1–() γ⁄

1–=

ρ0

P

γ

q

3 Case Studies

3-8

flaps are set to 10 degrees. The COESA Atmosphere Model block takes the
altitude as input and outputs the speed of sound and air pressure. The
Calculate CAS subsystem uses the flap setting and indicated airspeed to
calculate the calibrated airspeed. Finally, using the speed of sound, air
pressure, and true calibrated airspeed as inputs, the Ideal Airspeed Correction
block converts calibrated airspeed back to true airspeed.

The model’s Display block shows both calibrated and true airspeeds.

1903 Wright Flyer

3-9

1903 Wright Flyer

Note The final section of this study requires the Virtual Reality Toolbox.

This case study describes a model of the 1903 Wright Flyer. Built by Orville
and Wilbur Wright, the Wright Flyer took to the skies in December 1903 and
opened the age of controlled flight. The Wright brothers’ flying machine
achieved the following goals:

• Left the ground under its own power

• Moved forward and maintained its speed

• Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal
stability of the Wright Flyer and therefore modeled only forward and vertical
motion along with the pitch angle. The Wright Flyer suffered from numerous
engineering challenges, including dynamic and static instability. Laterally, the
Flyer tended to overturn in crosswinds and gusts, and longitudinally, its pitch
angle would undulate [2].

Under these constraints, the model recreates the longitudinal flight dynamics
that pilots of the Wright Flyer would have experienced. Because they were able
to control lateral motion, Orville and Wilbur Wright were able to maintain a
relatively straight flight path.

The study consists of these sections:

• “Wright Flyer Model” on page 3-10 shows how to open the model used in this
case study.

• “Airframe Subsystem” on page 3-10 describes the airframe subsystem.

• “Environment Subsystem” on page 3-14 describes the environment
subsystem.

• “Pilot Subsystem” on page 3-15 describes the Pilot subsystem.

• “Running the Simulation” on page 3-16 provides a demonstration of the
Wright Flyer model, including a virtual world visualization.

http://www.mathworks.com/products/virtualreality/

3 Case Studies

3-10

Wright Flyer Model
Open the Wright Flyer model by entering aeroblk_wf_3dof at the MATLAB
command line.

Airframe Subsystem
The Airframe subsystem simulates the rigid body dynamics of the Wright Flyer
airframe, including elevator angle of attack, aerodynamic coefficients, forces
and moments, and three-degrees-of-freedom equations of motion.

1903 Wright Flyer

3-11

The Airframe subsystem consists of the following parts:

• “Elevator Angle of Attack Subsystem” on page 3-11

• “Aerodynamic Coefficients Subsystem” on page 3-12

• “Forces and Moments Subsystem” on page 3-13

• “3DoF (Body Axes) Block” on page 3-13

Elevator Angle of Attack Subsystem
The Elevator Angle of Attack subsystem calculates the effective elevator angle
for the Wright Flyer airframe and feeds its output to the Pilot subsystem.

3 Case Studies

3-12

Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the aerodynamic coefficients, which are summed and
passed to the Forces and Moments subsystem. Stored in data sets, the
aerodynamic coefficients are determined by interpolation using PreLook-Up
blocks.

1903 Wright Flyer

3-13

Forces and Moments Subsystem
The aerodynamic forces and moments acting on the airframe are generated
from aerodynamic coefficients. The Forces and Moments subsystem calculates
the body forces and body moments acting on the airframe about the center of
gravity. These forces and moments depend on the aerodynamic coefficients,
thrust, dynamic pressure, and reference airframe parameters.

3DoF (Body Axes) Block
The 3DoF (Body Axes) block use equations of motion to define the linear and
angular motion of the Wright Flyer airframe. It also performs conversions from
the original model’s axis system and the body axes.

3 Case Studies

3-14

3DoF (Body Axes) Block Parameters

Environment Subsystem
The first and final flights of the Wright Flyer occurred on December 17, 1903.
Orville and Wilbur Wright chose an area near Kitty Hawk, North Carolina,
situated near the Atlantic coast. Wind gusts of more than 25 miles per hour
were recorded that day. After the final flight on that blustery December day, a
wind gust caught and overturned the Wright Flyer, damaging it beyond repair.

The Environment subsystem of the Wright Flyer model contains a variety of
blocks from the Environment sublibrary of the Aerospace Blockset, including
wind, atmosphere, and gravity, and calculates airspeed and dynamic pressure.
The Discrete Wind Gust Model block provides wind gusts to the simulated
environment. The other blocks are

• The Incidence and Airspeed block calculates the angle of attack and
airspeed.

• The COESA Atmosphere Model block calculates the air density.

• The Dynamic Pressure block computes the dynamic pressure from the air
density and velocity.

1903 Wright Flyer

3-15

• The WGS84 Gravity Block produces the gravity at the Wright Flyer’s
latitude and height.

Pilot Subsystem
The Pilot subsystem controls the aircraft by responding to both pitch angle
(attitude) and angle of attack. If the angle of attack differs from the set angle
of attack by more than one degree, the Pilot subsystem responds with a
correction of the elevator (canard) angle. When the angular velocity exceeds
+/− 0.02 rad/s, angular velocity and angular acceleration are also taken into
consideration with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without an
automatic controller, a reaction time of 0.06 seconds is optimal for successful
flight. The Delay of Pilot block recreates this effect by producing a delay of no
more than 0.08 second.

3 Case Studies

3-16

Running the Simulation
The default values for this simulation allow the Wright Flyer model to take off
and land successfully. The pilot reaction time (wf_B3) is set to 0.06 seconds, the
desired angle of attack (wf_alphaa) is constant, and the altitude attained is
low. The Wright Flyer model reacts similarly to the actual Wright Flyer. It
leaves the ground, moves forward, and lands on a point as high as that from
which it started. This model exhibits the longitudinal “undulation” in attitude
of the original aircraft.

Attitude Scope (Measured in Radians)

1903 Wright Flyer

3-17

A pilot with quick reaction times and ideal flight conditions makes it possible
to fly the Wright Flyer successfully. The Wright Flyer model confirms that
controlling its longitudinal motion was a serious challenge. The longest
recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note This section requires the Virtual Reality Toolbox.

The Wright Flyer model also provides a virtual world visualization, coded in
Virtual Reality Modeling Language (VRML) [3]. The VR Sink block in the main
model allows you to view the flight motion in three dimensions.

1903 Wright Flyer Virtual Reality World

References
[1] Hooven, Frederick J., “Longitudinal Dynamics of the Wright Brothers’
Early Flyers: A Study in Computer Simulation of Flight,” from The Wright
Flyer: An Engineering Perspective, ed. Howard S. Wolko, Smithsonian
Institution Press, 1987.

http://www.mathworks.com/products/virtualreality/

3 Case Studies

3-18

[2] Culick, F. E. C. and H. R. Jex, “Aerodynamics, Stability, and Control of the
1903 Wright Flyer,” from The Wright Flyer: An Engineering Perspective, ed.
Howard S. Wolko, Smithsonian Institution Press, 1987.

[3] Thaddeus Beier created the initial Wright Flyer model in Inventor format,
and Timothy Rohaly converted it to VRML.

Additional information about the 1903 Wright Flyer can be found at

• http://www.wrightexperience.com
• http://wright.nasa.gov

NASA HL-20 Lifting Body Airframe

3-19

NASA HL-20 Lifting Body Airframe
This case study models the airframe of a NASA HL-20 lifting body, a low-cost
complement to the Space Shuttle orbiter. The HL-20 is unpowered, but the
model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be
modeled, simulated, and analyzed. Ideally, this airframe should be modeled
quickly, reusing blocks or model structure to reduce validation time and leave
more time available for control design. In this study, the Aerospace Blockset
efficiently models portions of the HL-20 airframe. The remaining portions,
including calculation of the aerodynamic coefficients, are modeled with
Simulink. This case study examines the HL-20 airframe model and touches on
how the aerodynamic data are used in the model.

This study consists of these sections:

• “NASA HL-20 Lifting Body” provides an overview of the history and
purposes of the NASA HL-20 lifting body.

• “The HL-20 Airframe and Controller Model” on page 3-21 describes the
HL-20 combined plant and controller model.

• “References” on page 3-32 provides a selected bibliography.

NASA HL-20 Lifting Body
The HL-20, also known as the Personnel Launch System (PLS), is a lifting body
reentry vehicle designed to complement the Space Shuttle orbiter. It was
developed originally as a low-cost solution for getting to and from low Earth
orbit. It can carry up to 10 people and a limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically
with booster rockets or by transporting it in the payload bay of the Space
Shuttle orbiter. The HL-20 lifting body deorbits using a small onboard
propulsion system. Its reentry profile is nose first, horizontal, and unpowered.

3 Case Studies

3-20

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

• Rapid turnaround between landing and launch reduces operating costs.

• The HL-20 has exceptional flight safety.

• It can land conventionally on aircraft runways.

Potential uses for the HL-20 include

• Orbital rescue of stranded astronauts

• International Space Station crew exchanges

• Observation missions

• Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data
from HL-20 tests are being used in current NASA projects [2].

NASA HL-20 Lifting Body Airframe

3-21

The HL-20 Airframe and Controller Model
You can open the HL-20 airframe and controller model by entering
aeroblk_HL20 at the MATLAB command line.

Modeling Assumptions and Limitations
Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA
document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

• The airframe is assumed to be rigid and have constant mass, center of
gravity, and inertia, since the model represents only the unpowered reentry
portion of a mission.

• HL-20 is assumed to be a laterally symmetric vehicle.

• Compressibility (Mach) effects are assumed to be negligible.

• Control effectiveness is assumed to vary nonlinearly with angle of attack and
linearly with angle of deflection. Control effectiveness is not dependent on
sideslip angle.

3 Case Studies

3-22

• The nonlinear six-degrees-of-freedom aerodynamic model is a representation
of an early version of the HL-20. Therefore, the model is not intended for
realistic performance simulation of later versions of the HL-20.

The typical airframe model consists of a number of components, such as

• Equations of motion

• Environmental models

• Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which
model the typical airframe components:

• “6DoF (Euler Angles) Subsystem” on page 3-23

• “Environmental Models Subsystem” on page 3-24

• “Alpha, Beta, Mach Subsystem” on page 3-26

• “Aerodynamic Coefficients Subsystem” on page 3-27

• “Forces and Moments Subsystem” on page 3-31

NASA HL-20 Lifting Body Airframe

3-23

HL-20 Airframe Subsystem

6DoF (Euler Angles) Subsystem
The 6DoF (Euler Angles) subsystem contains the six-degrees-of-freedom
equations of motion for the airframe. In the 6DoF (Euler Angles) subsystem,
the body attitude is propagated in time using an Euler angle representation.
This subsystem is one of the equations of motion blocks from the Aerospace
Blockset. A quaternion representation is also available. See the 6DoF (Euler
Angles) and 6DoF (Quaternion) block reference pages for more information on
these blocks.

3 Case Studies

3-24

Environmental Models Subsystem
The Environmental Models subsystem contains the following subsystems and
blocks:

• The WGS84 Gravity Model block implements the mathematical
representation of the geocentric equipotential ellipsoid of the World Geodetic
System (WGS84).

See the WGS84 Gravity Model block reference page for more information on
this block.

• The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) standard lower atmospheric values for absolute
temperature, pressure, density, and speed of sound, given the input
geopotential altitude.

See the COESA Atmosphere Model block reference page for more
information on this block.

• The Wind Models subsystem contains the following blocks:

- The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information on
this block.

- The Discrete Wind Gust Model block implements a wind gust of the
standard “1 − cosine” shape.

See the Discrete Wind Gust Model block reference page for more
information on this block.

- The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference page
for more information on this block.

The environmental models implement mathematical representations within
standard references, such as U.S. Standard Atmosphere, 1976.

NASA HL-20 Lifting Body Airframe

3-25

Environmental Models in HL-20 Airframe Model

3 Case Studies

3-26

Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem
The Alpha, Beta, Mach subsystem calculates additional parameters needed for
the aerodynamic coefficient computation and lookup. These additional
parameters include

• Mach number

• Incidence angles ()

• Airspeed

• Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity
and corrects the body rates for wind angular acceleration.

α β,

NASA HL-20 Lifting Body Airframe

3-27

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta,
Mach Subsystem)

Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the six aerodynamic coefficients, which are
implemented as in reference [1]. The six aerodynamic coefficients follow.

Ground and landing gear effects are not included in this model.

Cx Axial-force coefficient

Cy Side-force coefficient

Cz Normal-force coefficient

Cl Rolling-moment coefficient

Cm Pitching-moment coefficient

Cn Yawing-moment coefficient

3 Case Studies

3-28

The contribution of each of these coefficients is calculated in the subsystems
(body rate, actuator increment, and datum), and then summed and passed to
the Forces and Moments subsystem.

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled
models of a preliminary subsonic aerodynamic model of the HL-20. The data
was curve fitted, and most of the aerodynamic coefficients are described by
polynomial functions of angle of attack and sideslip angle. In-depth details
about the aerodynamic data and the data reduction can be found in
reference [1].

The polynomial functions contained in the M-file aeroblk_init_hl20.m are
used to calculate lookup tables used by the model’s preload function. Lookup
tables substitute for polynomial functions. Depending on the order and
implementation of the function, using lookup tables can be more efficient than
recalculating values at each time step with functions. To further improve
efficiency, most tables are implemented as PreLook-up Index Search and
Interpolation (n-D) using PreLook-up blocks. These blocks improve
performance most when the model has a number of tables with identical

NASA HL-20 Lifting Body Airframe

3-29

breakpoints. These blocks reduce the number of times the model has to search
for a breakpoint in a given time step. Once the tables are populated by the
preload function, the aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided
among three subsystems:

• “Datum Coefficients Subsystem” on page 3-29

• “Body Rate Damping Subsystem” on page 3-30

• “Actuator Increment Subsystem” on page 3-31

Summing the Datum Coefficients, Body Rate Damping, and Actuator
Increments subsystem outputs generates the six aerodynamic coefficients used
to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem. The Datum Coefficients subsystem calculates
coefficients for the basic configuration without control surface deflection. These
datum coefficients depend only on the incidence angles of the body.

3 Case Studies

3-30

Body Rate Damping Subsystem. Dynamic motion derivatives are computed in the
Body Rate Damping subsystem.

NASA HL-20 Lifting Body Airframe

3-31

Actuator Increment Subsystem. Lookup tables determine the incremental changes
to the coefficients due to the control surface deflections in the Actuator
Increment subsystem. Available control surfaces include symmetric wing flaps
(elevator), differential wing flaps (ailerons), positive body flaps, negative body
flaps, differential body flaps, and an all-movable rudder.

Forces and Moments Subsystem. The Forces and Moments subsystem calculates
the body forces and body moments acting on the airframe about the center of
gravity. These forces and moments depend on the aerodynamic coefficients,
thrust, dynamic pressure, and reference airframe parameters.

3 Case Studies

3-32

Completing the Model
These subsystems that you have examined complete the HL-20 airframe. The
next step in the flight control design process is to analyze, trim, and linearize
the HL-20 airframe so that a flight control system can be designed for it. You
can see an example of an auto-land flight control for the HL-20 airframe in the
aeroblk_HL20 demo.

References
[1] Jackson, E. B., and C. L. Cruz, “Preliminary Subsonic Aerodynamic Model
for Simulation Studies of the HL-20 Lifting Body,” NASA TM4302 (August
1992).

This document is included in the ZIP file available from MATLAB Central as
file 1815.

[2] Morring, F., Jr., “ISS ‘Lifeboat’ Study Includes ELVs,” Aviation Week &
Space Technology (May 20, 2002).

Find additional information about the HL-20 lifting body at

• http://www.astronautix.com/craft/hl20.htm

• http://www.aviationnow.com/content/publication/awst/20020520/aw46
.htm (requires subscription)

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1815
http://www.mathworks.com/matlabcentral/

Missile Guidance System

3-33

Missile Guidance System
This case study explains the design and simulation of a guidance system for a
three-degrees-of-freedom missile. The model includes all aspects of the system,
from the missile airframe (plant) and environment to the controller.

• “Missile Guidance System Model” shows how to open the model used in this
study.

• “Modeling Airframe Dynamics” on page 3-34 describes the implementation
of the atmospheric equations and equations of motion for the missile
airframe.

• “Modeling a Classical Three-Loop Autopilot” on page 3-41 describes the
design of the missile autopilot to control the acceleration normal to the
missile body.

• “Modeling the Homing Guidance Loop” on page 3-43 describes the design of
a homing guidance loop to track the target and generate the demands that
are passed to the autopilot. This subsystem uses Stateflow.

• “Simulating the Missile Guidance System” on page 3-49 describes the
simulation of the model and evaluation of system performance.

• “Extending the Model” on page 3-51 examines a representation of the full
six-degrees-of-freedom equations of motion.

• “References” on page 3-52 provides a selected bibliography.

Note The Stateflow module in this demo is precompiled and does not require
Stateflow to be installed.

Missile Guidance System Model
To view the missile guidance system model, enter aeroblk_guidance at the
MATLAB command line.

The missile airframe and autopilot are contained in the Airframe & Autopilot
subsystem. The Seeker/Tracker and Guidance subsystems model the homing
guidance loop.

http://www.mathworks.com/products/stateflow/

3 Case Studies

3-34

Modeling Airframe Dynamics
The model of the missile airframe in this demo uses advanced control methods
applied to missile autopilot design [1], [2], [3]. The model represents a
tail-controlled missile traveling between Mach 2 and Mach 4, at altitudes
ranging between 3,050 meters (10,000 feet) and 18,290 meters (60,000 feet),
and with typical angles of attack in the range of ±20 degrees.

Missile Guidance System

3-35

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body
dynamics of the airframe. The aerodynamic forces and moments acting on the
missile body are generated from coefficients that are nonlinear functions of
both incidence and Mach number. You can model these dynamics easily with
the Aerospace Blockset.

The model of the missile airframe consists of two main components:

• “ISA Atmosphere Model Block” on page 3-36 calculates the change in
atmospheric conditions with changing altitude.

• “Aerodynamics & Equations of Motion Subsystem” on page 3-39 calculates
the magnitude of the forces and moments acting on the missile body and
integrates the equations of motion.

3 Case Studies

3-36

To view the missile airframe model, enter aeroblk_guidance_airframe at the
MATLAB command line.

ISA Atmosphere Model Block
The ISA Atmosphere Model block is an approximation of the International
Standard Atmosphere (ISA). This block implements two sets of equations. The
troposphere requires one set of equations, and the lower stratosphere requires
the other set. The troposphere lies between sea level and 11,000 meters (36,089
feet). The ISA model assumes a linear temperature drop with increasing
altitude in the troposphere. The lower stratosphere ranges between 11,000
meters (36,089 feet) and 20,000 meters (65,617 feet). The ISA models the lower
stratosphere by assuming that the temperature remains constant.

Missile Guidance System

3-37

Variation of Sound Speed and Air Density with Altitude

The following equations define the troposphere.

T To Lh–=

ρ ρo
T
To
------⎝ ⎠
⎛ ⎞

g
LR
-------- 1–

⋅=

P Po
T
To
------⎝ ⎠
⎛ ⎞

g
LR

⋅=

a γRT=

3 Case Studies

3-38

The following equations define the lower stratosphere.

The symbols are defined as follows:

You can look under the mask of the ISA Atmosphere Model block to see how
these equations are implemented.

Absolute temperature at mean sea level in kelvin (oK)

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Altitude in m

Height of the troposphere in m

Absolute temperature at altitude h in kelvin (oK)

ρ Air density at altitude h in kg/m3

Static pressure at altitude h in N/m2

Speed of sound at altitude h in m/s2

Temperature lapse rate in oK/m

Characteristic gas constant J/kg-oK

Ratio of specific heats

Acceleration due to gravity in m/s2

T To L hts⋅–=

P Po
T
To
------⎝ ⎠
⎛ ⎞

g
LR

e⋅ ⋅
g

RT
--------- hts h–()

=

ρ ρo
T
To
------⎝ ⎠
⎛ ⎞

g
LR
-------- 1–

e

g
RT
--------- hts h–()

⋅ ⋅=

a γRT=

T0

ρ0

P0

h

hts

T

P

a

L

R

γ

g

Missile Guidance System

3-39

Aerodynamics & Equations of Motion Subsystem
The Aerodynamics & Equations of Motion subsystem generates the forces and
moments applied to the missile in the body axes and integrates the equations
of motion that define the linear and angular motion of the airframe. The
aerodynamic coefficients are stored in data sets. During the simulation, the
value at the current operating condition is determined by interpolation using
the Interpolation (n-D) using PreLook-Up blocks.

These are the three-degrees-of-freedom body axis equations of motion, which
are defined in the Equations of Motion (Body Axes) block.

U· T Fx+() m⁄ qW– g θsin–=

W· Fz m⁄ qU g θcos+ +=

q· M Iyy⁄=

θ· q=

3 Case Studies

3-40

These are the aerodynamic forces and moments equations, which are defined
in the Aerodynamics subsystem.

These are the stability axes variables, which are calculated in the Incidence &
Airspeed block.

The symbols are defined as follows:

Attitude in radians

Body rotation rate in rad/s

Missile mass in kg

Acceleration due to gravity in m/s2

Moment of inertia about the y-axis in kg-m2

Acceleration in the Z body axis in m/s2

Change in body rotation rate in rad/s2

Thrust in the X body axis in N

Air density in kg/m3

Reference area in m2

Coefficient of aerodynamic force in the X body axis

Coefficient of aerodynamic force in the Z body axis

Coefficient of aerodynamic moment about the Y body axis

Fx qSrefCx Mach α,()=

Fz qSrefCz Mach α η,(,)=

M qSrefdrefCM Mach α η q, , ,()=

q 1
2
---ρV2

=

V U2 W2
+=

α W U⁄()atan=

θ

q

M

g

Iyy

W·

q·

T

ρ

Sref

CX

CZ

CM

Missile Guidance System

3-41

Modeling a Classical Three-Loop Autopilot
The missile autopilot controls the acceleration normal to the missile body. The
autopilot structure of this case study is a three-loop design using
measurements from an accelerometer located ahead of the missile’s center of
gravity and from a rate gyro to provide additional damping. The controller
gains are scheduled on incidence and Mach number and tuned for robust
performance at an altitude of 3,050 meters (10,000 feet).

Classical Autopilot

Reference length in m

Fin angle in rad

Aerodynamic force in the X body axis in N

Aerodynamic force in the Z body axis in N

Aerodynamic moment along the Y body axis

Dynamic pressure in Pa

Airspeed in m/s

Incidence in rad

Velocity in the X body axis in m/s

Velocity in the Z body axis in m/s

dref

η

FX

FZ

M

q

V

α

U

W

3 Case Studies

3-42

Designing an autopilot requires the following:

• “Trimming and Linearizing an Airframe Model” on page 3-42 explains how
to model the airframe pitch dynamics for several trimmed flight conditions.

• “Autopilot Design” on page 3-43 summarizes the autopilot design process.

Trimming and Linearizing an Airframe Model
Designing the autopilot with classical design techniques requires linear models
of the airframe pitch dynamics for several trimmed flight conditions. MATLAB
can determine the trim conditions and derive linear state-space models directly
from the nonlinear Simulink model. This step saves time and helps to validate
the model. The functions provided by Simulink Control Design or the Control
System Toolbox allow you to visualize the behavior of the airframe in terms of
open-loop frequency or time response.

The airframe trim demos show how to trim and linearize an airframe model.

• To run the demo based on the Control System Toolbox, enter
asbguidance_trimlinearize_cst. The results of this demo are displayed as
a Bode diagram in the LTI Viewer.

• The alternative demo, asbguidance_trimlinearize, uses Simulink Control
Design instead and produces identical results.

http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/control/
http://www.mathworks.com/products/control/

Missile Guidance System

3-43

Autopilot Design
Autopilot design can begin after the missile airframe has been linearized at a
number of flight conditions. Autopilot designs are typically carried out on a
number of linear airframe models derived at varying flight conditions across
the expected flight envelope. Implementing the autopilot in the nonlinear
model involves storing the autopilot gains in two-dimensional lookup tables
and incorporating an antiwindup gain to prevent integrator windup when the
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear
model is the best way to demonstrate satisfactory performance in the presence
of nonlinearities, such as actuator fin and rate limits and dynamically
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop
autopilot design.

Modeling the Homing Guidance Loop
The complete homing guidance loop consists of these two subsystems:

• The “Guidance Subsystem” on page 3-44 generates the normal acceleration
demands that are passed to the autopilot and uses Stateflow.

• The “Seeker/Tracker Subsystem” on page 3-47 returns measurements of the
relative motion between the missile and the target.

3 Case Studies

3-44

The autopilot is part of an inner loop within the overall homing guidance
system. Consult reference [4] for information on different types of guidance
systems and on the analysis techniques that are used to quantify guidance loop
performance.

Guidance Subsystem
Initially, the Guidance subsystem searches to locate the target’s position and
then generates demands during closed-loop tracking. A Stateflow chart
controls the transfer between the different modes of these operations.
Stateflow is the ideal tool for rapidly defining all the operational modes, both
during normal operation and during unusual situations.

Missile Guidance System

3-45

Guidance Processor State Chart. Mode switching is triggered by events generated
in Simulink or in the Stateflow chart. The variable Mode is passed to Simulink
and is used to control the Simulink model’s behavior and response. For
example, the Guidance Processor state chart, which is part of the Guidance
subsystem, shows how the system reacts in response to either losing the target
lock or failing to acquire the target’s position during the target search.

During the target search, this Stateflow state chart controls the tracker
directly by sending demands to the seeker gimbals (Sigma_d). Target
acquisition is flagged by the tracker once the target lies within the beam width
of the seeker (Acquire) and, after a short delay, closed-loop guidance begins.

3 Case Studies

3-46

Proportional Navigation Guidance. Once the seeker has acquired the target, a
proportional navigation guidance (PNG) law guides the missile until impact.
This form of guidance law is the most basic, used in guided missiles since the
1940s, and can be applied to radar-, infrared-, or television-guided missiles.
The navigation law requires measurements of the closing velocity between the
missile and target, which for a radar-guided missile can be obtained with a
Doppler tracking device, and an estimate for the rate of change of the inertial
sight line angle.

Proportional Navigation Guidance Measurements

Missile Guidance System

3-47

The diagram symbols are defined as follows:

Seeker/Tracker Subsystem
The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker
dish aligned with the target and provides the guidance law with an estimate of
the sight line rate.

Tracker and Sightline Rate Estimator. The Tracker and Sightline Rate Estimator is
the most elaborate subsystem of the Seeker/Tracker subsystem because of its
complex error modeling.

λ Navigation gain (> 2)

Vc Closing velocity

θb Body attitude

Sight line rate

σg Gimbal angle

σL Look angle

σd Dish angle

az_dem = λVc Demanded normal acceleration

θ· s

θ· s

3 Case Studies

3-48

The subsystem contains a number of feedback loops, estimated parameters,
and parasitic effects for the homing guidance.

• The tracker loop time constant tors is set to 0.05 second, a compromise
between maximizing speed of response and keeping the noise transmission
within acceptable levels.

• The stabilization loop compensates for body rotation rates. The gain Ks,
which is the loop crossover frequency, is set as high as possible subject to the
limitations of the stabilizing rate gyro’s bandwidth.

• The sight line rate estimate is a filtered value of the sum of the rate of change
of the dish angle measured by the stabilizing rate gyro and an estimated
value for the rate of change of the angular tracking error (e) measured by the
receiver. In this model, the bandwidth of the estimator filter is set to half
that of the bandwidth of the autopilot.

Radome Aberration. The Tracker and Sightline Rate Estimator subsystem also
models the radome aberration.

Missile Guidance System

3-49

Radome aberration is a parasitic feedback effect commonly modeled in
radar-guided missile designs and occurs because the shape of the protective
covering over the seeker distorts the returning signal and gives a false reading
of the look angle to the target. The distortion is, in general, a nonlinear function
of the current gimbal angle. A common approximation is to assume a linear
relationship between the gimbal angle and the magnitude of the distortion. The
approximation is valid for a limited range of angle. Other parasitic effects, such
as sensitivity to normal acceleration in the rate gyros, are often modeled as
well to test the robustness of the target tracker and estimator filters.

Simulating the Missile Guidance System
Running the guidance simulation demonstrates the performance of the overall
system. The target is defined to be traveling at a constant speed of 328 m/s on
a reciprocal course to the initial missile heading and 500 meters above the
initial missile position. The data, shown in the following figure, can be used to
determine if the missile can withstand the flight demands and complete the
mission to target.

3 Case Studies

3-50

Target acquisition occurs 0.69 second after search initiation, with closed-loop
guidance starting after 0.89 second. Impact with the target occurs at 3.46
seconds, with the range to target at the point of closest approach calculated to
be 0.26 meter.

Missile Guidance System

3-51

Extending the Model
Modeling the airframe and guidance loop in a single plane is only the start of
the design process. Extending the model to a full six-degrees-of-freedom
representation requires the implementation of the full equations of motion for
a rigid body.

Six degrees of freedom can be represented using a quaternion or Euler angles.

• The first implementation uses a quaternion to represent the angular
orientation of the body in space. The quaternion is appropriate when the
standard Euler angle definitions become singular as the pitch attitude tends
to ±90 degrees.

• The second implementation uses the standard Euler angle equations of
motion. Euler angles are appropriate when obtaining trim conditions and
modeling linear airframes. This model contains one of the
six-degrees-of-freedom equations of motion blocks.

3 Case Studies

3-52

References
[1] Bennani, S., D. M. C. Willemsen, and C. W. Scherer, “Robust LPV control
with bounded parameter rates,” AIAA-97-3641, August 1997.

[2] Mracek, C. P. and J. R. Cloutier, “Full Envelope Missile Longitudinal
Autopilot Design Using the State-Dependent Riccati Equation Method,”
AIAA-97-3767, August 1997.

[3] Shamma, J. S. and J. R. Cloutier, “Gain-Scheduled Missile Autopilot Design
Using Linear Parameter Varying Transformations,” Journal of Guidance,
Control and Dynamics, Vol. 16, No. 2, March-April 1993.

[4] Lin, Ching-Fang, Modern Navigation, Guidance, and Control Processing,
Vol. 2, Prentice Hall, 1991.

4

Block Reference

Blocks — Categorical List (p. 4-2) Aerospace Blockset blocks by category

Blocks — Alphabetical List (p. 4-11) Aerospace Blockset blocks by name

4 Block Reference

4-2

Blocks — Categorical List 4

The Aerospace Blockset’s block library, aerolib, is organized into libraries
according to their behavior. The aerolib window displays the block library
icons and names.

Actuators Library Actuator models

Aerodynamics Library Aerodynamics models

Animation Library 3-D animation during simulation

Environment Library Environmental models

Flight Parameters Library Flight parameter models

Equations of Motion Library Equation of motion models

GNC Library Gain scheduling models

Mass Properties Library Center of gravity and tensor models

Propulsion Library Simple propulsion system models

Utilities Library Common mathematical operations and
conversions

Blocks — Categorical List

4-3

Actuators Library

Aerodynamics Library

Animation Library

Environment Library
The Environment Library contains the following sublibraries:

Second Order Linear
Actuator

Implement a second-order linear actuator

Second Order Nonlinear
Actuator

Implement a second-order nonlinear actuator
with rate and deflection limits

Aerodynamic Forces and
Moments

Compute the aerodynamic forces and moments
using the aerodynamic coefficients, dynamic
pressure, center of gravity, and center of
pressure

3DoF Animation Create a 3-D Handle Graphics® animation of a
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a
six-degrees-of-freedom object

4 Block Reference

4-4

Atmosphere Sublibrary

Gravity Sublibrary

Wind Sublibrary

COESA Atmosphere Model Implement the 1976 Committee on Extension
to the Standard Atmosphere (COESA) lower
atmosphere

ISA Atmosphere Model Implement the International Standard
Atmosphere (ISA)

Lapse Rate Model Implement Lapse Rate Model for atmosphere

Non-Standard Day 210C Implement the MIL-STD-210C climatic data

Non-Standard Day 310 Implement the MIL-HDBK-310 climatic data

Pressure Altitude Calculate pressure altitude based on ambient
pressure

WGS84 Gravity Model Implement the 1984 World Geodetic System
representation of Earth’s gravity

World Magnetic Model 2000 Calculate the Earth's magnetic field at a
specific location and time using the World
Magnetic Model 2000 (WMM2000)

Discrete Wind Gust Model Generate discrete wind gust

Dryden Wind Turbulence
Model (Continuous)

Generate wind turbulence with the Dryden
velocity spectra

Dryden Wind Turbulence
Model (Discrete)

Generate wind turbulence with the Dryden
velocity spectra

Horizontal Wind Model Transform horizontal wind into body-axes
coordinates

Von Karman Wind
Turbulence Model
(Continuous)

Generate atmospheric turbulence

Wind Shear Model Calculate wind shear conditions

Blocks — Categorical List

4-5

Flight Parameters Library

Equations of Motion Library
The Equations of Motion library contains the following sublibraries:

Dynamic Pressure Compute dynamic pressure using velocity and
air density

Ideal Airspeed Correction Calculate equivalent airspeed (EAS), calibrated
airspeed (CAS), or true airspeed (TAS) from
each other

Incidence & Airspeed Calculate incidence and air speed

Incidence, Sideslip &
Airspeed

Calculate incidence, sideslip and air speed

Mach Number Compute Mach number using velocity and
speed of sound

Relative Ratio Calculate relative atmospheric ratios

4 Block Reference

4-6

3DoF Sublibrary

6DoF Sublibrary

GNC Library
The GNC library contains the following sublibraries:

3DoF (Body Axes) Implement three-degrees-of-freedom equations
of motion

Custom Variable Mass
3DoF (Body Axes)

Implement three-degrees-of-freedom equations
of motion

Simple Variable Mass 3DoF
(Body Axes)

Implement three-degrees-of-freedom equations
of motion

6DoF (Euler Angles) Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of
six-degrees-of-freedom equations of motion

Custom Variable Mass
6DoF (Euler Angles)

Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

Custom Variable Mass
6DoF (Quaternion)

Implement a quaternion representation of
six-degrees-of-freedom equations of motion

Simple Variable Mass 6DoF
(Euler Angles)

Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

Custom Variable Mass
6DoF (Quaternion)

Implement a quaternion representation of
six-degrees-of-freedom equations of motion

Blocks — Categorical List

4-7

Controls Sublibrary

1D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on one scheduling
parameter

1D Controller Blend
u=(1-L).K1.y+L.K2.y

Implement a 1-D vector of state-space
controllers by linear interpolation of their
outputs

1D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
one scheduling parameter

1D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

2D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on two scheduling
parameters

2D Controller Blend Implement a 2-D vector of state-space
controllers by linear interpolation of their
outputs

2D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
two scheduling parameters

2D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

3D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on three scheduling
parameters

3D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
three scheduling parameters

3D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

4 Block Reference

4-8

Guidance Sublibrary

Mass Properties Library

Propulsion Library

Utilities Library
The Utilities library contains the following sublibraries:

Gain Scheduled Lead-Lag Implement a first-order lead-lag with
gain-scheduled coefficients

Interpolate Matrix(x) Return an interpolated matrix for given input x

Interpolate Matrix(x,y) Return an interpolated matrix for given inputs
x and y

Interpolate Matrix(x,y,z) Return an interpolated matrix for given inputs
x, y, and z

Self-Conditioned [A,B,C,D] Implement a state-space controller in a
self-conditioned form

Calculate Range Calculate the range between two crafts given
their respective positions

Estimate Center of Gravity Calculate the center of gravity location

Estimate Inertia Tensor Calculate the inertia tensor

Moments About CG Due to
Forces

Compute moments about center of gravity due
to forces that are applied at point CP, not the
center of gravity

Symmetric Inertia Tensor Create an inertia tensor from moments and
products of inertia

Turbofan Engine System Implement a first-order representation of a
turbofan engine with controller

Blocks — Categorical List

4-9

Axes Transformations Sublibrary

Math Operations Sublibrary

Unit Conversions Sublibrary

Direction Cosine Matrix to
Euler Angles

Convert direction cosine matrix to Euler angles

Direction Cosine Matrix to
Quaternions

Convert direction cosine matrix to quaternion
vector

Euler Angles to Direction
Cosine Matrix

Convert Euler angles to direction cosine matrix

Euler Angles to
Quaternions

Convert Euler angles to quaternion vector

Quaternions to Direction
Cosine Matrix

Convert quaternion vector to direction cosine
matrix

Quaternions to Euler
Angles

Convert quaternion vector to Euler angles

3x3 Cross Product Calculate the cross product of two 3-by-1
vectors

Adjoint of 3x3 Matrix Compute the adjoint matrix for the input
matrix

Create 3x3 Matrix Create a 3-by-3 matrix from nine input values

Determinant of 3x3 Matrix Compute the determinant for the input matrix

Invert 3x3 Matrix Compute the inverse of 3-by-3 matrix using
determinant formula

SinCos Compute the sine and cosine of input angle

Acceleration Conversion Convert from acceleration units to desired
acceleration units

Angle Conversion Convert from angle units to desired angle units

4 Block Reference

4-10

Angular Acceleration
Conversion

Convert from angular acceleration units to
desired angular acceleration units

Angular Velocity
Conversion

Convert from angular velocity units to desired
angular velocity units

Density Conversion Convert from density units to desired density
units

Force Conversion Convert from force units to desired force units

Length Conversion Convert from length units to desired length
units

Mass Conversion Convert from mass units to desired mass units

Pressure Conversion Convert from pressure units to desired
pressure units

Temperature Conversion Convert from temperature units to desired
temperature units

Velocity Conversion Convert from velocity units to desired velocity
units

Blocks — Alphabetical List

4-11

Blocks — Alphabetical List 4

This section contains the Aerospace Blockset block reference pages listed
alphabetically.

1D Controller [A(v),B(v),C(v),D(v)]

4-12

41D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on one
scheduling parameter

Library GNC/Controls

Description The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a parameter over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v()x B v()y+=

u C v()x D v()y+=

1D Controller [A(v),B(v),C(v),D(v)]

4-13

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D scheduling,
the A-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix
corresponding to the first entry of v is the identity matrix, then
A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. In the case of 1-D scheduling,
the B-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then
B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. In the case of 1-D scheduling,
the C-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(:,:,1) = 1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. In the case of 1-D scheduling,
the D-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the D-matrix
corresponding to the first entry of v is the identity matrix, then
D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

1D Controller [A(v),B(v),C(v),D(v)]

4-14

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

4-15

41D Controller Blend u=(1-L).K1.y+L.K2.yPurpose Implement a 1-D vector of state-space controllers by linear interpolation of
their outputs

Library GNC/Controls

Description The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of
state-space controller designs. The controllers are run in parallel, and their
outputs interpolated according to the current flight condition or operating
point. The advantage of this implementation approach is that the state-space
matrices A, B, C, and D for the individual controller designs do not need to vary
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points
v=vmin and v=vmax. The 1D Controller Blend block implements

For longer arrays of design points, the blocks only implement nearest neighbor
designs. For the 1D Controller Blend block, at any given instant in time, three
controller designs are being updated. This reduces computational
requirements.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

x1
· A1x1 B1y+=

u1 C1x1 D1y+=

x2
· A2x2 B2y+=

u2 C= 2x2 D2y+

u 1 λ–()u1 λu2+=

λ

0 v vmin<

v vmin–

vmax vmin–
-------------------------------- vmin v vmax≤ ≤

1 v vmax>⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

1D Controller Blend u=(1-L).K1.y+L.K2.y

4-16

Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D blending,
the A-matrix should have three dimensions, the last one corresponding to
scheduling variable v. Hence, for example, if the A-matrix corresponding to
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation.

C-matrix(v)
C-matrix of the state-space implementation.

D-matrix(v)
D-matrix of the state-space implementation.

1D Controller Blend u=(1-L).K1.y+L.K2.y

4-17

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control System Toolbox.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller Blend

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-18

41D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on one scheduling parameter

Library GNC/Controls

Description The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

The main application of this blocks is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

Dialog Box

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

μ

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-19

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for example, if
the F-matrix corresponding to the first entry of v is the identity matrix,
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. Hence,
for example, if the H-matrix corresponding to the first entry of v is the
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the set-point error.

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-20

The second input is the scheduling variable.

The third input is measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-21

41D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
parameter over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a
function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-22

Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-23

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the D-matrix corresponding to the first entry of v is
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The third input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-24

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

4-25

42D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on two
scheduling parameters

Library GNC/Controls

Description The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v()x B v()y+=

u C v()x D v()y+=

2D Controller [A(v),B(v),C(v),D(v)]

4-26

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

2D Controller [A(v),B(v),C(v),D(v)]

4-27

Inputs and
Outputs

The first input is the measurements.

The second and third block inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

4-28

42D Controller BlendPurpose Implement a 2-D vector of state-space controllers by linear interpolation of
their outputs

Library GNC/Controls

Description The 2D Controller Blend block implements an array of state-space controller
designs. The controllers are run in parallel, and their outputs interpolated
according to the current flight condition or operating point. The advantage of
this implementation approach is that the state-space matrices A, B, C, and D
for the individual controller designs do not need to vary smoothly from one
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

2D Controller Blend

4-29

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D blending,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation.

C-matrix(v1,v2)
C-matrix of the state-space implementation.

2D Controller Blend

4-30

D-matrix(v1,v2)
D-matrix of the state-space implementation.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

Inputs and
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control System Toolbox.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

2D Controller Blend

4-31

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

2D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-32

42D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on two scheduling parameters

Library GNC/Controls

Description The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

The main application of these blocks is to implement a controller designed
using H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

μ

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-33

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-34

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

F-matrix(v1,v2)
State-feedback matrix. In the case of 2-D scheduling, the F-matrix should
have four dimensions, the last two corresponding to scheduling variables
v1 and v2. Hence, for example, if the F-matrix corresponding to the first
entry of v1 and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1
0;0 1];.

H-matrix(v1,v2)
Observer (output injection) matrix. In the case of 2-D scheduling, the
H-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the H-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then H(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the set-point error.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-35

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-36

42D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-37

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-38

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter, v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-39

Inputs and
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

4-40

43D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on three
scheduling parameters

Library GNC/Controls

Description The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

3D Controller [A(v),B(v),C(v),D(v)]

4-41

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0 0;0 1 0; 0 0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix

3D Controller [A(v),B(v),C(v),D(v)]

4-42

corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the measurements.

The second, third and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

3D Controller [A(v),B(v),C(v),D(v)]

4-43

Assumptions
and Limitations

If the scheduling parameter input to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-44

43D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on three scheduling parameters

Library GNC/Controls

Description The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

The main application of this block is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

μ

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-45

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-46

scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(v1,v2,v3)
State-feedback matrix. In the case of 3-D scheduling, the F-matrix should
have five dimensions, the last three corresponding to scheduling variables
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the
first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(v1,v2,v3)
observer (output injection) matrix. In the case of 3-D scheduling, the
H-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-47

Inputs and
Outputs

The first input is the set-point error.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-48

43D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. These blocks implement a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-49

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-50

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-51

number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

Inputs and
Outputs

The first input is the measurements.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3DoF Animation

4-52

43DoF AnimationPurpose Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object

Library Animation

Description The 3DoF Animation block displays a 3-D animated view of a
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Dialog Box

3DoF Animation

4-53

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

-Fixed position

-Cockpit

-Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude and the downrange position
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange
position of the craft in Earth coordinates.

The third input is the attitude of the craft.

3DoF Animation

4-54

Examples See the aero_guidance demo for an example of this block.

See Also 6DoF Animation

FlightGear Preconfigured 6DoF Animation

3DoF (Body Axes)

4-55

43DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to body
axes

Library Equations of Motion/3DoF

Description The 3DoF (Body Axes) block considers the rotation in the vertical plane of a
body-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ qw– g θ

w·

sin–

Fz
m
------ qu g θ

q·

cos+ +

M
Iyy

θ· q

=

=

=

=

3DoF (Body Axes)

4-56

Dialog Box

3DoF (Body Axes)

4-57

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton-
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot-
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot-
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

θ0()

α0()

3DoF (Body Axes)

4-58

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth optional input to the block is gravity in the selected units.

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

θ()

q·()

3DoF (Body Axes)

4-59

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

Examples See the aero_guidance demo for an example of this block.

See Also 3DoF (Wind Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

3DoF (Wind Axes)

4-60

43DoF (Wind Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to wind
axes

Library Equations of Motion/3DoF

Description The 3DoF (Wind Axes) block considers the rotation in the vertical plane of a
wind-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

V·
Fxwind

m
-------------- g γ

α·

sin–

Fzwind

mV βcos
---------------------- q g

V βcos
----------------- γ

q·

cos+ +

θ·
Mybody

Iyy
---------------=

γ· q α·–

=

=

=

=

3DoF (Wind Axes)

4-61

Dialog Box

3DoF (Wind Axes)

4-62

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial flight path angle of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

γ0()

α0()

3DoF (Wind Axes)

4-63

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia body axes
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the wind x-axis, .

The second input to the block is the force acting along the wind z-axis, .

The third input to the block is the applied pitch moment in body axes, (M).

The fourth optional input to the block is gravity in the selected units.

The first output from the block is the flight path angle, in radians .

The second output is the pitch angular rate, in radians per second .

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

γ()

ωy()

dωy dt⁄()

3DoF (Wind Axes)

4-64

The fifth output is a two-element vector containing the velocity of the body
resolved into the wind-fixed coordinate frame, (V,0).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, .

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 3DoF (Body Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

α()

3x3 Cross Product

4-65

43x3 Cross ProductPurpose Calculate the cross product of two 3-by-1 vectors

Library Utilities/Math Operations

Description The 3x3 Cross Product block computes cross (or vector) product of two vectors,
A and B, by generating a third vector, C, in a direction normal to the plane
containing A and B, and with magnitude equal to the product of the lengths of
A and B multiplied by the sine of the angle between them. The direction of C is
that in which a right-handed screw would move in turning from A to B.

Dialog Box

Inputs and
Outputs

The inputs are two 3-by-1 vectors.

The output is a 3-by-1 vector.

A a1i a2j a3k
B

+ +
b1i b2j b3k+ +

=
=

C A B
i j k

a1 a2 a3

b1 b2 b3

=×=

a2b3 a3b2–()= i a3b1 a1b3–()j a1b2 a2b1–()k+ +

4th Order Point Mass (Longitudinal)

4-66

44th Order Point Mass (Longitudinal)Purpose Calculate fourth order point mass

Library Equations of Motion/Point Mass

Description The 4th Order Point Mass (Longitudinal) block performs the calculations for
the translational motion of a single point mass or multiple point masses.

The translational motions of the point mass [XEast XUp]T are functions of
airspeed and flight path angle , V() γ()

Fx mV·=

Fz mVγ·=

X· East V γcos=

X· Up V γsin=

4th Order Point Mass (Longitudinal)

4-67

where the applied forces [Fx Fz]
T are in a system defined as follows: x-axis is in

the direction of vehicle velocity relative to air, z-axis is upwards and y-axis
completes the right hand frame. The mass of the body is assumed constant.

Dialog Box

Units
Specifies the input and output units:

Initial flight path angle
The scalar or vector containing the initial flight path angle of the point
mass(es).

m

Units Forces Velocity Position

Metric (MKS) Newton Meters per second Meters

English (Velocity in ft/s) Pound Feet per second Feet

English (Velocity in kts) Pound Knots Feet

4th Order Point Mass (Longitudinal)

4-68

Initial airspeed
The scalar or vector containing the initial airspeed of the point mass(es).

Initial downrange
The scalar or vector containing the initial downrange of the point mass(es).

Initial altitude
The scalar or vector containing the initial altitude of the point mass(es).

Initial mass
The scalar or vector containing the mass of the point mass(es).

Inputs and
Outputs

The first input is force in x-axis in selected units.

The second input is force in z-axis in selected units.

The first output is flight path angle in radians.

The second output is airspeed in selected units.

The third output is the downrange or amount traveled East in selected units.

The fourth output is the altitude or amount traveled Up in selected units.

Assumptions
and Limitations

The flat Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

See Also 4th Order Point Mass Forces (Longitudinal)

3DoF (Body Axes)

3DoF (Wind Axes)

6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

4th Order Point Mass Forces (Longitudinal)

4-69

44th Order Point Mass Forces (Longitudinal) Purpose Calculate forces used by fourth order point mass

Library Equations of Motion/Point Mass

Description The 4th Order Point Mass Forces (Longitudinal) block calculates the applied
forces for a single point mass or multiple point masses.

The applied forces [Fx Fz]
T are in a system defined as follows: x-axis is in the

direction of vehicle velocity relative to air, z-axis is upwards and y-axis
completes the right hand frame. They are functions of lift , drag , thrust

, weight , flight path angle , angle of attack , and bank angle .
L() D()

T() W() γ() α() μ()

Fx T αcos D– W γsin–=

Fz L T αsin+() μcos W γcos–=

4th Order Point Mass Forces (Longitudinal)

4-70

Dialog Box

Inputs and
Outputs

The first input is lift in units of force.

The second input is drag in units of force.

The third input is weight in units of force.

The fourth input is thrust in units of force.

The fifth input is flight path angle in radians.

The sixth input is bank angle in radians.

The seventh input is angle of attack in radians.

The first output is force in x-axis in units of force.

The second output is force in z-axis in units of force.

Assumptions
and Limitations

The flat Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

See Also 4th Order Point Mass (Longitudinal)

6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)

6DoF Animation

4-71

46DoF AnimationPurpose Create a 3-D Handle Graphics® animation of a six-degrees-of-freedom object

Library Animation

Description The 6DoF Animation block displays a 3-D animated view of a
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Dialog Box

6DoF Animation

4-72

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Static object position
Specifies the altitude, the cross-range position, and the downrange position
of the target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

-Fixed position
-Cockpit
-Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude, the cross-range position, and
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

Examples See the aeroblk_vmm demo for an example of this block.

6DoF Animation

4-73

See Also 3DoF Animation

FlightGear Preconfigured 6DoF Animation

6DoF (Euler Angles)

4-74

46DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate
frame about an Earth-fixed reference frame . The
origin of the body-fixed coordinate frame is the center of gravity of the body,
and the body is assumed to be rigid, an assumption that eliminates the need to
consider the forces acting between individual elements of mass. The
Earth-fixed reference frame is considered inertial, a simplification that allows
the forces due to the Earth’s motion relative to a star-fixed reference system to
be neglected.

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame, and the mass
of the body is assumed constant.

Xb Yb Zb, ,() Xe Ye Ze, ,()

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of
gravity

O

m

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+()=

6DoF (Euler Angles)

4-75

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O.

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, []T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

Inverting then gives the required relationship to determine the Euler rate
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω()×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin() φ θtancos()
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

p
q
r

= =

6DoF (Euler Angles)

4-76

Dialog Box

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

6DoF (Euler Angles)

4-77

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial Mass
The mass of the rigid body.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

6DoF (Euler Angles)

4-78

Inertia
The 3-by-3 inertia tensor matrix .

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

Examples See the aeroblk_six_dof demo, Airframe in the aeroblk_HL20 demo and
asbhl20 demo for examples of this block.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Quaternion)

6DoF ECEF (Quaternion)

I

6DoF (Euler Angles)

4-79

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

6DoF (Quaternion)

4-80

46DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain drives the norm of the quaternion state vector to 1.0 should
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3

ε

+=

1 q0
2 q1

2 q3
2 q4

2
+ + +()–=

6DoF (Quaternion)

4-81

Dialog Box

6DoF (Quaternion)

4-82

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

6DoF (Quaternion)

4-83

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial Mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

6DoF (Quaternion)

4-84

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

6DoF ECEF (Quaternion)

4-85

46DoF ECEF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The 6DoF ECEF (Quaternion) block considers the rotation of a Earth-Centered
Earth-Fixed (ECEF) coordinate frame about an
Earth-Centered Inertial (ECI) reference frame . The origin
of the ECEF coordinate frame is the center of the Earth, additionally the body
of interest is assumed to be rigid, an assumption that eliminates the need to
consider the forces acting between individual elements of mass. The
representation of the rotation of ECEF frame from ECI frame is simplified to
consider only the constant rotation of the ellipsoid Earth including an
initial celestial longitude . This simplification that allows the forces
due to the Earth’s complex motion relative to a star-fixed reference system to
be neglected.

XECEF YECEF ZECEF, ,()
XECI YECI ZECI, ,()

ωe()
LG 0()()

6DoF ECEF (Quaternion)

4-86

The translational motion of the ECEF coordinate frame is given below, where
the applied forces [Fx Fy Fz]

T are in the body frame, and the mass of the body
 is assumed constant.

where the change of position in ECI is calculated by

and the velocity in body-axis , angular rates in body-axis . Earth
rotation rate , and relative angular rates in body-axis are defined as

The rotational dynamics of the body defined in body-fixed frame are given
below, where the applied moments are [L M N]T, and the inertia tensor is
with respect to the origin O.

m

Fb

Fx

Fy

Fz

= m Vb
· ωb Vb× DCMbiωe Vb×() DCMbi ωe ωe xi×()×()+ + +()=

x· i()

x· i

x·ECI

y·ECI

z·ECI

DCMibVb ωe xi×+= =

Vb() ωb()
ωe() ωrel()

Vb

u
v
w

ωb

p
q
r

ωe

0
0

ωe

wrel ωb DCMbiωe–=,=,=,=

I

Mb

L
M
N

= Iωb
· ωb Iωb()×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

6DoF ECEF (Quaternion)

4-87

The integration of the rate of change of the quaternion vector is given below.

Dialog Box

q· 0

q1
·

q· 2

q· 3

1
2
---–

0 p q r
p– 0 r– q
q– r 0 p–

r– q– p 0

q0

q1

q2

q3

=

6DoF ECEF (Quaternion)

4-88

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

6DoF ECEF (Quaternion)

4-89

Mass type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic
reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity in the body-fixed
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

6DoF ECEF (Quaternion)

4-90

Flattening
Specifies the flattening of the planet. This option is only available when
Planet model is set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for ECEF position. This
option is only available when Planet model is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/sec. This option is
only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude:

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of the ECI
frame.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
body-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The first output is a three-element vector containing the velocity in the ECEF
reference frame.

The second output is a three-element vector containing the position in the
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic
latitude, longitude and altitude, in degrees, degrees and selected units of
length respectively.

The fourth output is a three-element vector containing the body rotation angles
[roll, pitch, yaw], in radians.

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.

6DoF ECEF (Quaternion)

4-91

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the
body-fixed frame.

The ninth output is a three-element vector containing the relative angular
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

This implementation assumes that the applied forces are acting at the center
of gravity of the body, and that the mass and inertia are constant.

This implementation generates a geodetic latitude that lies between
degrees, and longitude that lies between degrees. Additionally, the MSL
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical
planet can be achieved. The Earth’s precession, nutation, and polar motion are
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at
the center of the planet, the x-axis is the continuation of the line from the

90±
180±

6DoF ECEF (Quaternion)

4-92

center of the Earth through the center of the Sun toward the vernal equinox,
the z-axis points in the direction of the mean equatorial plane’s north pole,
positive to the north, and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

6DoF Wind (Quaternion)

4-93

46DoF Wind (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to wind axes

Library Equations of Motion/6DoF

Description The 6DoF Wind (Quaternion) block considers the rotation of a wind-fixed
coordinate frame about an Earth-fixed reference frame

. The origin of the wind-fixed coordinate frame is the center of
gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

The translational motion of the wind-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame, and the mass
of the body is assumed constant.

Xw Yw Zw, ,()
Xe Ye Ze, ,()

m

Fw

Fx

Fy

Fz

= m Vw
· ωw Vw×+()=

6DoF Wind (Quaternion)

4-94

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O. Inertia tensor I is much easier to define in body-fixed frame.

The integration of the rate of change of the quaternion vector is given below.

Vw

V
0
0

ωw,
pw

qw

rw

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

wb

pb

qb

rb

=,= = =

I

Mb

L
M
N

= Iωb
· ωb Iωb()×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

q· 0

q1
·

q· 2

q· 3

1
2
---–

0 p q r
p– 0 r– q
q– r 0 p–

r– q– p 0

q0

q1

q2

q3

=

6DoF Wind (Quaternion)

4-95

Dialog Box

6DoF Wind (Quaternion)

4-96

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

6DoF Wind (Quaternion)

4-97

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, angle of attack, and sideslip angle
The three-element vector containing the initial airspeed, initial angle of
attack and initial sideslip angle.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

6DoF Wind (Quaternion)

4-98

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

4-99

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

6DoF Wind (Wind Angles)

4-100

46DoF Wind (Wind Angles)Purpose Implement a wind angle representation of six-degrees-of-freedom equations of
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF Wind (Quaternion) block.

The relationship between the wind angles, []T, can be determined by
resolving the wind rates into the wind-fixed coordinate frame.

Inverting then gives the required relationship to determine the wind rate
vector.

The body-fixed angular rates are related to the wind-fixed angular rate by the
following equation.

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular rates.

μγχ

pw

qw

rw

μ·

0
0

1 0 0
0 μcos μsin
0 μsin– μcos

0

γ·

0

1 0 0
0 μcos μsin
0 μsin– μcos

γcos 0 γsin–

0 1 0
γsin 0 γcos

0
0

χ·
+ + J 1–

μ·

γ·

χ·
≡=

J

μ·

γ·

χ·
J

pw

qw

rw

1 μ γtansin() μ γtancos()
0 μcos μsin–

0 μsin
γcos

------------ μcos
γcos

pw

qw

rw

= =

pw

qw

rw

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

=

6DoF Wind (Wind Angles)

4-101

Dialog Box

μ·

γ·

χ·
J

pw

qw

rw

1 μ γtansin() μ γtancos()
0 μcos μsin–

0 μsin
γcos

------------ μcos
γcos

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

= =

6DoF Wind (Wind Angles)

4-102

Units
Specifies the input and output units:

Mass type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

The Wind Angles selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

6DoF Wind (Wind Angles)

4-103

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, angle of attack, and sideslip angle
The three-element vector containing the initial airspeed, initial angle of
attack and initial sideslip angle.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix , in body-fixed axes.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

I

6DoF Wind (Wind Angles)

4-104

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

4-105

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

4-106

46th Order Point Mass (Coordinated Flight)Purpose Calculate sixth order point mass in coordinated flight

Library Equations of Motion/Point Mass

Description The 6th Order Point Mass (Coordinated Flight) block performs the calculations
for the translational motion of a single point mass or multiple point masses.

The translational motion of the point mass [XEast XNorth XUp]T are functions of
airspeed , flight path angle , and heading angle , V() γ() χ()

Fx mV·=

Fy mV γcos()χ·=

Fz mVγ·=

X· East V χ γcoscos=

X· North V χsin γcos=

X· Up V γsin=

6th Order Point Mass (Coordinated Flight)

4-107

where the applied forces [Fx Fy Fh]T are in a system is defined by x-axis in the
direction of vehicle velocity relative to air, z-axis is upwards and y-axis
completes the right hand frame, and the mass of the body is assumed
constant

Dialog Box

m

6th Order Point Mass (Coordinated Flight)

4-108

Units
Specifies the input and output units:

Initial flight path angle
The scalar or vector containing initial flight path angle of the point
mass(es).

Initial heading angle
The scalar or vector containing initial heading angle of the point mass(es).

Initial airspeed
The scalar or vector containing initial airspeed of the point mass(es).

Initial downrange [East]
The scalar or vector containing initial downrange of the point mass(es).

Initial crossrange [North]
The scalar or vector containing initial crossrange of the point mass(es).

Initial altitude [Up]
The scalar or vector containing initial altitude of the point mass(es).

Initial mass
The scalar or vector containing mass of the point mass(es).

Inputs and
Outputs

The first input is force in x-axis in selected units.

The second input is force in y-axis in selected units.

The third input is force in z-axis in selected units.

The first output is flight path angle in radians.

The second output is heading angle in radians.

The third output is airspeed in selected units.

Units Forces Velocity Position

Metric (MKS) Newton Meters per second Meters

English (Velocity in ft/s) Pound Feet per second Feet

English (Velocity in kts) Pound Knots Feet

6th Order Point Mass (Coordinated Flight)

4-109

The fourth output is the downrange or amount traveled East in selected units.

The fifth output is the crossrange or amount traveled North in selected units.

The sixth output is the altitude or amount traveled Up in selected units.

Assumptions
and Limitations

The block assumes that there is fully coordinated flight, i.e. there is no side
force (wind axes) and sideslip is always zero.

The flat Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

See Also 4th Order Point Mass (Longitudinal)

4th Order Point Mass Forces (Longitudinal)

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass Forces (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

6th Order Point Mass Forces (Coordinated Flight)

4-110

46th Order Point Mass Forces (Coordinated Flight) Purpose Calculate forces used by sixth order point mass in coordinated flight

Library Equations of Motion/Point Mass

Description The 6th Order Point Mass Forces (Coordinated Flight) block calculates the
applied forces for a single point mass or multiple point masses.

The applied forces [Fx Fy Fh]T are in a system is defined by x-axis in the
direction of vehicle velocity relative to air, z-axis is upwards and y-axis
completes the right hand frame and are functions of lift , drag , thrust

, weight , flight path angle , angle of attack , and bank angle .
L() D()

T() W() γ() α() μ()

Fx T αcos D– W γsin–=

Fy L T αsin+() μsin=

Fz L T αsin+() μcos W γcos–=

6th Order Point Mass Forces (Coordinated Flight)

4-111

Dialog Box

Inputs and
Outputs

The first input is lift in units of force.

The second input is drag in units of force.

The third input is weight in units of force.

The fourth input is thrust in units of force.

The fifth input is flight path angle in radians.

The sixth input is bank angle in radians.

The seventh input is angle of attack in radians.

The first output is force in x-axis in units of force.

The second output is force in y-axis in units of force.

The third output is force in z-axis in units of force.

Assumptions
and Limitations

The block assumes that there is fully coordinated flight, i.e. there is no side
force (wind axes) and sideslip is always zero.

The flat Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

See Also 4th Order Point Mass (Longitudinal)

4th Order Point Mass Forces (Longitudinal)

6th Order Point Mass (Coordinated Flight)

Acceleration Conversion

4-112

4Acceleration ConversionPurpose Convert from acceleration units to desired acceleration units

Library Utilities/Unit Conversions

Description The Acceleration Conversion block computes the conversion factor from
specified input acceleration units to specified output acceleration units and
applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units
selected from the Initial units and Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s2 Meters per second squared

ft/s2 Feet per second squared

km/s2 Kilometers per second squared

in/s2 Inches per second squared

km/h-s Kilometers per hour per second

mph-s Miles per hour per second

G's g-units

Acceleration Conversion

4-113

Inputs and
Outputs

The input is acceleration in initial acceleration units.

The output is acceleration in final acceleration units.

See Also Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Adjoint of 3x3 Matrix

4-114

4Adjoint of 3x3 MatrixPurpose Compute the adjoint matrix for the input matrix

Library Utilities/Math Operations

Description The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input
matrix.

The input matrix has the form of

The adjoint of the matrix has the form of

where

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 adjoint matrix of input matrix.

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

adj A()
M11 M12 M13

M21 M22 M23

M31 M32 M33

=

Mij 1–()i j+
=

Adjoint of 3x3 Matrix

4-115

See Also Create 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix

Aerodynamic Forces and Moments

4-116

4Aerodynamic Forces and MomentsPurpose Compute the aerodynamic forces and moments using the aerodynamic
coefficients, dynamic pressure, center of gravity, and center of pressure

Library Aerodynamics

Description The Aerodynamic Forces and Moments block computes the aerodynamic forces
and moments about the center of gravity.

Dialog Box

Reference area
Specifies the reference area for calculating aerodynamic forces and
moments.

Reference span
Specifies the reference span for calculating aerodynamic moments in
x-axes and z-axes.

Reference length
Specifies the reference length for calculating aerodynamic moment in the
y-axes.

Aerodynamic Forces and Moments

4-117

Inputs and
Outputs

The first input consists of aerodynamic coefficients (in body axes) for forces and
moments. These coefficients are ordered into a vector as follows:

(axial force Cx, side force Cy, normal force Cz, rolling moment Cl,
pitching moment Cm, yawing moment Cn)

The second input is the dynamic pressure.

The third input is the center of gravity.

The fourth input is the center of pressure.

The first output consists of the aerodynamic forces at the center of gravity in
x-, y-, and z-axes.

The second output consists of the aerodynamic moments at the center of
gravity in x-, y-, and z-axes.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

See Also Dynamic Pressure

Estimate Center of Gravity

Moments About CG Due to Forces

Angle Conversion

4-118

4Angle ConversionPurpose Convert from angle units to desired angle units

Library Utilities/Unit Conversions

Description The Angle Conversion block computes the conversion factor from specified
input angle units to specified output angle units and applies the conversion
factor to the input signal.

The Angle Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angle in initial angle units.

The output is angle in final angle units.

deg Degrees

rad Radians

rev Revolutions

Angle Conversion

4-119

See Also Acceleration Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Angular Acceleration Conversion

4-120

4Angular Acceleration ConversionPurpose Convert from angular acceleration units to desired angular acceleration units

Library Utilities/Unit Conversions

Description The Angular Acceleration Conversion block computes the conversion factor
from specified input angular acceleration units to specified output angular
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output
units selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angular acceleration in initial angular acceleration units.

The output is angular acceleration in final angular acceleration units.

deg/s2 Degrees per second squared

rad/s2 Radians per second squared

rpm/s Revolutions per minute per second

Angular Acceleration Conversion

4-121

See Also Acceleration Conversion

Angle Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Angular Velocity Conversion

4-122

4Angular Velocity ConversionPurpose Convert from angular velocity units to desired angular velocity units

Library Utilities/Unit Conversions

Description The Angular Velocity Conversion block computes the conversion factor from
specified input angular velocity units to specified output angular velocity units
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output
units selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angular velocity in initial angular velocity units.

The output is angular velocity in final angular velocity units.

deg/s Degrees per second

rad/s Radians per second

rpm Revolutions per minute

Angular Velocity Conversion

4-123

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Besselian Epoch to Julian Epoch

4-124

4Besselian Epoch to Julian EpochPurpose Transform position and velocity components from the discontinued Standard
Besselian Epoch (B1950) to the Standard Julian Epoch (J2000)

Library Utilities/Axes Transformations

Description The Besselian Epoch to Julian Epoch block transforms two 3-by-1 vectors of
Besselian Epoch position , and Besselian Epoch velocity into
Julian Epoch position ,and Julian Epoch velocity . The
transformation is calculated using:

where are defined as:

rB1950() vB1950()
rJ2000() vJ2000()

rJ2000

vJ2000

Mrr Mvr

Mrv Mvv

rB1950

vB1950

=

Mrr Mvr Mrv Mvv, , ,()

0.9999256782 -0.0111820611 -0.0048579477

0.0111820610 0.9999374784 -0.0000271765

0.0048579479 -0.0000271474 0.9999881997

Mrr =

0.00000242395018 -0.00000002710663 -0.00000001177656

0.00000002710663 0.00000242397878 -0.00000000006587

0.00000001177656 -0.00000000006582 0.00000242410173

Mvr =

Mrv

0.000551– 0.238565– 0.435739
0.238514 0.002667– 0.008541–

0.435623– 0.012254 0.002117

=

Mvv

0.99994704 0.01118251– 0.00485767–

0.01118251 0.99995883 0.00002718–

0.00485767 0.00002714– 1.00000956

=

Besselian Epoch to Julian Epoch

4-125

Dialog Box

Inputs and
Outputs

The first input is a 3-by-1 vector containing the position in Standard Besselian
Epoch (B1950).

The second input is a 3-by-1 vector containing the velocity in Standard
Besselian Epoch (B1950).

The first output is a 3-by-1 vector containing the position in Standard Julian
Epoch (J2000).

The second output is a 3-by-1 vector containing the velocity in Standard Julian
Epoch (J2000).

References “Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

See Also Julian Epoch to Besselian Epoch

Calculate Range

4-126

4Calculate RangePurpose Calculate the range between two crafts given their respective positions.

Library GNC/Guidance

Description The Calculate Range block computes the range between two crafts. The
equation used for the range calculation is

Dialog Box

Inputs and
Outputs

The first input is the (x, y and z) position of craft 1.

The second input is the (x, y and z) position of craft 2.

The output is the range from craft 2 and craft 1.

Limitation The calculated range is give the magnitude of the distance but not the direction
therefore it is always positive.

Craft positions are real values.

Range x1 x2–()2 y1 y2–()2 z1 z2–()2
+ +=

COESA Atmosphere Model

4-127

4COESA Atmosphere Model Purpose Implement the 1976 COESA lower atmosphere

Library Environment/Atmosphere

Description The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) United States standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for the input
geopotential altitude.

Below 32,000 meters (approximately 104,987 feet), the U.S. Standard
Atmosphere is identical with the Standard Atmosphere of the International
Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units
selected from the Units list.

Dialog Box

COESA Atmosphere Model

4-128

Units
Specifies the input and output units:

Specification
Specify the atmosphere model type from one of the following atmosphere
models. The default is 1976 COESA-extended U.S. Standard Atmosphere.

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 m (0 feet) and above the geopotential
altitude of 84,852 m (approximately 278,386 feet), temperature values are

Units Height Temperature Speed of
Sound

Air Pressure Air Density

Metric
(MKS)

Meters Kelvin Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per
second

Pound-force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound-force
per square
inch

Slug per
cubic foot

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the
block reference for more information.

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the
block reference for more information.

COESA Atmosphere Model

4-129

extrapolated linearly and pressure values are extrapolated logarithmically.
Density and speed of sound are calculated using a perfect gas relationship.

Examples See the aeroblk_calibrated model, the aeroblk_indicated model, and
Airframe in the aeroblk_HL20 demo for examples of this block.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also ISA Atmosphere Model

Non-Standard Day 210C

Non-Standard Day 310

Create 3x3 Matrix

4-130

4Create 3x3 MatrixPurpose Create a 3-by-3 matrix from nine input values.

Library Utilities/Math Operations

Description The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values
where each input corresponds to an element of the matrix.

The output matrix has the form of

Dialog Box

Inputs and
Outputs

The first input is the entry of the first row and first column of the matrix.

The second input is the entry of the first row and second column of the matrix.

The third input is the entry of the first row and third column of the matrix.

The fourth input is the entry of the second row and first column of the matrix.

The fifth input is the entry of the second row and second column of the matrix.

The sixth input is the entry of the second row and third column of the matrix.

The seventh input is the entry of the third row and first column of the matrix.

The eighth input is the entry of the third row and second column of the matrix.

The ninth input is the entry of the third row and third column of the matrix.

The output of the block is a 3-by-3 matrix.

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

Create 3x3 Matrix

4-131

See Also Adjoint of 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix

Symmetric Inertia Tensor

Custom Variable Mass 3DoF (Body Axes)

4-132

4Custom Variable Mass 3DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to body
axes

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Body Axes) block considers the rotation in
the vertical plane of a body-fixed coordinate frame about an Earth-fixed
reference frame.

The equations of motion are

u·
Fx
m
------ m· U

m
----------– qw– g θ

w·

sin–

Fz
m
------ m· w

m
----------– qu g θ

q·

cos+ +

M Iyy
· q–

Iyy

θ
·

q

=

=

=

=

Custom Variable Mass 3DoF (Body Axes)

4-133

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

Custom Variable Mass 3DoF (Body Axes)

4-134

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

θ0()

α0()

Custom Variable Mass 3DoF (Body Axes)

4-135

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth input to the block is the rate of change of mass, .

The fifth input to the block is the mass, (m).

The sixth input to the block is the rate of change of inertia tensor matrix, .

The seventh input to the block is the inertia tensor matrix, (Iyy).

The eighth optional input to the block is gravity in the selected units.

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

m()·

Iyy
·()

θ()

q·()

Custom Variable Mass 3DoF (Body Axes)

4-136

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

See Also 3DoF (Body Axes)

Incidence & Airspeed

Simple Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

4-137

4Custom Variable Mass 3DoF (Wind Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to wind
axes

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Wind Axes) block considers the rotation in
the vertical plane of a wind-fixed coordinate frame about an Earth-fixed
reference frame.

The equations of motion are

V·
Fxwind

m
-------------- m· V

m
---------– g γ

α·

sin–

Fzwind

mV
-------------- q g

V
---- γ

q·

cos+ +

θ·
Mybody

Iyy
· q–

Iyy
---------------------------------=

γ· q α·–

=

=

=

=

Custom Variable Mass 3DoF (Wind Axes)

4-138

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

Custom Variable Mass 3DoF (Wind Axes)

4-139

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

γ0()

α0()

Custom Variable Mass 3DoF (Wind Axes)

4-140

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the wind x-axis, .

The second input to the block is the force acting along the wind z-axis, .

The third input to the block is the applied pitch moment in body axes, (M).

The fourth input to the block is the rate of change of mass, .

The fifth input to the block is the mass, (m).

The sixth input to the block is the rate of change of inertia tensor matrix, .

The seventh input to the block is the inertia tensor matrix, (Iyy).

The eighth optional input to the block is gravity in the selected units.

The first output from the block is the flight path angle, in radians .

The second output is the pitch angular rate, in radians per second .

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the wind-fixed coordinate frame, (V,0).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

m()·

Iyy
·()

γ()

ωy()

dωy dt⁄()

Custom Variable Mass 3DoF (Wind Axes)

4-141

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, .

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

α()

Custom Variable Mass 6DoF (Euler Angles)

4-142

4Custom Variable Mass 6DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF (Euler Angles) block considers the rotation of
a body-fixed coordinate frame about an Earth-fixed reference
frame . The origin of the body-fixed coordinate frame is the center
of gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

Xb Yb Zb, ,()
Xe Ye Ze, ,()

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of
gravity

O

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+() m· Vb+=

Custom Variable Mass 6DoF (Euler Angles)

4-143

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O.

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, []T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

Inverting then gives the required relationship to determine the Euler rate
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω() I·ω+×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

I·
Ixx

· Ixy
·

– Ixz–
·

Iyx
·

– Iyy
· Iyz–

·

Izx–
· Izy–

· Izz
·

=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J

Custom Variable Mass 6DoF (Euler Angles)

4-144

Dialog Box

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin() φ θtancos()
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

p
q
r

= =

Custom Variable Mass 6DoF (Euler Angles)

4-145

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Custom Variable Mass 6DoF (Euler Angles)

4-146

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

Custom Variable Mass 6DoF (Euler Angles)

4-147

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF (Quaternion)

4-148

4Custom Variable Mass 6DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the Custom Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain drives the norm of the quaternion state vector to 1.0 should
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3

ε

+=

1 q0
2 q1

2 q3
2 q4

2
+ + +()–=

Custom Variable Mass 6DoF (Quaternion)

4-149

Dialog Box

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Custom Variable Mass 6DoF (Quaternion)

4-150

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Custom Variable Mass 6DoF (Quaternion)

4-151

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

Custom Variable Mass 6DoF (Quaternion)

4-152

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF ECEF (Quaternion)

4-153

4Custom Variable Mass 6DoF ECEF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF ECEF (Quaternion) block considers the
rotation of a Earth-Centered Earth-Fixed (ECEF) coordinate frame

 about an Earth-Centered Inertial (ECI) reference
frame . The origin of the ECEF coordinate frame is the
center of the Earth, additionally the body of interest is assumed to be rigid, an
assumption that eliminates the need to consider the forces acting between
individual elements of mass. The representation of the rotation of ECEF frame
from ECI frame is simplified to consider only the constant rotation of the
ellipsoid Earth including an initial celestial longitude . This
simplification allows the forces due to the Earth’s complex motion relative to a
star-fixed reference system to be neglected.

XECEF YECEF ZECEF, ,()
XECI YECI ZECI, ,()

ωe() LG 0()()

Custom Variable Mass 6DoF ECEF (Quaternion)

4-154

The translational motion of the ECEF coordinate frame is given below, where
the applied forces [Fx Fy Fz]

T are in the body frame.

where the change of position in ECI is calculated by

and the velocity in body-axis , angular rates in body-axis . Earth
rotation rate , and relative angular rates in body-axis are defined as

The rotational dynamics of the body defined in body-fixed frame are given
below, where the applied moments are [L M N]T, and the inertia tensor is
with respect to the origin O.

ωb Vb× DCMbiωe Vb×() DCMbi ωe ωe xi×()×()+ +) m· Vb DCM+(+

x· i()

x· i

x·ECI

y·ECI

z·ECI

DCMibVb ωe xi×+= =

Vb() ωb()
ωe() ωrel()

Vb

u
v
w

ωb

p
q
r

ωe

0
0

ωe

wrel ωb DCMbiωe–=,=,=,=

I

Mb

L
M
N

= Iωb
· ωb Iωb()×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

Custom Variable Mass 6DoF ECEF (Quaternion)

4-155

The rate of change of the inertia tensor is defined by the following equation.

The integration of the rate of change of the quaternion vector is given below.

Dialog Box

I·
Ixx

· Ixy
·

– Ixz–
·

Iyx
·

– Iyy
· Iyz–

·

Izx–
· Izy–

· Izz
·

=

q· 0

q1
·

q· 2

q· 3

1
2
---–

0 p q r
p– 0 r– q
q– r 0 p–

r– q– p 0

q0

q1

q2

q3

=

Custom Variable Mass 6DoF ECEF (Quaternion)

4-156

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Custom Variable Mass 6DoF ECEF (Quaternion)

4-157

Mass type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic
reference frame.

Initial velocity in body-axis
The three-element vector containing the initial velocity in the body-fixed
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available when
Planet model is set to Custom.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Custom Variable Mass 6DoF ECEF (Quaternion)

4-158

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for ECEF position. This
option is only available when Planet model is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/sec. This option is
only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude:

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of the ECI
frame.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
body-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the ECEF
reference frame.

The second output is a three-element vector containing the position in the
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic
latitude, longitude and altitude, in degrees, degrees and selected units of
length respectively.

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.

Custom Variable Mass 6DoF ECEF (Quaternion)

4-159

The fourth output is a three-element vector containing the body rotation angles
[roll, pitch, yaw], in radians.

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the
body-fixed frame.

The ninth output is a three-element vector containing the relative angular
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

This implementation assumes that the applied forces are acting at the center
of gravity of the body.

This implementation generates a geodetic latitude that lies between
degrees, and longitude that lies between degrees. Additionally, the MSL
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical
planet can be achieved. The Earth’s precession, nutation, and polar motion are
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

90±
180±

Custom Variable Mass 6DoF ECEF (Quaternion)

4-160

The implementation of the ECI coordinate system assumes that the origin is at
the center of the planet, the x-axis is the continuation of the line from the
center of the Earth through the center of the Sun toward the vernal equinox,
the z-axis points in the direction of the mean equatorial plane’s north pole,
positive to the north, and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF Wind (Quaternion)

4-161

4Custom Variable Mass 6DoF Wind (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to wind axes

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF Wind (Quaternion) block considers the
rotation of a wind-fixed coordinate frame about an Earth-fixed
reference frame . The origin of the wind-fixed coordinate frame is
the center of gravity of the body, and the body is assumed to be rigid, an
assumption that eliminates the need to consider the forces acting between
individual elements of mass. The Earth-fixed reference frame is considered
inertial, a simplification that allows the forces due to the Earth’s motion
relative to a star-fixed reference system to be neglected.

The translational motion of the wind-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame.

Xw Yw Zw, ,()
Xe Ye Ze, ,()

Fw

Fx

Fy

Fz

= m Vw
· ωw Vw×+() m· Vw+=

Custom Variable Mass 6DoF Wind (Quaternion)

4-162

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O. Inertia tensor I is much easier to define in body-fixed frame.

The integration of the rate of change of the quaternion vector is given below.

Vw

V
0
0

ωw,
pw

qw

rw

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

wb

pb

qb

rb

=,= = =

I

Mb

L
M
N

= Iωb
· ωb Iωb()× I·ωb+ +=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

q· 0

q1
·

q· 2

q· 3

1
2
---–

0 p q r
p– 0 r– q
q– r 0 p–

r– q– p 0

q0

q1

q2

q3

=

Custom Variable Mass 6DoF Wind (Quaternion)

4-163

Dialog Box

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Custom Variable Mass 6DoF Wind (Quaternion)

4-164

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Custom Variable Mass 6DoF Wind (Quaternion)

4-165

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix
in body-fixed axes.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix in body-fixed
axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

Custom Variable Mass 6DoF Wind (Quaternion)

4-166

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF Wind (Wind Angles)

4-167

4Custom Variable Mass 6DoF Wind (Wind Angles)Purpose Implement a wind angle representation of six-degrees-of-freedom equations of
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the Custom Variable Mass 6DoF Wind
(Quaternion) block.

The relationship between the wind angles, []T, can be determined by
resolving the wind rates into the wind-fixed coordinate frame.

Inverting then gives the required relationship to determine the wind rate
vector.

The body-fixed angular rates are related to the wind-fixed angular rate by the
following equation.

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular rates.

μγχ

pw

qw

rw

μ·

0
0

1 0 0
0 μcos μsin
0 μsin– μcos

0

γ·

0

1 0 0
0 μcos μsin
0 μsin– μcos

γcos 0 γsin–

0 1 0
γsin 0 γcos

0
0

χ·
+ + J 1–

μ·

γ·

χ·
≡=

J

μ·

γ·

χ·
J

pw

qw

rw

1 μ γtansin() μ γtancos()
0 μcos μsin–

0 μsin
γcos

------------ μcos
γcos

pw

qw

rw

= =

pw

qw

rw

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

=

Custom Variable Mass 6DoF Wind (Wind Angles)

4-168

Dialog Box

μ·

γ·

χ·
J

pw

qw

rw

1 μ γtansin() μ γtancos()
0 μcos μsin–

0 μsin
γcos

------------ μcos
γcos

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

= =

Custom Variable Mass 6DoF Wind (Wind Angles)

4-169

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Wind Angles selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Custom Variable Mass 6DoF Wind (Wind Angles)

4-170

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix
in body-fixed axes.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix in body-fixed
axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

Custom Variable Mass 6DoF Wind (Wind Angles)

4-171

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

4-172

Custom Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Density Conversion

4-173

4Density ConversionPurpose Convert from density units to desired density units

Library Utilities/Unit Conversions

Description The Density Conversion block computes the conversion factor from specified
input density units to specified output density units and applies the conversion
factor to the input signal.

The Density Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is density in initial density units.

The output is density in final density units.

lbm/ft3 Pound mass per cubic foot

kg/m3 Kilograms per cubic meter

slug/ft3 Slugs per cubic foot

lbm/in3 Pound mass per cubic inch

Density Conversion

4-174

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Determinant of 3x3 Matrix

4-175

4Determinant of 3x3 MatrixPurpose Compute the determinant for the input matrix

Library Utilities/Math Operations

Description The Determinant of 3x3 Matrix block computes the determinant for the input
matrix.

The input matrix has the form of

The determinant of the matrix has the form of

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 matrix.

The output of the block is the determinant of input matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

Invert 3x3 Matrix

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

det A() A11 A22A33 A23A32–() A12 A21A33 A23A31–()
A13 A21A32 A22A31–()

+–=

Direction Cosine Matrix Body to Wind

4-176

4Direction Cosine Matrix Body to WindPurpose Convert angle of attack and sideslip angle to direction cosine matrix

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix Body to Wind block converts angle of attack and
sideslip angle into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in body axes
into a vector in wind axes . The order of the axis rotations
required to bring into coincidence with is first, a
rotation about through the sideslip angle to axes ,
second, a rotation about through the angle of attack to axes

.

Combining the two axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,()
ox2 oy2 oz2,,()

ox2 oy2 oz2,,() ox0 oy0 oz0,,()
oz2 β() ox1 oy1 oz1,,()

oy1 α()
ox0 oy0 oz0,,()

ox2

oy2

oz2

DCMwb

ox0

oy0

oz0

=

ox2

oy2

oz2

βcos βsin 0
βsin– βcos 0

0 0 1

αcos 0 αsin
0 1 0

αsin– 0 αcos

ox0

oy0

oz0

=

DCMwb

α βcoscos βsin α βcossin
α βsincos– βcos α βsinsin–

αsin– 0 αcos

=

Direction Cosine Matrix Body to Wind

4-177

Dialog Box

Inputs and
Outputs

The input is a 2-by-1 vector containing angle of attack and sideslip angle, in
radians.

The output is a 3-by-3 direction cosine matrix which transforms body-fixed
vectors to wind-fixed vectors.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also Direction Cosine Matrix Body to Wind to Alpha and Beta

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

Direction Cosine Matrix Body to Wind to Alpha and Beta

4-178

4Direction Cosine Matrix Body to Wind to Alpha and BetaPurpose Convert direction cosine matrix to angle of attack and sideslip angle

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix Body to Wind to Alpha and Beta block converts a
3-by-3 direction cosine matrix (DCM) into angle of attack and sideslip angle.
The DCM matrix performs the coordinate transformation of a vector in body
axes into a vector in wind axes . The order of the
axis rotations required to bring into coincidence with

 is first, a rotation about through the sideslip angle to
axes , second, a rotation about through the angle of attack

 to axes .

Combining the two axis transformation matrices defines the following DCM.

To determine angles from the DCM, the following equations are used:

ox0 oy0 oz0,,() ox2 oy2 oz2,,()
ox2 oy2 oz2,,()

ox0 oy0 oz0,,() oz2 β()
ox1 oy1 oz1,,() oy1

α() ox0 oy0 oz0,,()

ox2

oy2

oz2

DCMwb

ox0

oy0

oz0

=

ox2

oy2

oz2

βcos βsin 0
βsin– βcos 0

0 0 1

αcos 0 αsin
0 1 0

αsin– 0 αcos

ox0

oy0

oz0

=

DCMwb

α βcoscos βsin α βcossin
α βsincos– βcos α βsinsin–

αsin– 0 αcos

=

α DCM 3 1,()–()asin=

β DCM 1 2,()()asin=

Direction Cosine Matrix Body to Wind to Alpha and Beta

4-179

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix which transforms body-fixed
vectors to wind-fixed vectors.

The output is a 2-by-1 vector containing angle of attack and sideslip angle, in
radians.

Assumptions
and Limitations

This implementation generates angles that lies between degrees.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

90±

Direction Cosine Matrix ECEF to NED

4-180

4Direction Cosine Matrix ECEF to NEDPurpose Convert geodetic latitude and longitude to direction cosine matrix

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix ECEF to NED block converts geodetic latitude
and longitude into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in Earth-centered
Earth-fixed (ECEF) axes into a vector in north-east-down
(NED) axes . The order of the axis rotations required to bring

 into coincidence with is first, a left-handed
rotation about through the geodetic latitude to axes ,
second, a rotation about through the longitude to axes .

Combining the two axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,()
ox2 oy2 oz2,,()

ox2 oy2 oz2,,() ox0 oy0 oz0,,()
oy2 μ() ox1 oy1 oz1,,()

oz1 ι() ox0 oy0 oz0,,()

ox2

oy2

oz2

DCMef

ox0

oy0

oz0

=

ox2

oy2

oz2

μsin– 0 μcos
0 1 0

μcos– 0 μsin–

ιcos ιsin 0
ιsin– ιcos 0

0 0 1

ox0

oy0

oz0

=

DCMef

μ ιcossin– μsin ιsin– μcos
ιsin– ιcos 0
μ ιcoscos– μ ιsincos– μsin–

=

Direction Cosine Matrix ECEF to NED

4-181

Dialog Box

Inputs and
Outputs

The input is a 2-by-1 vector containing geodetic latitude and longitude, in
degrees.

The output is a 3-by-3 direction cosine matrix which transforms ECEF vectors
to NED vectors.

Assumptions The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA
R-004-1992.

See Also Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

ECEF Position to LLA

Euler Angles to Direction Cosine Matrix

LLA to ECEF Position

Direction Cosine Matrix ECEF to NED

4-182

Wind Angles to Direction Cosine Matrix

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

4-183

4Direction Cosine Matrix ECEF to NED to Latitude and LongitudePurpose Convert direction cosine matrix to geodetic latitude and longitude

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix ECEF to NED to Latitude and Longitude block
converts a 3-by-3 direction cosine matrix (DCM) into geodetic latitude and
longitude. The DCM matrix performs the coordinate transformation of a vector
in Earth-centered Earth-fixed (ECEF) axes into a vector in
north-east-down (NED) axes . The order of the axis rotations
required to bring into coincidence with is first, a
left-handed rotation about through the geodetic latitude to axes

, second, a rotation about through the longitude to axes
.

Combining the two axis transformation matrices defines the following DCM.

To determine geodetic latitude and longitude from the DCM, the following
equations are used:

ox0 oy0 oz0,,()
ox2 oy2 oz2,,()

ox2 oy2 oz2,,() ox0 oy0 oz0,,()
oy2 μ()

ox1 oy1 oz1,,() oz1 ι()
ox0 oy0 oz0,,()

ox2

oy2

oz2

DCMef

ox0

oy0

oz0

=

ox2

oy2

oz2

μsin– 0 μcos
0 1 0

μcos– 0 μsin–

ιcos ιsin 0
ιsin– ιcos 0

0 0 1

ox0

oy0

oz0

=

DCMef

μ ιcossin– μsin ιsin– μcos
ιsin– ιcos 0
μ ιcoscos– μ ιsincos– μsin–

=

μ DCM 3 3,()–()asin=

ι DCM 2 1,()–
DCM 2 2,()

---------------------------------⎝ ⎠
⎛ ⎞atan=

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

4-184

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix which transforms ECEF vectors
to NED vectors.

The output is a 2-by-1 vector containing geodetic latitude and longitude, in
degrees.

Assumptions
and Limitations

This implementation generates a geodetic latitude that lies between
degrees, and longitude that lies between degrees.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA
R-004-1992.

See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

ECEF Position to LLA

Euler Angles to Direction Cosine Matrix

90±
180±

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

4-185

LLA to ECEF Position

Wind Angles to Direction Cosine Matrix

Direction Cosine Matrix to Euler Angles

4-186

4Direction Cosine Matrix to Euler AnglesPurpose Convert direction cosine matrix to Euler angles

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction
cosine matrix (DCM) into three Euler rotation angles. The DCM matrix
performs the coordinate transformation of a vector in inertial axes

 into a vector in body axes . The order of the axis
rotations required to bring into coincidence with
is first, a rotation about through the roll angle to axes ,
second, a rotation about through the pitch angle to axes ,
and finally a rotation about through the yaw angle to axes

.

Combining the three axis transformation matrices defines the following DCM.

To determine Euler angles from the DCM, the following equations are used:

ox0 oy0 oz0,,() ox3 oy3 oz3,,()
ox3 oy3 oz3,,() ox0 oy0 oz0,,()

ox3 φ() ox2 oy2 oz2,,()
oy2 θ() ox1 oy1 oz1,,()

oz1 ψ()
ox0 oy0 oz0,,()

ox3

oy3

oz3

DCM

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

ox0

oy0

oz0

=

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos+() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

φ DCM 2 3,()
DCM 3 3,()
------------------------------⎝ ⎠
⎛ ⎞atan=

θ DCM 1 3,()–()asin=

ψ DCM 1 2,()
DCM 1 1,()
------------------------------⎝ ⎠
⎛ ⎞atan=

Direction Cosine Matrix to Euler Angles

4-187

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of Euler angles.

Assumptions
and Limitations

This implementation generates a pitch angle that lies between degrees,
and roll and yaw angles that lie between degrees.

See Also Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

90±
180±

Direction Cosine Matrix to Quaternions

4-188

4Direction Cosine Matrix to QuaternionsPurpose Convert direction cosine matrix to quaternion vector

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Quaternions block transforms a 3-by-3
direction cosine matrix (DCM) into a four-element unit quaternion vector
(q0,q1,q2,q3). The DCM performs the coordinate transformation of a vector in
inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:

Using this representation of the DCM, there is a number of calculations to
arrive at the correct quaternion. The first of these is to calculate the trace of
the DCM to determine which algorithms are used. If the trace is greater that
zero, the quaternion can be automatically calculated. When the trace is less
than or equal to zero, the major diagonal element of the DCM with the greatest
value must be identified to determine the final algorithm used to calculate the
quaternion. Once the major diagonal element is identified, the quaternion is
calculated. For a detailed view of these algorithms, look under the mask of this
block.

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

Direction Cosine Matrix to Quaternions

4-189

See Also Direction Cosine Matrix to Euler Angles

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

Direction Cosine Matrix to Wind Angles

4-190

4Direction Cosine Matrix to Wind AnglesPurpose Convert direction cosine matrix to wind angles

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Wind Angles block converts a 3-by-3 direction
cosine matrix (DCM) into three wind rotation angles. The DCM matrix
performs the coordinate transformation of a vector in earth axes
into a vector in wind axes . The order of the axis rotations
required to bring into coincidence with is first, a
rotation about through the bank angle to axes , second,
a rotation about through the flight path angle to axes ,
and finally, a rotation about through the heading angle to axes

.

Combining the three axis transformation matrices defines the following DCM.

To determine wind angles from the DCM, the following equations are used:

ox0 oy0 oz0,,()
ox3 oy3 oz3,,()

ox3 oy3 oz3,,() ox0 oy0 oz0,,()
ox3 μ() ox2 oy2 oz2,,()

oy2 γ() ox1 oy1 oz1,,()
oz1 χ()

ox0 oy0 oz0,,()

ox3

oy3

oz3

DCMwe

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 μcos μsin
0 μsin– μcos

γcos 0 γsin–

0 1 0
γsin 0 γcos

χcos χsin 0
χsin– χcos 0

0 0 1

ox0

oy0

oz0

=

DCMwe

γ χcoscos γ χsincos γsin–

μ γ χcossinsin μ χsincos–() μ γ χsinsinsin μ χcoscos+() μ γcossin
μ γ χcossincos μ χsinsin+() μ γ χsinsincos μ χcossin–() μ γcoscos

=

μ DCM 2 3,()
DCM 3 3,()
------------------------------⎝ ⎠
⎛ ⎞atan=

γ DCM 1 3,()–()asin=

χ DCM 1 2,()
DCM 1 1,()
------------------------------⎝ ⎠
⎛ ⎞atan=

Direction Cosine Matrix to Wind Angles

4-191

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix which transforms earth vectors to
wind vectors.

The output is a 3-by-1 vector of wind angles, in radians.

Assumptions
and Limitations

This implementation generates a flight path angle that lies between
degrees, and bank and heading angles that lie between degrees.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix Body to Wind to Alpha and Beta

Direction Cosine Matrix to Euler Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

90±
180±

Discrete Wind Gust Model

4-192

4Discrete Wind Gust ModelPurpose Generate discrete wind gust

Library Environment/Wind

Description The Discrete Wind Gust Model block implements a wind gust of the standard
“1-cosine” shape. This block implements the mathematical representation in
the Military Specification MIL-F-8785C [1]. The gust is applied to each axis
individually, or to all three axes at once. The user specifies the gust amplitude
(the increase in wind speed generated by the gust), the gust length (length, in
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The
parameters that govern the gust shape are indicated on the diagram.

The discrete gust can be used singly or in multiples to assess airplane response
to large wind disturbances.

Discrete Wind Gust Model

4-193

The mathematical representation of the discrete gust is

where Vm is the gust amplitude, dm is the gust length, x is the distance
traveled, and Vwind is the resultant wind velocity in the body axis frame.

Dialog Box

Vwind

0 x 0<

Vm
2

-------- 1 πx
dm
--------⎝ ⎠
⎛ ⎞cos–⎝ ⎠

⎛ ⎞ 0 x dm≤ ≤

Vm x dm>⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

Discrete Wind Gust Model

4-194

Units
Define the units of wind gust.

Gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (sec)
The model time, in seconds, at which the gust begins.

Gust length [dx dy dz] (m or f)
The length, in meters or feet (depending on the choice of units), over which
the gust builds up in each axis. These values must be positive.

Gust amplitude [ug vg wg] (m/s, f/s, or knots)
The magnitude of the increase in wind speed caused by the gust in each
axis. These values may be positive or negative.

Inputs and
Outputs

The input is airspeed in units selected.

The output is wind speed in units selected.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

References U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Dryden Wind Turbulence Model (Continuous)

Units Wind Altitude

Metric (MKS) Meters/second Meters

English (Velocity
in ft/s)

Feet/second Feet

English (Velocity
in kts)

Knots Feet

Discrete Wind Gust Model

4-195

Dryden Wind Turbulence Model (Discrete)

Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model

Dryden Wind Turbulence Model (Continuous)

4-196

4Dryden Wind Turbulence Model (Continuous)Purpose Generate continuous wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by passing
band-limited white noise through appropriate forming filters. This block
implements the mathematical representation in the Military Specification
MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Ω radians per meter, the circular
frequency ω is calculated by multiplying V by Ω. The following table displays
the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

 Φu ω()

 Φpg
ω()

2σu
2Lu

πV
------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅
2σu

2Lu
πV

------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅

σw
2

VLw

0.8
πLw
4b

-----------⎝ ⎠
⎛ ⎞

1
3

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

-----------------------------⋅
σw

2

2VLw

0.8
2πLw

4b
---------------⎝ ⎠
⎛ ⎞

1
3

1 4bw
πV

------------⎝ ⎠
⎛ ⎞ 2

+

--------------------------------⋅

Dryden Wind Turbulence Model (Continuous)

4-197

The variable b represents the aircraft wingspan. The variables
represent the turbulence scale lengths. The variables σu, σv, σw represent the
turbulence intensities.

Lateral

Vertical

 MIL-F-8785C MIL-HDBK-1797

 Φv ω()

Φr ω()

σv
2Lv
πV

1 3 Lv

ω
V
----()

2
+

1 Lv
ω
V
----()

2
+[]

2
-----------------------------------⋅

2σv
2Lv

πV

1 12 Lv
ω
V
----()

2
+

1 4 Lv
ω
V
----()

2
+[]

2
---------------------------------------⋅

ω
V
----⎝ ⎠
⎛ ⎞+−

2

1 3bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φv ω()⋅

ω
V
----⎝ ⎠
⎛ ⎞+−

2

1 3bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φv ω()⋅

 Φw ω()
σw

2Lw
πV

1 3 Lw

ω
V
----()

2
+

1 Lw
ω
V
----()

2
+[]

2
------------------------------------⋅

2σw
2Lw

πV

1 12 Lw
ω
V
----()

2
+

1 4 Lw
ω
V
----()

2
+[]

2
--⋅

 Φq ω()

ω
V
----⎝ ⎠
⎛ ⎞±

2

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φw ω()⋅

ω
V
----⎝ ⎠
⎛ ⎞±

2

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φw ω()⋅

Lu Lv Lw, ,

Dryden Wind Turbulence Model (Continuous)

4-198

The spectral density definitions of turbulence angular rates are defined in the
specifications as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

, multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is passed through forming filters. The forming
filters are derived from the spectral square roots of the spectrum equations.

Vertical Lateral

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------–=

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------=

pg
∂wg
∂y

----------–= qg
∂wg
∂x

----------–= rg
∂vg
∂x
---------=

Φpg
ω()

Φw ω()

Φq ω() Φ– r ω()

Φq ω() Φr ω()

Φ– q ω() Φr ω()

Dryden Wind Turbulence Model (Continuous)

4-199

The following table displays the transfer functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

Lateral

 Hu s()

 Hp s()

σu
2Lu
πV

------------ 1
1

Lu
V

--------s+
------------------- σu

2Lu
πV

------------ 1
1

Lu
V

--------s+

σw
0.8
V

π
4b()

-----------⎝ ⎠
⎛ ⎞ 1 6⁄

Lw
1 3⁄ 1 4b

πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
-- σw

0.8
V

π
4b()

-----------⎝ ⎠
⎛ ⎞ 1 6⁄

2Lw()1 3⁄ 1 4b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞

 Hv s()

 Hr s()

σv
Lv
πV

1
3Lv
V

--------------s+

1
Lv
V

-------s+()
2

--------------------------- σv
2Lv
πV

1

2 3Lv
V

------------------s+

1
2Lv

V
-------------s+⎝ ⎠

⎛ ⎞
2

s
V
----+−

1 3b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hv s()⋅

s
V
----+−

1 3b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hv s()⋅

Dryden Wind Turbulence Model (Continuous)

4-200

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Note The military specifications result in the same transfer function after
evaluating the turbulence scale lengths. The differences in turbulence scale
lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low
altitudes, where is the altitude in feet, are represented in the following table:

The turbulence intensities are given below, where is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15

Vertical

 MIL-F-8785C MIL-HDBK-1797

 MIL-F-8785C MIL-HDBK-1797

Hw s()

 Hq s()

σw
Lw
πV

1
3Lw
V

---------------s+

1
Lw
V

---------s+()
2

---------------------------- σw
2Lw

πV

1
2 3Lw

V
-------------------s+

1
2Lw

V
--------------s+⎝ ⎠

⎛ ⎞
2

s
V
----±

1 4b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hw s()⋅

s
V
----±

1 4b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hw s()⋅

h

Lw h

Lu Lv
h

0.177 0.000823h+()1.2
--

=

= =

2Lw h

Lu 2Lv
h

0.177 0.000823h+()1.2
--

=

= =

W20

Dryden Wind Turbulence Model (Continuous)

4-201

knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

 MIL-F-8785C MIL-HDBK-1797

σw 0.1W20

σu
σw

σv
σw
------- 1

0.177 0.000823h+()0.4
--

=

= =

Lu Lv Lw 1750= = = ft Lu 2Lv 2Lw 1750= = = ft

σu σv σw= =

Dryden Wind Turbulence Model (Continuous)

4-202

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Dryden Wind Turbulence Model (Continuous)

4-203

Dialog Box

Dryden Wind Turbulence Model (Continuous)

4-204

Units
Define the units of wind speed due to the turbulence.

Specification
Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions.

Model type
Select the wind turbulence model to use.

Units Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English
(Velocity in
ft/s)

Feet/second Feet Feet/second

English
(Velocity in
kts)

Knots Feet Knots

Continuous Von Kármán (+q -r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kármán (+q +r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von
Kármán velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Dryden Wind Turbulence Model (Continuous)

4-205

The Continuous Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

Dryden Wind Turbulence Model (Continuous)

4-206

Scale length at medium/high altitudes (m)
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (sec)
The sample time at which the unit variance white noise signal is generated.

Noise seeds
There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Continuous)

4-207

Assumptions
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example of this
block.

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education
Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Dryden Wind Turbulence Model (Continuous)

4-208

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

Von Karman Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

4-209

4Dryden Wind Turbulence Model (Discrete)Purpose Generate continuous wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral
representation to add turbulence to the aerospace model by using band-limited
white noise with appropriate digital filter finite difference equations. This
block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Ω radians per meter, the circular
frequency ω is calculated by multiplying V by Ω. The following table displays
the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

 Φu ω()

 Φp ω()

2σu
2Lu

πV
------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅
2σu

2Lu
πV

------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅

σw
2

VLw

0.8
πLw
4b

-----------⎝ ⎠
⎛ ⎞

1
3

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

-----------------------------⋅
σw

2

2VLw

0.8
2πLw

4b
---------------⎝ ⎠
⎛ ⎞

1
3

1 4bw
πV

------------⎝ ⎠
⎛ ⎞ 2

+

--------------------------------⋅

Dryden Wind Turbulence Model (Discrete)

4-210

Lateral

Vertical

 MIL-F-8785C MIL-HDBK-1797

 Φv ω()

 Φr ω()

σv
2Lv
πV

1 3 Lv

ω
V
----()

2
+

1 Lv
ω
V
----()

2
+[]

2
-----------------------------------⋅

2σv
2Lv

πV

1 12 Lv
ω
V
----()

2
+

1 4 Lv
ω
V
----()

2
+[]

2
---------------------------------------⋅

ω
V
----⎝ ⎠
⎛ ⎞+−

2

1 3bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φv ω()⋅

ω
V
----⎝ ⎠
⎛ ⎞+−

2

1 3bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φv ω()⋅

 Φw ω() σw
2Lw
πV

1 3 Lw

ω
V
----()

2
+

1 Lw
ω
V
----()

2
+[]

2
------------------------------------⋅

2σw
2Lw

πV

1 12 Lw
ω
V
----()

2
+

1 4 Lw
ω
V
----()

2
+[]

2
--⋅

 Φq ω()

ω
V
----⎝ ⎠
⎛ ⎞±

2

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φw ω()⋅

ω
V
----⎝ ⎠
⎛ ⎞±

2

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φw ω()⋅

Dryden Wind Turbulence Model (Discrete)

4-211

The variable b represents the aircraft wingspan. The variables
represent the turbulence scale lengths. The variables σu, σv, σw represent the
turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

, multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

Vertical Lateral

Lu Lv Lw, ,

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------–=

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------=

pg
∂wg
∂y

----------–= qg
∂wg
∂x

----------–= rg
∂vg
∂x
---------=

Φp ω()

Φw ω()

Φq ω() Φ– r ω()

Φq ω() Φr ω()

Φ– q ω() Φr ω()

Dryden Wind Turbulence Model (Discrete)

4-212

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is used in the digital filter finite difference
equations.

The following table displays the digital filter finite difference equations:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

Lateral

Vertical

ug

pg

1 V
Lu
-------T–⎝ ⎠

⎛ ⎞ug 2 V
Lu
-------T

σu
ση
------η1+ 1 V

Lu
-------T–⎝ ⎠

⎛ ⎞ug 2 V
Lu
-------T

σu
ση
------η1+

1 2.6
Lwb

---------------T–⎝ ⎠
⎛ ⎞pg

2 2.6
Lwb

---------------T

0.95

2Lwb23
-----------------------σw

ση
-------------------------------η4

+ 1 2.6
2Lwb

-------------------T–⎝ ⎠
⎛ ⎞pg

2 2.6
2Lwb

-------------------T

1.9
2Lwb

-------------------σw

ση
---------------------------η4

+

vg

rg

1 V
Lu
-------T–⎝ ⎠

⎛ ⎞ vg 2 V
Lu
-------T

σv
ση
------η2+ 1 V

Lu
-------T–⎝ ⎠

⎛ ⎞ vg 2 V
Lu
-------T

σv
ση
------η2+

1 πV
3b
-------T–⎝ ⎠

⎛ ⎞ rg
π

3b
-------+− vg vgpast

–() 1 πV
3b
-------T–⎝ ⎠

⎛ ⎞ rg
π

3b
-------+− vg vgpast

–()

wg

qg

1 V
Lu
-------T–⎝ ⎠

⎛ ⎞wg 2 V
Lu
-------T

σw
ση
-------η3+ 1 V

Lu
-------T–⎝ ⎠

⎛ ⎞wg 2 V
Lu
-------T

σw
ση
-------η3+

1 πV
4b
-------T–⎝ ⎠

⎛ ⎞qg
π

4b
-------± wg wgpast

–() 1 πV
4b
-------T–⎝ ⎠

⎛ ⎞qg
π

4b
-------± wg wgpast

–()

Dryden Wind Turbulence Model (Discrete)

4-213

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low
altitudes, where is the altitude in feet, are represented in the following table:

The turbulence intensities are given below, where is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

 MIL-F-8785C MIL-HDBK-1797

h

Lw h

Lu Lv
h

0.177 0.000823h+()1.2
--

=

= =

2Lw h

Lu 2Lv
h

0.177 0.000823h+()1.2
--

=

= =

W20

σw 0.1W20

σu
σw

σv
σw
------- 1

0.177 0.000823h+()0.4
--

=

= =

Dryden Wind Turbulence Model (Discrete)

4-214

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

 MIL-F-8785C MIL-HDBK-1797

Lu Lv Lw 1750= = = ft Lu 2Lv 2Lw 1750= = = ft

σu σv σw= =

Dryden Wind Turbulence Model (Discrete)

4-215

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Dialog Box

Dryden Wind Turbulence Model (Discrete)

4-216

Units
Define the units of wind speed due to the turbulence.

Specification
Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Units Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English
(Velocity in
ft/s)

Feet/second Feet Feet/second

English
(Velocity in
kts)

Knots Feet Knots

Continuous Von Kármán (+q -r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kármán (+q +r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von
Kármán velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Dryden Wind Turbulence Model (Discrete)

4-217

The Discrete Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

Dryden Wind Turbulence Model (Discrete)

4-218

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise and discrete filter sample time (sec)
The sample time at which the unit variance white noise signal is generated
and at which the discrete filters are updated.

Noise seeds
There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Discrete)

4-219

Assumptions
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education
Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Dryden Wind Turbulence Model (Discrete)

4-220

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Continuous)

Von Karman Wind Turbulence Model (Continuous)

Discrete Wind Gust Model

Wind Shear Model

Dynamic Pressure

4-221

4Dynamic PressurePurpose Compute dynamic pressure using velocity and air density

Library Flight Parameters

Description The Dynamic Pressure block computes dynamic pressure.

Dynamic pressure is defined as

where is air density and V is velocity.

Dialog Box

Inputs and
Outputs

The first input is velocity vector.

The second input is air density.

The output of the block is dynamic pressure.

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example of this
block.

See Also Aerodynamic Forces and Moments

Mach Number

q 1
2
---ρV2

=

ρ

ECEF Position to LLA

4-222

4ECEF Position to LLAPurpose Calculate geodetic latitude, longitude, and altitude above mean sea-level
(MSL) from Earth-centered Earth-fixed (ECEF) position

Library Utilities/Axes Transformations

Description The ECEF Position to LLA block converts a 3-by-1 vector of ECEF position
into geodetic latitude , longitude , and MSL altitude .

The ECEF position is defined as

Longitude is calculated from the ECEF position by

Geodetic latitude is calculated from the ECEF position using Bowring’s
method, which typically converges after two or three iterations. The method
begins with an initial guess for geodetic latitude and reduced latitude .
An initial guess takes the form:

where is the equatorial radius, the flattening of the planet,
 the square of first eccentricity, and

p()
μ() ι() h()

p

px

py

pz

=

ι
py
px
------⎝ ⎠
⎛ ⎞atan=

μ()

μ() β()

β
pz

1 f–()s
-------------------⎝ ⎠
⎛ ⎞atan=

μ

pz
e2

1 e2
–()

-------------------R βsin()3
+

s e2R βcos()3
–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

atan=

R f
e2 1 1 f–()2

–=

ECEF Position to LLA

4-223

After the initial guesses are calculated, the reduced latitude is
recalculated using

and geodetic latitude is reevaluated. This last step is repeated until
converges.

The MSL altitude is calculated with

where the radius of curvature in the vertical prime is given by

s px
2 py

2
+=

β()

β 1 f–() μsin
μcos

-----------------------------⎝ ⎠
⎛ ⎞atan=

μ() μ

h()

h s μcos pz e2N μsin+[] μsin N–+=

N()

N R

1 e2 μsin()2
–

---------------------------------------=

ECEF Position to LLA

4-224

Dialog Box

Units
Specifies the parameter and output units:

This option is only available when Planet model is set to Earth (WGS84).

Units Position Equatorial Radius Altitude

Metric (MKS) Meters Meters Meters

English Feet Feet Feet

ECEF Position to LLA

4-225

Planet model
Specifies the planet model to use Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet.

This option is available only with Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The equatorial radius units
should be the same as the desired units for ECEF position.

This option is available only with Planet model set to Custom.

Inputs and
Outputs

The input is a 3-by-1 vector containing the position in ECEF frame.

The first output is a 2-by-1 vector containing geodetic latitude and longitude,
in degrees.

The second output is a scalar value of altitude above mean sea-level (MSL), in
the same units as the ECEF position.

Assumptions
and Limitations

This implementation generates a geodetic latitude that lies between
degrees, and longitude that lies between degrees. The planet is assumed
to be ellipsoidal. By setting the flattening to 0, you model a spherical planet.
Additionally, the calculated MSL altitude is approximate.

The implementation of the ECEF coordinate system assumes that its origin
lies at the center of the planet, the x-axis intersects the prime (Greenwich)
meridian and the equator, the z-axis is the mean spin axis of the planet
(positive to the north), and the y-axis completes the right-handed system.

See “About Aerospace Coordinate Systems” on page 2-20.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA
R-004-1992.

90±
180±

ECEF Position to LLA

4-226

See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

Estimate Center of Gravity

4-227

4Estimate Center of GravityPurpose Calculate the center of gravity location

Library Mass Properties

Description The Estimate Center of Gravity block calculates the center of gravity location
and the rate of change of the center of gravity.

Linear interpolation is used to estimate the location of center of gravity as a
function of mass. The rate of change of center of gravity is a linear function of
rate of change of mass.

Dialog Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full center of gravity
Specifies the center of gravity at gross mass of the craft.

Estimate Center of Gravity

4-228

Empty center of gravity
Specifies the center of gravity at empty mass of the craft.

Inputs and
Outputs

The first input is the mass.

The second input is the rate of change of mass.

The first output is the center of gravity location.

The second output is the rate of change of center of gravity location.

Examples See the aeroblk_vmm demo for an example of this block.

See Also Aerodynamic Forces and Moments

Estimate Inertia Tensor

Moments About CG Due to Forces

Estimate Inertia Tensor

4-229

4Estimate Inertia TensorPurpose Calculate the inertia tensor

Library Mass Properties

Description The Estimate Inertia Tensor block calculates the inertia tensor and the rate of
change of the inertia tensor.

Linear interpolation is used to estimate the inertia tensor as a function of
mass. The rate of change of the inertia tensor is a linear function of rate of
change of mass.

Dialog Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full inertia matrix
Specifies the inertia tensor at gross mass of the craft.

Estimate Inertia Tensor

4-230

Empty inertia matrix
Specifies the inertia tensor at empty mass of the craft.

Inputs and
Outputs

The first input is mass.

The second input is rate of change of mass.

The first output is inertia tensor.

The second output is rate of change of inertia tensor.

See Also Estimate Center of Gravity

Symmetric Inertia Tensor

Euler Angles to Direction Cosine Matrix

4-231

4Euler Angles to Direction Cosine MatrixPurpose Convert Euler angles to direction cosine matrix

Library Utilities/Axes Transformations

Description The Euler Angles to Direction Cosine Matrix block converts the three Euler
rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in inertial axes

 into a vector in body axes . The order of the axis
rotations required to bring into coincidence with
is first a rotation about through the roll angle to axes .
Second a rotation about through the pitch angle to axes ,
and finally a rotation about through the yaw angle to
axes .

Combining the three axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,() ox3 oy3 oz3,,()
ox3 oy3 oz3,,() ox0 oy0 oz0,,()

ox3 φ() ox2 oy2 oz2,,()
oy2 θ() ox1 oy1 oz1,,()

oz1 ψ()
ox0 oy0 oz0,,()

ox3

oy3

oz3

DCM

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

ox0

oy0

oz0

=

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos+() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

Euler Angles to Direction Cosine Matrix

4-232

Dialog Box

Inputs and
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

Euler Angles to Quaternions

4-233

4Euler Angles to QuaternionsPurpose Convert Euler angles to a quaternion vector

Library Utilities/Axes Transformations

Description The Euler Angles to Quaternions block converts the rotation described by the
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector
(q0,q1,q2,q3).

A quaternion vector represents a rotation about a unit vector ()
through an angle . A unit quaternion itself has unit magnitude, and can be
written in the following vector format.

An alternative representation of a quaternion is as a complex number,

where, for the purposes of multiplication,

The benefit of representing the quaternion in this way is the ease with which
the quaternion product can represent the resulting transformation after two or
more rotations. The quaternion to represent the rotation through the three
Euler angles is given below.

Expanding the preceding representation gives the four quaternion elements
following.

μx μy μz
θ

q

q0

q1

q2

q3

θ 2⁄()cos
θ 2⁄()μxsin

θ 2⁄()μysin

θ 2⁄()μzsin

= =

q q0 iq1 jq2 kq3+ + +=

i2 j2 k2 1–= = =

ij ji– k= =

jk kj– i
ki

,

ik– j
= =

= =

q qφqθqψ
φ
2
---⎝ ⎠
⎛ ⎞ i φ

2
---⎝ ⎠
⎛ ⎞sin–cos⎝ ⎠

⎛ ⎞ θ
2
---⎝ ⎠
⎛ ⎞ j θ

2
---⎝ ⎠
⎛ ⎞sin–cos⎝ ⎠

⎛ ⎞ ψ
2
----⎝ ⎠
⎛ ⎞ k ψ

2
----⎝ ⎠
⎛ ⎞sin–cos⎝ ⎠

⎛ ⎞= =

Euler Angles to Quaternions

4-234

Dialog Box

Inputs and
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 4-by-1 quaternion vector.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

q0

q1

q2

q3

φ
2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞ φ

2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞sinsinsin+coscoscos

φ
2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞cos φ

2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞sinsincos–cossin

φ
2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞cos φ

2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞sincossin+sincos

φ
2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞sin φ

2
---⎝ ⎠
⎛ ⎞ θ

2
---⎝ ⎠
⎛ ⎞ ψ

2
----⎝ ⎠
⎛ ⎞cossinsin–coscos

=

Flat Earth to LLA

4-235

4Flat Earth to LLAPurpose Estimate geodetic latitude, longitude, and altitude from flat Earth position

Library Utilities/Axes Transformations

Description The Flat Earth to LLA block converts a 3-by-1 vector of Flat Earth position
into geodetic latitude , longitude , and altitude . The flat Earth
coordinate system assumes the z-axis is downwards positive. The estimation
begins by transforming the flat Earth x and y coordinates to North and East
coordinates. The transformation has the form of

where is the angle in degrees clockwise between the x-axis and north.

To convert the North and East coordinates to geodetic latitude and longitude,
the radius of curvature in the prime vertical and the radius of curvature
in the meridian are used. and are defined by the following
relationships:

where is the equatorial radius of the planet and is the flattening of the
planet.

Small changes in the in latitude and longitude are approximated from small
changes in the North and East positions by

p()
μ() ι() h()

N
E

ψcos ψsin–

ψsin ψcos

px

py

=

ψ()

RN()
RM() RN() RM()

RN
R

1 2f f2
–() μ2sin–

--=

RM RN
1 2f f2

–()–

1 2f f2
–() μ2sin–

--=

R() f()

dμ 1
R

M⎝ ⎠
⎛ ⎞dNatan=

dι 1
RN μcos
---------------------⎝ ⎠
⎛ ⎞dEatan=

Flat Earth to LLA

4-236

The output latitude and longitude are simply the initial latitude and longitude
plus the small changes in latitude and longitude.

The altitude is the negative flat Earth z-axis value minus the reference height
.

μ μo dμ+=

ι ιo dι+=

href()

h pz– href–=

Flat Earth to LLA

4-237

Dialog Box

Flat Earth to LLA

4-238

Units
Specifies the parameter and output units:

This option is only available when Planet model is set to Earth (WGS84).

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with
Planet model Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for flat Earth position.
This option is only available with Planet model Custom.

Initial geodetic latitude and longitude
Specifies the reference location, in degrees of latitude and longitude, for the
origin of the estimation and the origin of the flat Earth coordinate system.

Direction of flat Earth x-axis (degrees clockwise from north)
Specifies angle used for converting flat Earth x and y coordinates to North
and East coordinates.

Inputs and
Outputs

The first input is a 3-by-1 vector containing the position in flat Earth frame.

The second input is a scalar value of reference altitude in the same units for
flat Earth position.

The first output is a 2-by-1 vector containing geodetic latitude and longitude,
in degrees.

Units Position Equatorial Radius Altitude

Metric (MKS) Meters Meters Meters

English Feet Feet Feet

Flat Earth to LLA

4-239

The second output is a scalar value of altitude above the input reference
altitude, in same units as flat Earth position.

Assumptions
and Limitations

This estimation method assumes the flight path and bank angle are zero.

This estimation method assumes the flat Earth z-axis is normal to the Earth
at the initial geodetic latitude and longitude only. This method has higher
accuracy over small distances from the initial geodetic latitude and longitude,
and nearer to the equator. The longitude will have higher accuracy the smaller
the variations in latitude. Additionally, longitude is singular at the poles.

Example See the asbhl20 demo for an example of this block.

References Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, New York, NY,
1972.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second
Edition, John Wiley & Sons, New York, NY, 2003.

See Also Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

ECEF Position to LLA

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

FlightGear Preconfigured 6DoF Animation

4-240

4FlightGear Preconfigured 6DoF AnimationPurpose Connect your model to FlightGear Flight Simulator

Library Animation/Flight Simulator Interfaces

Description The FlightGear Preconfigured 6DoF Animation block lets you drive position
and attitude values to a FlightGear Flight Simulator vehicle given double
precision values for longitude , latitude (L), altitude (h), roll , pitch ,
and yaw respectively.

The block is a masked subsystem containing principally a Pack net_fdm Packet
for FlightGear block set for 6DoF inputs, a Send net_fdm Packet to FlightGear
block, and a Simulation Pace block. To access the full capabilities of these
blocks, use the individual corresponding blocks from the Aerospace Blockset
library.

The block is additionally configured as a SimViewingDevice, so that if you
generate code for your model using Real-Time Workshop and connect to the
running target code using the Real-Time Workshop External Mode available
from the model's toolbar, then Simulink can obtain the data from the target on
the fly and transmit position and attitude data to FlightGear. The
SimViewingDevice facility is described in the Simulink documentation.

λ() φ() θ()
ψ()

FlightGear Preconfigured 6DoF Animation

4-241

Dialog Box

FlightGear version
Select your FlightGear software version: v0.9.3, v0.9.8, or v0.9.9.

Destination IP address
Specify your destination IP address.

Destination port
Specify your destination port.

Sample time
Specify the sample time (-1 for inherited).

Inputs and
Outputs

The input is a vector containing longitude, latitude, altitude, roll, pitch, and
yaw, in double precision. Units are degrees west/north for longitude and
latitude, meters above mean sea level for altitude, and radians for attitude
values.

FlightGear Preconfigured 6DoF Animation

4-242

References Dr. Nathaniel Bowditch, American Practical Navigator, An Epitome of
Navigation, US Navy Hydrographic Office, 1802.

See Also Generate Run Script

Pack net_fdm Packet for FlightGear

Send net_fdm Packet to FlightGear

Simulation Pace

Force Conversion

4-243

4Force ConversionPurpose Convert from force units to desired force units

Library Utilities/Axes Transformations

Description The Force Conversion block computes the conversion factor from specified
input force units to specified output force units and applies the conversion
factor to the input signal.

The Force Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is force in initial force units.

The output is force in final force units.

lbf Pound force

N Newtons

Force Conversion

4-244

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Gain Scheduled Lead-Lag

4-245

4Gain Scheduled Lead-LagPurpose Implement a first-order lead-lag with gain-scheduled coefficients

Library GNC/Controls

Description The Gain Scheduled Lead-Lag block implements a first-order lag of the form

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made
dependent on flight condition or operating point. For example, they could be
produced from the Look-Up Table (n-D) Simulink block.

Dialog Box

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state,
the initial output is given by

Inputs and
Outputs

The first input is the filter input.

The second input is the numerator coefficient.

The third input is the denominator coefficient.

The output is the filter output

u 1 as+
1 bs+
----------------e=

u t 0=
xinitial ae+

b
--------------------------------=

Generate Run Script

4-246

4Generate Run ScriptPurpose Generate FlightGear run script on current platform

Library Animation/Flight Simulator Interfaces

Description The Generate Run Script block generates a customized FlightGear run script
on the current platform.

To generate the run script, fill the required information into the dialog’s fields,
then click Generate Script.

Fields in the dialog marked with an asterisk (*) are evaluated as MATLAB
expressions. The other fields are treated as literal text.

For More Information About FlightGear
See “Creating a FlightGear Run Script” on page 2-43 for more about
FlightGear.

Generate Run Script

4-247

Dialog Box

Generate Script
Click to generate a run script for FlightGear. Do not click this button until
you have entered the correct information in the dialog fields.

Generate Run Script

4-248

Output file name
Specify the name of the output file. The file name is the name of the
command you will use to start FlightGear with these initial parameters.
The file must have the .bat extension.

FlightGear base directory
Specify the name of your FlightGear installation directory.

FlightGear geometry model name
Specify the name of the folder containing the desired model geometry in the
FlightGear\data\Aircraft directory.

Destination port
Specify your network flight dynamics model (fdm) port. For more
information, see the Send net_fdm Packet to FlightGear block reference.

Airport ID
Specify the airport ID. The list of supported airports is available in the
FlightGear interface, under Location.

Runway ID
Specify the runway ID.

Initial altitude
Specify the initial altitude of the aircraft, in feet.

Initial heading
Specify the initial heading of the aircraft, in degrees.

Offset distance
Specify the offset distance of the aircraft from the airport, in miles.

Offset azimuth
Specify the offset azimuth of the aircraft, in degrees.

Examples See the asbhl20 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

Pack net_fdm Packet for FlightGear

Send net_fdm Packet to FlightGear

Geocentric to Geodetic Latitude

4-249

4Geocentric to Geodetic LatitudePurpose Convert geocentric latitude to geodetic latitude

Library Utilities/Axes Transformations

Description The Geocentric to Geodetic Latitude block converts a geocentric latitude
into geodetic latitude . There are a number of geometric relationships that
are used to calculate the geodetic latitude in this non-iterative method. There
are a number angles and points involved in the calculation which are shown in
following figure.

Given geocentric latitude and the radius from the center of the planet
(O) to the center of gravity (P), this non-iterative method starts by computing
values for the point of that intercepts the surface of the planet (S). By
rearranging the equation for an ellipse, the horizontal coordinate, is

λ()
μ()

λ() r()

r
xa()

Geocentric to Geodetic Latitude

4-250

determined. When equatorial radius , polar radius and ,
are substituted for semi-major axis, semi-minor axis and vertical coordinate

, the resulting equation for has the following form:

To determine the geodetic latitude at S , the equation for an ellipse with
equatorial radius , polar radius is used again. This time it is used
to define in terms of .

Additionally, the relationship between geocentric latitude at the planet’s
surface and geodetic latitude is used.

Using the relationship and the two equations above, the
resulting equation for is obtained.

The correct sign of is determined by testing and if is less than zero
changes sign accordingly.

In order to calculate the geodetic latitude of P, a number of geometric
relationships are required to be calculated. These calculations follow.

The radius from the center of the planet (O) to the surface of the planet (S)
is calculated by using trigonometric relationship.

R() 1 f–()R() xa λtan

ya() xa

xa
1 f–()R

λ2tan 1 f–()2
+

---=

μa
R() 1 f–()R()

ya xa

ya R2 xa
2

– 1 f–()=

μa
λtan

1 f–()2
-------------------⎝ ⎠
⎛ ⎞atan=

λtan ya xa⁄=
μa

μa
R2 xa

2
–

1 f–() xa

⎝ ⎠
⎜ ⎟
⎛ ⎞

atan=

μa λ λ μa

ra()

ra
xa

λcos
------------=

Geocentric to Geodetic Latitude

4-251

The distance from S to P is defined by:

The angular difference between geocentric latitude and geodetic latitude at S
 is defined by:

Using and , the mean sea-level altitude is estimated.

The equation for the radius of curvature in the Meridian at is

Using , , , and , the angular difference between geodetic latitude at S
 and geodetic latitude at P is defined as:

Subtracting from then gives .

l r ra–=

δλ()

δλ μa λ–=

l δλ h()

h l δλcos=

ρa() μa

ρa
R 1 f–()2

1 2f f2
–() μ2

asin–()
3 2⁄

--=

l δλ h ρa
μ() μa()

δμ l δλsin
ρa h+
------------------⎝ ⎠
⎛ ⎞atan=

δμ μa μ

μ μa δμ–=

Geocentric to Geodetic Latitude

4-252

Dialog Box

Units
Specifies the parameter and output units:

This option is only available when Planet model is set to Earth (WGS84).

Units Radius from CG to
Center of Planet

Equatorial Radius

Metric (MKS) Meters Meters

English Feet Feet

Geocentric to Geodetic Latitude

4-253

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for radius. This option is
only available with Planet model set to Custom.

Inputs and
Outputs

The first input is a scalar value of geocentric latitude, in degrees.

The second input is a scalar value of radius from center of the planet to the
center of gravity.

The output is a scalar value of geodetic latitude, in degrees.

Assumptions
and Limitations

This implementation generates a geodetic latitude that lies between
degrees.

References Jackson, E. B., Manual for a Workstation-based Generic Flight Simulation
Program (LaRCsim) Version 1.4, NASA TM 110164, April, 1995.

Hedgley, D. R., Jr., “An Exact Transformation from Geocentric to Geodetic
Coordinates for Nonzero Altitudes,” NASA TR R-458, March, 1976.

Clynch, J. R., “Radius of the Earth - Radii Used in Geodesy,” Naval
Postgraduate School, 2002,
http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry 2nd
Edition, Prentice-Hall, Englewood Cliffs, NJ, 1986.

90±

Geocentric to Geodetic Latitude

4-254

See Also ECEF Position to LLA

Flat Earth to LLA

Geodetic to Geocentric Latitude

LLA to ECEF Position

Geodetic to Geocentric Latitude

4-255

4Geodetic to Geocentric LatitudePurpose Convert geodetic latitude to geocentric latitude

Library Utilities/Axes Transformations

Description The Geodetic to Geocentric Latitude block converts a geodetic latitude into
geocentric latitude . Geocentric latitude at the planet surface is defined
by flattening , and geodetic latitude in the following relationship.

Geocentric latitude is defined by mean sea-level altitude , geodetic latitude,
radius of the planet and geocentric latitude at the planet surface in the
following relationship.

μ()
λ() λs()

f()

λs 1 f–()2 μtan()atan=

h()
rs()

λ
h μsin rs λssin+

h μcos rs λscos+
---⎝ ⎠
⎛ ⎞atan=

Geodetic to Geocentric Latitude

4-256

Dialog Box

Units
Specifies the parameter and output units:

This option is only available when Planet model is set to Earth (WGS84).

Units Altitude Equatorial Radius

Metric (MKS) Meters Meters

English Feet Feet

Geodetic to Geocentric Latitude

4-257

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for altitude. This option
is only available with Planet model set to Custom.

Inputs and
Outputs

The first input is a scalar value of geodetic latitude, in degrees.

The second input is a scalar value of mean sea-level altitude (MSL).

The output is a scalar value of geocentric latitude, in degrees.

Assumptions
and Limitations

This implementation generates a geocentric latitude that lies between
degrees.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also ECEF Position to LLA

Flat Earth to LLA

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

90±

Horizontal Wind Model

4-258

4Horizontal Wind ModelPurpose Transform horizontal wind into body-axes coordinates

Library Environment/Wind

Description The Horizontal Wind Model block computes the wind velocity in body-axes
coordinates.

The wind is specified by wind speed and wind direction in Earth axes. The
speed and direction can be constant or variable over time. The direction of the
wind is in degrees clockwise from the direction of the Earth x-axis (north). The
wind direction is defined as the direction from which the wind is coming. Using
the direction cosine matrix (DCM), the wind velocities are transformed into
body-axes coordinates.

Dialog Box

Units
Specifies the input and output units:

Units Wind Speed Wind Velocity

Metric (MKS) Meters per second Meters per second

English (Velocity in ft/s) Feet per second Feet per second

English (Velocity in kts) Knots Knots

Horizontal Wind Model

4-259

Wind speed source
Specify source of wind speed:

Wind speed at altitude (m/s)
Constant wind speed used if internal wind speed source is selected.

Wind direction source
Specify source of wind direction:

Wind direction at altitude (degrees clockwise from north)
Constant wind direction used if internal wind direction source is selected.
The direction of the wind is in degrees clockwise from the direction of the
Earth x-axis (north). The wind direction is defined as the direction from
which the wind is coming.

Inputs and
Outputs

The first input is direction cosine matrix.

The second optional input is the wind speed in selected units.

The third optional input is the wind direction in degrees.

The output of the block is the wind velocity in body-axes, in selected units.

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model

External Variable wind speed input to block

Internal Constant wind speed specified in mask

External Variable wind direction input to block

Internal Constant wind direction specified in mask

Ideal Airspeed Correction

4-260

4Ideal Airspeed CorrectionPurpose Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from each other

Library Flight Parameters

Description The Ideal Airspeed Correction block calculates one of the following airspeeds:
equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS),
from one of the other two airspeeds.

Three equations are used to implement the Ideal Airspeed Correction block.
The first equation shows TAS as a function of EAS, relative pressure ratio at
altitude (δ), and speed of sound at altitude (a).

Using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, the last two equations for EAS and CAS are derived.

In order to generate a correction table and its approximate inverse, these two
equations were solved for dynamic pressure (q). Having values of q by a
function of EAS and ambient pressure at altitude (P) or by a function of CAS,
allows the two equations to be solved using the other’s solution for q, thus
creating a solution for EAS that depends on P and CAS and a solution for CAS
that depends on P and EAS.

TAS EAS a×
a0 δ

-----------------------=

EAS 2γP
γ 1–()ρ0

----------------------- q
P
---- 1+⎝ ⎠
⎛ ⎞ γ 1–() γ⁄

1–=

CAS
2γP0

γ 1–()ρ0
----------------------- q

P0
------ 1+⎝ ⎠
⎛ ⎞ γ 1–() γ⁄

1–=

Ideal Airspeed Correction

4-261

Dialog Box

Units
Specifies the input and output units:

Airspeed input
Specify the airspeed input type:

Units Airspeed
Input

Speed of
Sound

Air Pressure Airspeed
Output

Metric (MKS) Meters per
second

Meters per
second

Pascal Meters per
second

English (Velocity
in ft/s)

Feet per
second

Feet per
second

Pound force per
square inch

Feet per
second

English (Velocity
in kts)

Knots Knots Pound force per
square inch

Knots

TAS True airspeed

EAS Equivalent airspeed

CAS Calibrated airspeed

Ideal Airspeed Correction

4-262

Airspeed output
Specify the airspeed output type:

Action for out of range input
Specify if an out of range input (supersonic airspeeds) invokes a warning,
an error, or no action.

Inputs and
Outputs

The first input is the selected airspeed in the selected units.

The second input is the speed of sound in the selected units.

The third input is the static pressure in the selected units.

The output of the block is the selected airspeed in the selected units.

Assumptions
and Limitations

This block assumes that the air flow is compressible, isentropic (subsonic flow),
dry air with constant specific heat ratio, γ.

Examples See the aeroblk_indicated model and the aeroblk_calibrated model for
examples of this block.

References Lowry, J. T., Performance of Light Aircraft, AIAA Education Series,
Washington, DC, 1999.

Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

Velocity Input Velocity Output

TAS EAS (Equivalent airspeed)

CAS (Calibrated airspeed)

EAS TAS (True airspeed)

CAS (Calibrated airspeed)

CAS TAS (True airspeed)

EAS (Equivalent airspeed)

Incidence & Airspeed

4-263

4Incidence & AirspeedPurpose Calculate incidence and air speed

Library Flight Parameters

Description The Incidence & Airspeed block supports the 3DoF equations of motion model
by calculating the angle between the velocity vector and the body, and also the
total air speed from the velocity components in the body-fixed coordinate
frame.

Dialog Box

Inputs and
Outputs

The input to the block is the two-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the air speed of the body.

Examples See the aeroblk_guidance model and the aero_guidance_airframe model for
examples of this block.

See Also Incidence, Sideslip & Airspeed

α w
u
----⎝ ⎠
⎛ ⎞

V

atan

u2 w2
+

=

=

Incidence, Sideslip & Airspeed

4-264

4Incidence, Sideslip & AirspeedPurpose Calculate incidence, sideslip, and air speed

Library Flight Parameters

Description The Incidence, Sideslip & Airspeed block supports the 6DoF (Euler Angles) and
6DoF (Quaternion) models by calculating the angles between the velocity
vector and the body, and also the total air speed from the velocity components
in the body-fixed coordinate frame.

Dialog Box

Inputs and
Outputs

The input to the block is the three-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle in radians.

The second output of the block is the sideslip angle in radians.

The third output is the air speed of the body.

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also Incidence & Airspeed

α w
u
----⎝ ⎠
⎛ ⎞

β v
V
----⎝ ⎠
⎛ ⎞

V

asin=

atan

u2 v2 w+
2

+

=

=

Interpolate Matrix(x)

4-265

4Interpolate Matrix(x)Purpose Return an interpolated matrix for given input x

Library GNC/Controls

Description The Interpolate Matrix(x) block interpolates a one-dimensional array of
matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number
of values of an independent variable x = [x1 x2 x3 ... xi xi+1 ... xn]. Then for
xi < x < xi+1, the block output is given by

where the interpolation fraction is defined as

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be three dimensional, the first two
dimensions corresponding to the matrix at each value of x. For example, if
you have three matrices A, B, and C defined at x = 0, x = 0.5, and
x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;

matrix(:,:,2) = B;

matrix(:,:,3) = C;

Inputs and
Outputs

The first input is the first independent variable.

The output is the interpolated matrix.

1 λ–()M xi() λM xi 1+()+

λ x xi–() xi 1+ xi–()⁄=

Interpolate Matrix(x)

4-266

Assumptions
and Limitations

This block must be driven from the Simulink PreLook-up Index Search block.

Examples See the following Aerospace Blockset blocks: 1D Controller
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)

Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y)

4-267

4Interpolate Matrix(x,y)Purpose Return an interpolated matrix for given inputs x and y

Library GNC/Controls

Description The Interpolate Matrix(x,y) block interpolates a two-dimensional array of
matrices.

This two-dimensional case assumes the matrix is defined as a function of two
independent variables, x = [x1 x2 x3 ... xi xi+1 ... xn] and y = [y1 y2 y3 ... yj yj+1
... ym]. For given values of x and y, four matrices are interpolated. Then for
xi < x < xi+1 and yj < y < yj+1, the output matrix is given by

where the two interpolation fractions are denoted by

and

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be four dimensional, the first two
dimensions corresponding to the matrix at each value of x and y. For
example, if you have four matrices A, B, C, and D defined at
(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and
(x = 1.0,y = 3.0), then the input matrix is given by

1 λy–() 1 λx–()M xi yj,() λxM xi 1+ yj,()+[]

λy 1 λx–()M xi yj 1+,() λxM xi 1+ yj 1+,()+[]

+

λx x xi–() xi 1+ xi–()⁄=

λy y yj–() yj 1+ yj–()⁄=

Interpolate Matrix(x,y)

4-268

matrix(:,:,1,1) = A;

matrix(:,:,1,2) = B;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

Inputs and
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The output is the interpolated matrix.

Assumptions
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 2D Controller
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y,z)

4-269

4Interpolate Matrix(x,y,z)Purpose Return an interpolated matrix for given inputs x, y, and z

Library GNC/Controls

Description The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of
matrices.

This three-dimensional case assumes the matrix is defined as a function of
three independent variables

For given values of x, y, and z, eight matrices are interpolated. Then for

the output matrix is given by

where the three interpolation fractions are denoted by

In the three-dimensional case, the interpolation is carried out first on x, then
y, and finally z.

x = [x1 x2 x3 ... xi xi+1 ... xn], y = [y1 y2 y3 ... yj yj+1 ... ym]

z = [z1 z2 z3 ... zk zk+1 ... zp]

xi < x < xi+1, yj < y < yj+1

zk < z < zk+1

1 λ– z() 1 λy–() 1 λx–()M xi yj zk, ,() λxM xi 1+ yj zk, ,()+[]

λy 1 λx–()M xi yj 1+ zk,,() λxM xi 1+ yj 1+ zk,,()+[]

+{

}

λz 1 λy–() 1 λx–()M xi yj zk 1+, ,() λxM xi 1+ yj zk 1+, ,()+[]

λy 1 λx–()M xi yj 1+ zk 1+,,() λxM xi 1+ yj 1+ zk 1+,,()+[]

+{

}

+

λx x xi–() xi 1+ xi–()⁄=

λy y yj–() yj 1+ yj–()⁄=

λz z zk–() zk 1+ zk–()⁄=

Interpolate Matrix(x,y,z)

4-270

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two
dimensions corresponding to the matrix at each value of x, y, and z. For
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at
the following values of x, y, and z, then the corresponding input matrix is
given by

Inputs and
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The third input is the third independent variable.

The output is the interpolated matrix.

Assumptions
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;

(x = 0.0,y = 1.0,z = 0.5) matrix(:,:,1,1,2) = B;

(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;

(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;

(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;

(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;

(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;

(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;

Interpolate Matrix(x,y,z)

4-271

Examples See the following Aerospace Blockset blocks: 3D Controller
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 3D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y)

Invert 3x3 Matrix

4-272

4Invert 3x3 MatrixPurpose Compute the inverse of 3-by-3 matrix using determinant formula

Library Utilities/Math Operations

Description The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix using
determinant formula.

The inverse of the matrix is calculated by

If the , an error is thrown and the simulation will stop.

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 matrix inverse of input matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

Determinant of 3x3 Matrix

inv A() adj A()
det A()
-------------------=

det A() 0=

ISA Atmosphere Model

4-273

4ISA Atmosphere ModelPurpose Implement the International Standard Atmosphere (ISA)

Library Environment/Atmosphere

Description The ISA Atmosphere Model block implements the mathematical
representation of the international standard atmosphere values for ambient
temperature, pressure, density, and speed of sound for the input geopotential
altitude.

The ISA Atmosphere Model block icon displays the input and output metric
units.

Dialog Box

Change atmospheric parameters
Select to customize various atmospheric parameters to be different from
the ISA values.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of
20 km, temperature and pressure values are held. Density and speed of sound
are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model, Lapse Rate Model

Julian Epoch to Besselian Epoch

4-274

4Julian Epoch to Besselian EpochPurpose Transform position and velocity components from the Standard Julian Epoch
(J2000) to the discontinued Standard Besselian Epoch (B1950)

Library Utilities/Axes Transformations

Description The Julian Epoch to Besselian Epoch block transforms two 3-by-1 vectors of
Julian Epoch position ,and Julian Epoch velocity into
Besselian Epoch position , and Besselian Epoch velocity . The
transformation is calculated using:

where are defined as:

rJ2000() vJ2000()
rB1950() vB1950()

rB1950

vB1950

Mrr Mvr

Mrv Mvv

T
rJ2000

vJ2000

=

Mrr Mvr Mrv Mvv, , ,()

0.9999256782 -0.0111820611 -0.0048579477

0.0111820610 0.9999374784 -0.0000271765

0.0048579479 -0.0000271474 0.9999881997

Mrr =

0.00000242395018 -0.00000002710663 -0.00000001177656

0.00000002710663 0.00000242397878 -0.00000000006587

0.00000001177656 -0.00000000006582 0.00000242410173

Mvr =

Mrv

0.000551– 0.238565– 0.435739
0.238514 0.002667– 0.008541–

0.435623– 0.012254 0.002117

=

Mvv

0.99994704 0.01118251– 0.00485767–

0.01118251 0.99995883 0.00002718–

0.00485767 0.00002714– 1.00000956

=

Julian Epoch to Besselian Epoch

4-275

Dialog Box

Inputs and
Outputs

The first input is a 3-by-1 vector containing the position in Standard Julian
Epoch (J2000).

The second input is a 3-by-1 vector containing the velocity in Standard Julian
Epoch (J2000).

The first output is a 3-by-1 vector containing the position in Standard
Besselian Epoch (B1950).

The second output is a 3-by-1 vector containing the velocity in Standard
Besselian Epoch (B1950).

References “Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

See Also Besselian Epoch to Julian Epoch

Lapse Rate Model

4-276

4Lapse Rate ModelPurpose Implement lapse rate model for atmosphere

Library Environment/Atmosphere

Description The Lapse Rate Model block implements the mathematical representation of
the lapse rate atmospheric equations for ambient temperature, pressure,
density, and speed of sound for the input geopotential altitude. You can
customize this atmospheric model, described below, by specifying atmospheric
properties in the block dialog.

The following equations define the troposphere

The following equations define the tropopause (lower stratosphere)

T To Lh–=

P Po
T
To
------⎝ ⎠
⎛ ⎞

g
LR

⋅=

ρ ρo
T
To
------⎝ ⎠
⎛ ⎞

g
LR
-------- 1–

⋅=

a γRT=

T To L hts⋅–=

P Po
T
To
------⎝ ⎠
⎛ ⎞

g
LR

e⋅ ⋅
g

RT
--------- hts h–()

=

ρ ρo
T
To
------⎝ ⎠
⎛ ⎞

g
LR
-------- 1–

e

g
RT
--------- hts h–()

⋅ ⋅=

a γRT=

Lapse Rate Model

4-277

where:

The Lapse Rate Model block icon displays the input and output metric units.

Absolute temperature at mean sea level in kelvin (K)

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Altitude in m

Height of the troposphere in m

Absolute temperature at altitude h in kelvin (K)

ρ Air density at altitude h in kg/m3

Static pressure at altitude h in N/m2

Speed of sound at altitude h in m/s2

Lapse rate in K/m

Characteristic gas constant J/kg-K

Specific heat ratio

Acceleration due to gravity in m/s2

T0

ρ0

P0

h

hts

T

P

a

L

R

γ

g

Lapse Rate Model

4-278

Dialog Box

Change atmospheric parameters
When selected, the following atmospheric parameters can be customized to
be different from the ISA values.

Acceleration due to gravity
Specify the acceleration due to gravity (g).

Ratio of specific heats
Specify the ratio of specific heats (γ).

Characteristic gas constant
Specify the characteristic gas constant (R).

Lapse Rate Model

4-279

Lapse rate
Specify the lapse rate of the troposphere (L).

Height of troposphere
Specify the upper altitude of the troposphere, a range of decreasing
temperature.

Height of tropopause
Specify the upper altitude of the tropopause, a range of constant
temperature.

Air density at mean sea level
Specify the air density at sea level ().

Ambient pressure at mean sea level
Specify the ambient pressure at sea level ().

Ambient temperature at mean sea level
Specify the ambient temperature at sea level ().

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of
the tropopause, temperature and pressure values are held. Density and speed
of sound are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

ρ0

P0

T0

Length Conversion

4-280

4Length ConversionPurpose Convert from length units to desired length units

Library Utilities/Unit Conversions

Description The Length Conversion block computes the conversion factor from specified
input length units to specified output length units and applies the conversion
factor to the input signal.

The Length Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is length in initial length units.

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles

Length Conversion

4-281

The output is length in final length units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

LLA to ECEF Position

4-282

4LLA to ECEF Position Purpose Calculate Earth-centered Earth-fixed (ECEF) position from geodetic latitude,
longitude, and altitude above mean sea-level (MSL)

Library Utilities/Axes Transformations

Description The LLA to ECEF Position block converts geodetic latitude , longitude ,
and MSL altitude into a 3-by-1 vector of ECEF position . The ECEF
position is calculated from geocentric latitude at mean sea-level and
longitude using:

where geocentric latitude at mean sea-level and the radius at a surface point
 are defined by flattening , and equatorial radius in the following

relationships.

μ() ι()
h() p()

λs()

p

px

py

pz

rs λs ιcoscos h μ ιcoscos+

rs λs ιsincos h μ ιsincos+

rs λssin h μsin+

= =

rs() f() R()

λs 1 f–()2 μtan()atan=

rs
R2

1 1 1 f–()2⁄ 1–[] λ2
ssin+

--=

LLA to ECEF Position

4-283

Dialog Box

Units
Specifies the parameter and output units:

This option is only available when Planet model is set to Earth (WGS84).

Units Altitude Equatorial Radius Position

Metric (MKS) Meters Meters Meters

English Feet Feet Feet

LLA to ECEF Position

4-284

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for altitude. This option
is only available with Planet model set to Custom.

Inputs and
Outputs

The first input is a 2-by-1 vector containing geodetic latitude and longitude, in
degrees.

The second input is a scalar value of altitude above mean sea-level (MSL).

The output is a 3-by-1 vector containing the position in ECEF frame, in same
units as altitude.

Assumptions
and Limitations

The planet is assumed to be ellipsoidal by setting flattening to 0.0 a spherical
planet can be achieved.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis being the mean spin axis of the planet, positive to the
north, and the y-axis completes the right hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/AIAA
R-004-1992.

See Also Direction Cosine Matrix ECEF to NED

LLA to ECEF Position

4-285

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

ECEF Position to LLA

Flat Earth to LLA

Radius at Geocentric Latitude

Mach Number

4-286

4Mach NumberPurpose Compute Mach number using velocity and speed of sound

Library Flight Parameters

Description The Mach Number block computes Mach number.

Mach number is defined as

where is speed of sound and V is velocity vector.

Dialog Box

Inputs and
Outputs

The first input is the velocity vector.

The second input is the speed of sound.

The output of the block is the Mach number.

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also Aerodynamic Forces and Moments

Dynamic Pressure

Mach V V⋅
a

-----------------=

a

Mass Conversion

4-287

4Mass ConversionPurpose Convert from mass units to desired mass units

Library Utilities/Unit Conversions

Description The Mass Conversion block computes the conversion factor from specified
input mass units to specified output mass units and applies the conversion
factor to the input signal.

The Mass Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is the mass in initial mass units.

The output is the mass in final mass units.

See Also Acceleration Conversion

Angle Conversion

lbm Pound mass

kg Kilograms

slug Slugs

Mass Conversion

4-288

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Moments About CG Due to Forces

4-289

4Moments About CG Due to ForcesPurpose Compute moments about center of gravity due to forces that are applied at
point CP, not the center of gravity

Library Mass Properties

Description The Moments about CG due to Forces block computes moments about center of
gravity due to forces that are applied at point CP not the center of gravity.

Dialog Box

Inputs and
Outputs

The first input is the forces applied at point CP.

The second input is the center of gravity.

The third input is the application point of forces.

The output of the block is moments at the center of gravity in x-axes, y-axes and
z-axes.

See Also Aerodynamic Forces and Moments

Estimate Center of Gravity

Non-Standard Day 210C

4-290

4Non-Standard Day 210CPurpose Implement the MIL-STD-210C climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 210C block implements a portion of the climatic data
of the MIL-STD-210C worldwide air environment to 80 km (geometric or
approximately 262,000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 210C block icon displays the input and output units
selected from the Units list.

Dialog Box

Non-Standard Day 210C

4-291

Units
Specifies the input and output units:

Specification
Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-STD-210C.

Atmospheric model type
Select the representation of the atmospheric data.

Units Height Temperature Speed of Sound Air Pressure Air Density

Metric
(MKS)

Meters Kelvin Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per second Pound force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound force
per square
inch

Slug per
cubic foot

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See
the block reference for more information.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the
block reference for more information.

MIL-STD-210C

Profile Realistic atmospheric profiles associated with extremes at
specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when the
total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

Non-Standard Day 210C

4-292

Extreme parameter
Select the atmospheric parameter that is the extreme value.

Frequency of occurrence
Select percent of time the values would occur.

Altitude of extreme value
Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

High temperature

Low temperature

High density

Low density

High pressure This option is available only when Envelope is
selected for Atmospheric model type

Low pressure This option is available only when Envelope is
selected for Atmospheric model type

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

1%

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is
selected for Atmospheric model type.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)

Non-Standard Day 210C

4-293

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3,281 feet) and above the
geometric altitude of 30,000 meters (approximately 98,425 feet). These
exceptions are due to lack of data in MIL-STD-210C for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-STD-210C for these conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-STD-210C.

References Global Climatic Data for Developing Military Products (MIL-STD-210C), 9
January 1987, Department of Defense, Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 310

Non-Standard Day 310

4-294

4Non-Standard Day 310Purpose Implement the MIL-HDBK-310 climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 310 block implements a portion of the climatic data of
the MIL-HDBK-310 worldwide air environment to 80 km (geometric or
approximately 262,000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 310 block icon displays the input and output units
selected from the Units list.

Dialog Box

Non-Standard Day 310

4-295

Units
Specifies the input and output units:

Specification
Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-HDBK-310.

Atmospheric model type
Select the representation of the atmospheric data.

Units Height Temperature Speed of Sound Air Pressure Air Density

Metric
(MKS)

Meters Kelvin Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per second Pound force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound force
per square
inch

Slug per
cubic foot

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See
the block reference for more information.

MIL-HDBK-310

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the
block reference for more information.

Profile Realistic atmospheric profiles associated with extremes
at specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when
the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

Non-Standard Day 310

4-296

Extreme parameter
Select the atmospheric parameter which is the extreme value.

Frequency of occurrence
Select percent of time the values would occur.

Altitude of extreme value
Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

High temperature

Low temperature

High density

Low density

High pressure This option is available only when Envelope
is selected for Atmospheric model type.

Low pressure This option is available only when Envelope
is selected for Atmospheric model type.

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

1%

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is
selected for Atmospheric model type.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)

Non-Standard Day 310

4-297

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3,281 feet) and above the
geometric altitude of 30,000 meters (approximately 98,425 feet). These
exceptions are due to lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-HDBK-310 for these
conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-HDBK-310.

References Global Climatic Data for Developing Military Products (MIL-HDBK-310), 23
June 1997, Department of Defense, Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 210C

Pack net_fdm Packet for FlightGear

4-298

4Pack net_fdm Packet for FlightGearPurpose Generate net_fdm packet for FlightGear

Library Animation/Flight Simulator Interfaces

Description The Pack net_fdm Packet for FlightGear block creates, from separate inputs, a
FlightGear net_fdm data packet compatible with a particular version of
FlightGear Flight Simulator. All the signals supported by the FlightGear
net_fdm data packet for FlightGear versions 0.9.3, 0.9.8/0.9.8a, 0.9.9 are
supported by this block. The signals are arranged into six groups. Any group
can be turned on or off. Zeros are inserted for packet values that are part of
inactive signal groups.

See “Inputs and Outputs” on page 4-299 for details on signals and signal
groups.

Dialog Box

FlightGear version
Select your FlightGear software version: v0.9.3, v0.9.8, or v0.9.9.

Pack net_fdm Packet for FlightGear

4-299

Show position/altitude inputs
Select this check box to include the position and altitude inputs (signal
group 1) into the FlightGear net_fdm data packet.

Show velocity/acceleration inputs
Select this check box to include the velocity and acceleration inputs (signal
group 2) into the FlightGear net_fdm data packet.

Show control surface position inputs
Select this check box to include the control surface position inputs (signal
group 3) into the FlightGear net_fdm data packet.

Show engine/fuel inputs
Select this check box to include the engine and fuel inputs (signal group 4)
into the FlightGear net_fdm data packet.

Show landing gear inputs
Select this check box to include the landing gear inputs (signal group 5)
into the FlightGear net_fdm data packet.

Show environment inputs
Select this check box to include the environment inputs (signal group 6)
into the FlightGear net_fdm data packet.

Sample time
Specify the sample time (-1 for inherited).

Inputs and
Outputs

Input Signals Supported for FlightGear 0.9.3
This table lists all the input signals supported for Version 0.9.3:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

longitude rad double 1 Geodetic longitude

latitude rad double 1 Geodetic altitude

altitude m double 1 Altitude above sea level

phi rad single 1 Roll

theta rad single 1 Pitch

Pack net_fdm Packet for FlightGear

4-300

psi rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

phidot rad/sec single 1 Roll rate

thetadot rad/sec single 1 Pitch rate

psidot rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in
local/body frame

v_east ft/sec single 1 East velocity in
local/body frame

v_down ft/sec single 1 Down/vertical velocity
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity
relative to local airmass

v_wind_body_east ft/sec single 1 Body east velocity
relative to local airmass

v_wind_body_down ft/sec single 1 Body down/vertical
velocity relative to local
airmass

stall_warning - single 1 0.0-1.0, indicating the
amount of stall

A_X_pilot ft/sec2 single 1 X acceleration in body
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body
frame

A_Z_pilot ft/sec2 single 1 Z acceleration in body
frame

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-301

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific units

single 1 Elevator position

flaps geometry-
specific units

single 1 Flaps position

left_aileron geometry-
specific units

single 1 Left aileron position

right_aileron geometry-
specific units

single 1 Right aileron position

rudder geometry-
specific units

single 1 Rudder position

speedbrake geometry-
specific units

single 1 Speed brake position

spoilers geometry-
specific units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines - int32 1 Number of valid
engines

eng_state enum int32 4 Engine state (0=off,
1=cranking, 2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

num_tanks - int32 1 Max number of fuel
tanks

fuel_quantity - single 4 Amount of fuel in tanks
(0-1 fraction)

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-302

Input Signals Supported for FlightGear 0.9.8/0.9.8a
This table lists all the input signals supported for Versions 0.9.8/0.9.8a:

Signal Group 5: ShowLandingGearInputs

num_wheels - int32 1 Maximum number of
wheels

wow - boolean 3 Weight on wheels
signal (1=wheel is on
ground)

gear_pos - single 3 Landing gear position
(0-1, indicating amount
deployed)

gear_steer - single 3 Landing gear steering
angle

gear_compression - single 3 Landing gear
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec int32 1 Current UNIX time

warp sec int32 1 Offset in seconds to
UNIX time

visibility m single 1 Visibility in meters (for
visual effects)

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

longitude rad double 1 Geodetic longitude

latitude rad double 1 Geodetic atitude

altitude m double 1 Altitude above sea level

phi rad single 1 Roll

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-303

theta rad single 1 Pitch

psi rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

alpha rad single 1 Angle of attack

beta rad single 1 Side slip angle

phidot rad/sec single 1 Roll rate

thetadot rad/sec single 1 Pitch rate

psidot rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

v_north ft/sec single 1 North velocity in
local/body frame

v_east ft/sec single 1 East velocity in
local/body frame

v_down ft/sec single 1 Down/vertical velocity
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity
relative to local airmass

v_wind_body_east ft/sec single 1 Body east velocity
relative to local airmass

v_wind_body_down ft/sec single 1 Body down/vertical
velocity relative to local
airmass

A_X_pilot ft/sec2 single 1 X acceleration in body
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body
frame

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-304

A_Z_pilot ft/sec2 single 1 Z acceleration in body
frame

stall_warning - single 1 0.0-1.0, indicating the
amount of stall

slip_deg deg single 1 Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific units

single 1 Elevator position

elevator_trim_tab geometry-
specific units

single 1 Elevator trim position

left_flap geometry-
specific units

single 1 Left flap position

right_flap geometry-
specific units

single 1 Right flap position

left_aileron geometry-
specific units

single 1 Left aileron position

right_aileron geometry-
specific units

single 1 Right aileron position

rudder geometry-
specific units

single 1 Rudder position

nose_wheel geometry-
specific units

single 1 Nose wheel position

speedbrake geometry-
specific units

single 1 Speed brake position

spoilers geometry-
specific units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines - int32 1 Number of valid
engines

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-305

eng_state enum int32 4 Engine state (0=off,
1=cranking, 2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

cht oF single 4 Cylinder head
temperature

mp_osi psi single 4 Manifold pressure

tit oF single 4 Turbine inlet
temperature

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

num_tanks - int32 1 Max number of fuel
tanks

fuel_quantity - single 4 Amount of fuel in tanks
(0-1 fraction)

Signal Group 5: ShowLandingGearInputs

num_wheels - int32 1 Maximum number of
wheels

wow - boolean 3 Weight on wheels signal
(1=wheel is on ground)

gear_pos - single 3 Landing gear position
(0-1, indicating amount
deployed)

gear_steer - single 3 Landing gear steering
angle

gear_compression - single 3 Landing gear
compression

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-306

Input Signals Supported for FlightGear 0.9.9
This table lists all the input signals supported for Version 0.9.9:

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec int32 1 Current UNIX time

warp sec int32 1 Offset in seconds to
UNIX time

visibility m single 1 Visibility in meters (for
visual effects)

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudeInputs

longitude rad double 1 Geodetic longitude

latitude rad double 1 Geodetic latitude

altitude m double 1 Altitude above sea level

phi rad single 1 Roll

theta rad single 1 Pitch

psi rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationInputs

alpha rad single 1 Angle of attack

beta rad single 1 Side slip angle

phidot rad/sec single 1 Roll rate

thetadot rad/sec single 1 Pitch rate

psidot rad/sec single 1 Yaw rate

vcas kts single 1 Calibrated airspeed

climb_rate ft/sec single 1 Climb rate

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-307

v_north ft/sec single 1 North velocity in
local/body frame

v_east ft/sec single 1 East velocity in
local/body frame

v_down ft/sec single 1 Down/vertical velocity
in local/body frame

v_wind_body_north ft/sec single 1 Body north velocity
relative to local airmass

v_wind_body_east ft/sec single 1 Body east velocity
relative to local airmass

v_wind_body_down ft/sec single 1 Body down/vertical
velocity relative to local
airmass

A_X_pilot ft/sec2 single 1 X acceleration in body
frame

A_Y_pilot ft/sec2 single 1 Y acceleration in body
frame

A_Z_pilot ft/sec2 single 1 Z acceleration in body
frame

stall_warning - single 1 0.0-1.0, indicating the
amount of stall

slip_deg deg single 1 Slip ball deflection

Signal Group 3: ShowControlSurfacePositionInputs

elevator geometry-
specific units

single 1 Elevator position

elevator_trim_tab geometry-
specific units

single 1 Elevator trim position

left_flap geometry-
specific units

single 1 Left flap position

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-308

right_flap geometry-
specific units

single 1 Right flap position

left_aileron geometry-
specific units

single 1 Left aileron position

right_aileron geometry-
specific units

single 1 Right aileron position

rudder geometry-
specific units

single 1 Rudder position

nose_wheel geometry-
specific units

single 1 Nose wheel position

speedbrake geometry-
specific units

single 1 Speed brake position

spoilers geometry-
specific units

single 1 Spoilers position

Signal Group 4: ShowEngineFuelInputs

num_engines - uint32 1 Number of valid
engines

eng_state enum uint32 4 Engine state (0=off,
1=cranking, 2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT oF single 4 Exhaust gas temp

cht oF single 4 Cylinder head
temperature

mp_osi psi single 4 Manifold pressure

tit oF single 4 Turbine inlet
temperature

oil_temp oF single 4 Oil temp

oil_px lbf/in2 single 4 Oil pressure

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-309

Output Signal
The output signal is the FlightGear net_fdm data packet.

Examples See the asbhl20 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

num_tanks - uint32 1 Max number of fuel
tanks

fuel_quantity - single 4 Amount of fuel in tanks
(0-1 fraction)

Signal Group 5: ShowLandingGearInputs

num_wheels - uint32 1 Maximum number of
wheels

wow - uint32 3 Weight on wheels signal
(1=wheel is on ground)

gear_pos - single 3 Landing gear position
(0-1, indicating amount
deployed)

gear_steer - single 3 Landing gear steering
angle

gear_compression - single 3 Landing gear
compression

Signal Group 6: ShowEnvironmentInputs

agl m single 1 Above ground level

cur_time sec uint32 1 Current UNIX time

warp sec int32 1 Offset in seconds to
UNIX time

visibility m single 1 Visibility in meters (for
visual effects)

Name Units Type Width Description

Pack net_fdm Packet for FlightGear

4-310

Generate Run Script

Send net_fdm Packet to FlightGear

Pilot Joystick

4-311

4Pilot JoystickPurpose Use joystick interface for Windows platform

Library Animation/Animation Support Utilities

Description The Pilot Joystick block provides a pilot joystick interface for a Windows
platform. Roll, pitch, yaw, and throttle are mapped to the joystick X, Y, R, and
Z channels respectively.

You can also configure it to output all channels by setting the Output
configuration parameter to AllOutputs.

Dialog Box

Joystick ID
Specify the joystick ID: Joystick 1, Joystick 2, or None.

Output configuration
Specify the output configuration: FourAxis or AllOutputs.

Sample time
Specify the sample time (-1 for inherited).

Pilot Joystick

4-312

Inputs and
Outputs

The block has the following outputs:

• Four Axis mode (all double precision values)

• All Outputs mode (values are double precision except for buttons)

Port
number

Output
range

Joystick Description

1 [-1, 1] [left,right] Roll command

2 [-1, 1] [forward/down,
back/up]

Pitch command

3 [-1, 1] [left, right] Yaw command

4 [0, 1] [min, max] Throttle command

Port
number

Array
number

Channel Output
Range

Joystick Description

1 1 X [-1, 1] [left,right] Roll command

1 2 Y [-1, 1] [forward/down,
back/up]

Pitch command

1 3 Z [0, 1] [min, max] Throttle command

1 4 R [-1, 1] [left, right] Yaw command

1 5 U [0, 1] [min, max] U channel value

1 6 V [0, 1] [min, max] V channel value

2 buttons uint32 flagword
containing up to 32
button states. Bit
0 is button 1, etc.

3 POV Point-of-view hat
value in degrees as
a double. Zero
degrees is straight
ahead, 90 is to the
left, etc.

Pilot Joystick

4-313

Output values are [-1,1] for centered values, [0,1] for non-centered values, and
uint32 for the buttons in All Outputs mode. Output sense is positive for
right-hand rule rotations on centered values (roll, pitch, and yaw).

Assumptions
and Limitations

If the joystick does not support an R (rudder or “twist”) channel, yaw output is
set to zero. Outputs are of type double except for the buttons output in
AllOutputs mode, which is a uint32 flagword of bits. On non-Windows
platforms, this block currently outputs zeros.

Note Pitch value has the opposite sense as that delivered by FlightGear’s
joystick interface.

See Also Simulation Pace

Pressure Altitude

4-314

4Pressure AltitudePurpose Calculate pressure altitude based on ambient pressure

Library Environment/Atmosphere

Description The Pressure Altitude block computes the pressure altitude based on ambient
pressure. Pressure altitude is the altitude in the 1976 Committee on the
Extension of the Standard Atmosphere (COESA) United States with specified
ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.

The Pressure Altitude block icon displays the input and output units selected
from the Units list.

Dialog Box

Units
Specifies the input units:

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is the static pressure.

The output is the pressure altitude.

Units Pstatic Alt_p

Metric (MKS) Pascal Meters

English Pound force per square inch Feet

Pressure Altitude

4-315

Assumptions
and Limitations

Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above the
pressure of 101325 Pa (approximately 14.7 psi), altitude values are
extrapolated logarithmically.

Air is assumed to be dry and an ideal gas.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

Pressure Conversion

4-316

4Pressure ConversionPurpose Convert from pressure units to desired pressure units

Library Utilities/Unit Conversions

Description The Pressure Conversion block computes the conversion factor from specified
input pressure units to specified output pressure units and applies the
conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is the pressure in initial pressure units.

The output is the pressure in final pressure units.

psi Pound mass per square inch

Pa Pascals

psf Pound mass per square foot

atm Atmospheres

Pressure Conversion

4-317

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Temperature Conversion

Velocity Conversion

Quaternion Conjugate

4-318

4Quaternion ConjugatePurpose Calculate the conjugate of a quaternion

Library Utilities/MathOperations

Description The Quaternion Conjugate block calculates the conjugate for a given
quaternion.

The quaternion has the form of

The quaternion conjugate has the form of

Dialog Box

Inputs and
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1,
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion conjugate or vector of quaternion conjugates in the
form of [q0’, r0’, … , q1’, r1’, … , q2’, r2’, … , q3’, r3’, …].

See Also Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

q′ q0 iq1 jq2 kq3–––=

Quaternion Division

4-319

4Quaternion DivisionPurpose Divide a quaternion by another quaternion

Library Utilities/Math Operations

Description The Quaternion Division block divides a given quaternion by another.

The quaternions have the form of

 and

The resulting quaternion from the division has the form of

where

Dialog Box

Inputs and
Outputs

The first input is a quaternion or vector of quaternions in the form of [q0, p0,
…, q1, p1, … , q2, p2, … , q3, p3, …].

q q0 iq1 jq2 kq3+ + +=

r r0 ir1 jr2 kr3+ + +=

t q
r
--- t0 it1 jt2 kt3+ + += =

t0
r0q0 r1q1 r2q2 r3q3+ + +()

r0
2 r1

2 r2
2 r3

2
+ + +

--=

t1
r0q1 r1q0– r2q3 r3q2+–()

r0
2 r1

2 r2
2 r3

2
+ + +

---=

t2
r0q2 r1q3 r2q0 r3q1––+()

r0
2 r1

2 r2
2 r3

2
+ + +

---=

t3
r0q3 r1q2– r2q1 r3q0–+()

r0
2 r1

2 r2
2 r3

2
+ + +

---=

Quaternion Division

4-320

The second input is a quaternion or vector of quaternions in the form of [s0, r0,
…, s1, r1, … , s2, r2, … , s3, r3, …].

The output is the resulting quaternion from the division or vector of resulting
quaternions from division.

See Also Quaternion Conjugate

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

Quaternion Inverse

4-321

4Quaternion InversePurpose Calculate the inverse of a quaternion

Library Utilities/Math Operations

Description The Quaternion Inverse block calculates the inverse for a given quaternion.

The quaternion has the form of

The quaternion inverse has the form of

Dialog Box

Inputs and
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1,
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion inverse or vector of quaternion inverses.

See Also Quaternion Conjugate

Quaternion Division

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

q 1– q0 iq1 jq2 kq3–––

q0
2 q1

2 q2
2 q3

2
+ + +

--=

Quaternion Modulus

4-322

4Quaternion ModulusPurpose Calculate the modulus of a quaternion

Library Utilities/Math Operations

Description The Quaternion Modulus block calculates the magnitude for a given
quaternion.

The quaternion has the form of

The quaternion modulus has the form of

Dialog Box

Inputs and
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1,
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion modulus or vector of quaternion modulus in the
form of [|q|, |r|, …].

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

q q0
2 q1

2 q2
2 q3

2
+ + +=

Quaternion Multiplication

4-323

4Quaternion MultiplicationPurpose Calculate the product of two quaternions

Library Utilities/Math Operations

Description The Quaternion Multiplication block calculates the product for two given
quaternions.

The quaternions have the form of

 and

The quaternion product has the form of

where

Dialog Box

Inputs and
Outputs

The first input is a quaternion or vector of quaternions in the form of [q0, p0,
…, q1, p1, … , q2, p2, … , q3, p3, …].

The second input is a quaternion or vector of quaternions in the form of [s0, r0,
…, s1, r1, … , s2, r2, … , s3, r3, …].

The output is a quaternion product or vector of quaternion products.

q q0 iq1 jq2 kq3+ + +=

r r0 ir1 jr2 kr3+ + +=

t q r× t0 it1 jt2 kt3+ + += =

t0 r0q0 r1q1 r2q2 r3q3–––()=

t1 r0q1 r1q0 r2q3 r3q2+–+()=

t2 r0q2 r1q3 r2q0 r3q1–+ +()=

t3 r0q3 r1q2– r2q1 r3q0+ +()=

Quaternion Multiplication

4-324

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Norm

Quaternion Normalize

Quaternion Rotation

Quaternion Norm

4-325

4Quaternion NormPurpose Calculate the norm of a quaternion

Library Utilities/Math Operations

Description The Quaternion Norm block calculates the norm for a given quaternion.

The quaternion has the form of

The quaternion norm has the form of

Dialog Box

Inputs and
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1,
r1, … , q2, r2, … , q3, r3, …].

The output is a quaternion norm or vector of quaternion norms in the form of
[norm(q), norm(r), …].

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Normalize

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

norm q() q0
2 q1

2 q2
2 q3

2
+ + +=

Quaternion Normalize

4-326

4Quaternion NormalizePurpose Normalize a quaternion

Library Utilities/Math Operations

Description The Quaternion Normalize block calculates a normalized quaternion for a
given quaternion.

The quaternion has the form of

The normalized quaternion has the form of

Dialog Box

Inputs and
Outputs

The input is a quaternion or vector of quaternions in the form of [q0, r0, …, q1,
r1, … , q2, r2, … , q3, r3, …].

The output is a normalized quaternion or vector of normalized quaternions.

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Rotation

q q0 iq1 jq2 kq3+ + +=

normal q()
q0 iq1 jq2 kq3+ + +

q0
2 q1

2 q2
2 q3

2
+ + +

---=

Quaternion Rotation

4-327

4Quaternion RotationPurpose Rotate a vector by a quaternion

Library Utilities/Math Operations

Description The Quaternion Rotation block rotates a vector by a quaternion.

The quaternion has the form of

The vector has the form of

The rotated vector has the form of

Dialog Box

Inputs and
Outputs

The first input is a quaternion or vector of quaternions in the form of [q0, r0, …,
q1, r1, … , q2, r2, … , q3, r3, …].

The second input is a vector or vector of vectors in the form of [v1, u1, … , v2,
u2, … , v3, u3, …].

The output is a rotated vector or vector of rotated vectors.

See Also Quaternion Conjugate

Quaternion Division

Quaternion Inverse

q q0 iq1 jq2 kq3+ + +=

v iv1 jv2 kv3+ +=

v′
v1′

v2′

v3′

1 2q2
2 2q3

2
––() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() 1 2q1
2

– 2q3
2

–() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() 1 2q1
2

– 2q2
2

–()

v1

v2

v3

= =

Quaternion Rotation

4-328

Quaternion Modulus

Quaternion Multiplication

Quaternion Norm

Quaternion Normalize

Quaternions to Direction Cosine Matrix

4-329

4Quaternions to Direction Cosine MatrixPurpose Convert quaternion vector to direction cosine matrix

Library Utilities/Axes Transformations

Description The Quaternions to Direction Cosine Matrix block transforms the four-element
unit quaternion vector (q0,q1,q2,q3) into a 3-by-3 direction cosine matrix
(DCM). The outputted DCM performs the coordinate transformation of a vector
in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a
quaternion q, it changes to P’ given by the following relationship:

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in
terms of P in the vector quaternion format:

Since individual terms in P’ are linear combinations of terms in x, y, and z, a
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from
the preceding. This matrix rotates a vector in inertial axes, and hence is
transposed to generate the DCM that performs the coordinate transformation
of a vector in inertial axes into body axes.

P′ qPqc

q q0 iq1 jq2 kq3

qc
+ + +=

q0 iq1– jq2– kq3

P

–

0 ix jy kz+ + +

=

=

=

P′

0
x′
y′
z′

0

q0
2 q1

2 q2
2

– q3
2

–+()x 2 q1q2 q0q3–()y 2 q1q3 q0q2+()z+ +

2 q0q3 q1q2+()x q0
2 q1

2
– q2

2 q3
2

–+()y 2 q2q3 q0q1–()z+ +

2 q1q3 q0q2–()x 2 q0q1 q2q3+()y q0
2 q1

2
– q2

2
– q3

2
+()z+ +

= =

Quaternions to Direction Cosine Matrix

4-330

Dialog Box

Inputs and
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Euler Angles

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

Quaternions to Euler Angles

4-331

4Quaternions to Euler AnglesPurpose Convert quaternion vector to Euler angles

Library Utilities/Axes Transformations

Description The Quaternions to Euler Angles block converts the four-element unit
quaternion (q0,q1,q2,q3) into the equivalent three Euler angle rotations (roll,
pitch, yaw).

The conversion is generated by comparing elements in the direction cosine
matrix (DCM), as functions of the Euler rotation angles, with elements in the
DCM, as functions of a unit quaternion vector:

From the preceding, you can derive the following relationships between DCM
elements and individual Euler angles:

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos+() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

φ DCM 2 3,() DCM 3 3,(),()atan=

2 q2q3 q0q1+() q0
2 q1

2
– q2

2 q3
2

+–(),()atan=

θ D– CM 1 3,()()asin=
2– q1q3 q0q2–()()asin=

ψ DCM 1 2,() DCM 1 1,(),()atan=

2 q1q2 q0q3+() q0
2 q1

2 q2
2 q3

2
––+(),()atan=

Quaternions to Euler Angles

4-332

Dialog Box

Inputs and
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

Assumptions
and Limitations

This implementation generates a pitch angle that lies between degrees,
and roll and yaw angles that lie between degrees.

The Euler angle solution is singular when the pitch angle θ is equal to
degrees.

Examples See aero_six_dof for an example of the use of the Quaternions to Euler Angles
block in an implementation of the equations of motion of a rigid body.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

90±
180±

90±

Radius at Geocentric Latitude

4-333

4Radius at Geocentric LatitudePurpose Estimate radius of ellipsoid planet at geocentric latitude

Library Flight Parameters

Description The Radius at Geocentric Latitude block estimates the radius of an
ellipsoid planet at a particular geocentric latitude .

The following equation estimates the ellipsoid radius using flattening ,
geocentric latitude , and equatorial radius .

rs()
λs()

rs() f()
λs() R()

rs
R2

1 1 1 f–()2⁄ 1–[] λ2
ssin+

--=

Radius at Geocentric Latitude

4-334

Dialog Box

Units
Specifies the parameter and output units:

This option is only available when Planet model is set to Earth (WGS84).

Planet model
Specifies the planet model to use:

Custom

Units Equatorial Radius Radius at Geocentric Latitude

Metric (MKS) Meters Meters

English Feet Feet

Radius at Geocentric Latitude

4-335

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. This option is only
available with Planet model set to Custom.

Inputs and
Outputs

The input is geocentric latitude, in degrees.

The output is radius of planet at geocentric latitude, in the same as the units
as flattening.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

See Also ECEF Position to LLA

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

Geodetic to Geocentric Latitude

LLA to ECEF Position

Relative Ratio

4-336

4Relative RatioPurpose Calculate relative atmospheric ratios

Library Flight Parameters

Description The Relative Ratio block computes the relative atmospheric ratios, including
relative temperature ratio (θ), , relative pressure ratio (δ), and relative
density ratio (σ).

θ represents the ratio of the air stream temperature at a chosen reference
station relative to sea level standard atmospheric conditions.

δ represents the ratio of the air stream pressure at a chosen reference station
relative to sea level standard atmospheric conditions.

σ represents the ratio of the air stream density at a chosen reference station
relative to sea level standard atmospheric conditions.

The Relative Ratio block icon displays the input units selected from the Units
list.

Dialog Box

θ

θ T
To
------=

δ P
Po
------=

σ ρ
ρo
-----=

Relative Ratio

4-337

Units
Specifies the input units:

Theta
When selected, the θ is calculated and static temperature is a required
input.

Square root of theta
When selected, the is calculated and static temperature is a required
input.

Delta
When selected, the δ is calculated and static pressure is a required input.

Sigma
When selected, the σ is calculated and static density is a required input.

Inputs and
Outputs

The four possible inputs are Mach number, static temperature, static pressure,
and static density.

The four possible outputs are θ, , δ, and σ.

Assumptions For cases in which total temperature, total pressure, or total density ratio is
desired (Mach number is nonzero), the total temperature, total pressure, and
total densities are calculated assuming perfect gas (with constant molecular
weight, constant pressure specific heat, and constant specific heat ratio) and
dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

Units Tstatic Pstatic rho_static

Metric (MKS) Kelvin Pascal Kilograms per
cubic meter

English Degrees Rankine Pound force per
square inch

Slug per cubic foot

θ

θ

Second Order Linear Actuator

4-338

4Second Order Linear ActuatorPurpose Implement a second-order linear actuator

Library Actuators

Description The Second Order Linear Actuator block outputs the actual actuator position
using the input demanded actuator position and other dialog parameters that
define the system.

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Inputs and
Outputs

The input is the demanded actuator position.

The output is the actual actuator position.

See Also Second Order Nonlinear Actuator

Second Order Nonlinear Actuator

4-339

4Second Order Nonlinear ActuatorPurpose Implement a second-order actuator with rate and deflection limits

Library Actuators

Description The Second Order Nonlinear Actuator block outputs the actual actuator
position using the input demanded actuator position and other dialog
parameters that define the system.

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection
The largest actuator position allowable. The units of maximum deflection
should be the same as the units of demanded actuator position.

Second Order Nonlinear Actuator

4-340

Minimum deflection
The smallest actuator position allowable. The units of minimum deflection
should be the same as the units of demanded actuator position.

Maximum rate
The fastest speed allowable for actuator motion. The units of maximum
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Inputs and
Outputs

The input is the demanded actuator position.

The output is the actual actuator position.

Examples See the aero_guidance model and the Actuators subsystem in the
aeroblk_HL20 model for an example of this block.

See Also Second Order Linear Actuator

Self-Conditioned [A,B,C,D]

4-341

4Self-Conditioned [A,B,C,D]Purpose Implement a state-space controller in a self-conditioned form

Library GNC/Controls

Description The Self-Conditioned [A,B,C,D] block can be used to implement the state-space
controller defined by

in the self-conditioned form

The input umeas is a vector of the achieved actuator positions, and the output
udem is the vector of controller actuator demands. In the case that the actuators
are not limited, then umeas = udem and substituting the output equation into
the state equation returns the nominal controller. In the case that they are not
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track umeas but
at the same time not so fast that noise on e is propagated to udem. The matrix
H is designed by a callback to the Control System Toolbox command place to
place the poles at defined locations.

x· Ax Be+=

u Cx De+=

z· A HC–()z B HD–()e Humeas++=

udem Cz De+=

Self-Conditioned [A,B,C,D]

4-342

Dialog Box

A-matrix
A-matrix of the state-space implementation.

B-matrix
B-matrix of the state-space implementation.

C-matrix
C-matrix of the state-space implementation.

D-matrix
D-matrix of the state-space implementation.

Initial state, x_initial
This is a vector of initial states for the controller, i.e., initial values for the
state vector, z. It should have length equal to the size of the first dimension
of A.

Poles of A-H*C
This is a vector of the desired poles of A-H*C. Hence the number of pole
locations defined should be equal to the dimension of the A-matrix.

Self-Conditioned [A,B,C,D]

4-343

Inputs and
Outputs

The first input is the control error.

The second input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control System Toolbox.

Examples This Simulink model shows a state-space controller implemented in both
self-conditioned and standard state-space forms. The actuator authority limits
of +/- 0.5 units are modeled by the saturation block.

Self-Conditioned [A,B,C,D]

4-344

Notice that the A-matrix has a zero in the 1,1 element, indicating integral
action.

The top trace shows the conventional state-space implementation. The output
of the controller winds up well past the actuator upper authority limit of +0.5.
The lower trace shows that the self-conditioned form results in an actuator
demand that tracks the upper authority limit, which means that when the sign
of the control error, e, is reversed, the actuator demand responds immediately.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Send net_fdm Packet to FlightGear

4-345

4Send net_fdm Packet to FlightGearPurpose Transmit net_fdm packet to destination IP address and port for FlightGear
session

Library Animation/Flight Simulator Interfaces

Description The Send net_fdm Packet to FlightGear block transmits the net_fdm packet to
FlightGear on the current computer, or a remote computer on the network. The
packet is constructed using the Pack net_fdm Packet for FlightGear block. The
destination port should be an unused port that you can use when you launch
FlightGear with the FlightGear command line flag:
--fdm=network,localhost,5501,5502,5503 (the second port in the list, 5502, is
the network flight dynamics model (fdm) port). You can use one of several
techniques to determine the destination IP address, such as:

• Use 127.0.0.1 for “this” computer

• Ping another computer from a Windows cmd.exe (or UNIX shell) prompt:
C:\> ping andyspc

Pinging andyspc [144.213.175.92] with 32 bytes of data:

Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253

Ping statistics for 144.213.175.92:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 20ms, Maximum = 30ms, Average = 22ms

• On a Windows machine, type ipconfig and use the returned IP Address:
H:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 IP Address. : 192.168.42.178

Send net_fdm Packet to FlightGear

4-346

 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.42.254

Dialog Box

Destination IP address
Specify your destination IP address.

Destination port
Specify your destination port.

Sample time
Specify the sample time (-1 for inherited).

Inputs and
Outputs

The input signal is the FlightGear net_fdm data packet.

Examples See the asbhl20 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

Generate Run Script

Pack net_fdm Packet for FlightGear

Simple Variable Mass 3DoF (Body Axes)

4-347

4Simple Variable Mass 3DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to body
axes

Library Equations of Motion/3DoF

Description The Simple Variable Mass 3DoF (Body Axes) block considers the rotation in the
vertical plane of a body-fixed coordinate frame about an Earth-fixed reference
frame.

Simple Variable Mass 3DoF (Body Axes)

4-348

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ m· U

m
----------– qw– g θ

w·

sin–

Fz
m
------ m· w

m
----------– qu g θ

q·

cos+ +

M Iyy
· q–

Iyy

θ
·

q

Iyy
· Iyyfull Iyy empty–

mfull mempty–
---m·

=

=

=

=

=

Simple Variable Mass 3DoF (Body Axes)

4-349

Dialog Box

Simple Variable Mass 3DoF (Body Axes)

4-350

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

θ0()

α0()

Simple Variable Mass 3DoF (Body Axes)

4-351

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth input to the block is the rate of change of mass, .

The fifth optional input to the block is gravity in the selected units.

The first output from the block is the pitch attitude, in radians .

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

m()·

θ()

Simple Variable Mass 3DoF (Body Axes)

4-352

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar element containing a flag for fuel tank status,
(Fuel):

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Wind Axes)

q·()

Simple Variable Mass 3DoF (Wind Axes)

4-353

4Simple Variable Mass 3DoF (Wind Axes)Purpose Implement three-degrees-of-freedom equations of motion with respect to wind
axes

Library Equations of Motion/3DoF

Description The Simple Variable Mass 3DoF (Wind Axes) block considers the rotation in
the vertical plane of a wind-fixed coordinate frame about an Earth-fixed
reference frame.

Simple Variable Mass 3DoF (Wind Axes)

4-354

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

V·
Fxwind

m
-------------- m· V

m
---------– g γ

α·

sin–

Fzwind

mV
-------------- q g

V
---- γ

q·

cos+ +

θ·
Mybody

Iyy
· q–

Iyy
---------------------------------=

γ· q α·–

=

=

=

=

Iyy
· Iyyfull Iyy empty–

mfull mempty–
---m·=

Simple Variable Mass 3DoF (Wind Axes)

4-355

Dialog Box

Simple Variable Mass 3DoF (Wind Axes)

4-356

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V0).

Initial flight path angle
A scalar value for the initial flight path angle of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

γ0()

α0()

Simple Variable Mass 3DoF (Wind Axes)

4-357

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the wind x-axis, .

The second input to the block is the force acting along the wind z-axis, .

The third input to the block is the applied pitch moment in body axes, (M).

The fourth input to the block is the rate of change of mass, .

The fifth optional input to the block is gravity in the selected units.

The first output from the block is the flight path angle, in radians .

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

m()·

γ()

Simple Variable Mass 3DoF (Wind Axes)

4-358

The second output is the pitch angular rate, in radians per second .

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the wind-fixed coordinate frame, (V,0).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, .

The eighth output is a scalar element containing a flag for fuel tank status,
(Fuel):

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

ωy()

dωy dt⁄()

α()

Simple Variable Mass 6DoF (Euler Angles)

4-359

4Simple Variable Mass 6DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF (Euler Angles) block considers the rotation of
a body-fixed coordinate frame about an Earth-fixed reference
frame . The origin of the body-fixed coordinate frame is the center
of gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

Xb Yb Zb, ,()
Xe Ye Ze, ,()

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of
Gravity

O

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+() m· Vb+=

Simple Variable Mass 6DoF (Euler Angles)

4-360

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O.

The inertia tensor is determined using a table lookup which linearly
interpolates between Ifull and Iempty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, []T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

Inverting then gives the required relationship to determine the Euler rate
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω() I·ω+×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

I·
Ifull I empty–

mfull mempty–
--m·=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J

Simple Variable Mass 6DoF (Euler Angles)

4-361

Dialog Box

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin() φ θtancos()
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

p
q
r

= =

Simple Variable Mass 6DoF (Euler Angles)

4-362

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Simple Variable Mass 6DoF (Euler Angles)

4-363

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

Simple Variable Mass 6DoF (Euler Angles)

4-364

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Euler Angles)

4-365

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Quaternion)

4-366

4Simple Variable Mass 6DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to body axes

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the Simple Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain drives the norm of the quaternion state vector to 1.0 should
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3

ε

+=

1 q0
2 q1

2 q3
2 q4

2
+ + +()–=

Simple Variable Mass 6DoF (Quaternion)

4-367

Dialog Box

Simple Variable Mass 6DoF (Quaternion)

4-368

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Simple Variable Mass 6DoF (Quaternion)

4-369

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

Simple Variable Mass 6DoF (Quaternion)

4-370

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Simple Variable Mass 6DoF (Quaternion)

4-371

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF ECEF (Quaternion)

4-372

4Simple Variable Mass 6DoF ECEF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF ECEF (Quaternion) block considers the
rotation of a Earth-Centered Earth-Fixed (ECEF) coordinate frame

 about an Earth-Centered Inertial (ECI) reference
frame . The origin of the ECEF coordinate frame is the
center of the Earth, additionally the body of interest is assumed to be rigid, an
assumption that eliminates the need to consider the forces acting between
individual elements of mass. The representation of the rotation of ECEF frame
from ECI frame is simplified to consider only the constant rotation of the
ellipsoid Earth including an initial celestial longitude . This
simplification allows the forces due to the Earth’s complex motion relative to a
star-fixed reference system to be neglected.

XECEF YECEF ZECEF, ,()
XECI YECI ZECI, ,()

ωe() LG 0()()

Simple Variable Mass 6DoF ECEF (Quaternion)

4-373

The translational motion of the ECEF coordinate frame is given below, where
the applied forces [Fx Fy Fz]

T are in the body frame.

where the change of position in ECI is calculated by

and the velocity in body-axis , angular rates in body-axis . Earth
rotation rate , and relative angular rates in body-axis are defined as

The rotational dynamics of the body defined in body-fixed frame are given
below, where the applied moments are [L M N]T, and the inertia tensor is
with respect to the origin O.

Fb

Fx

Fy

Fz

= m Vb
· ωb Vb× DCMbiωe Vb×() DCMbi ωe ωe xi×()×()+ + +() m· Vb DCMbi ωe xi×()+()+=

x· i()

x· i

x·ECI

y·ECI

z·ECI

DCMibVb ωe xi×+= =

Vb() ωb()
ωe() ωrel()

Vb

u
v
w

ωb

p
q
r

ωe

0
0

ωe

wrel ωb DCMbiωe–=,=,=,=

I

Mb

L
M
N

= Iωb
· ωb Iωb()×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

Simple Variable Mass 6DoF ECEF (Quaternion)

4-374

The inertia tensor is determined using a table lookup which linearly
interpolates between Ifull and Iempty based on mass (m). The rate of change of
the inertia tensor is estimated by the following equation.

The integration of the rate of change of the quaternion vector is given below.

I·
Ifull I empty–

mfull mempty–
--m·=

q· 0

q1
·

q· 2

q· 3

1
2
---–

0 p q r
p– 0 r– q
q– r 0 p–

r– q– p 0

q0

q1

q2

q3

=

Simple Variable Mass 6DoF ECEF (Quaternion)

4-375

Dialog Box

Simple Variable Mass 6DoF ECEF (Quaternion)

4-376

Simple Variable Mass 6DoF ECEF (Quaternion)

4-377

Units
Specifies the input and output units:

Mass type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic
reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity in the body-fixed
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll,
pitch, yaw], in radians.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Simple Variable Mass 6DoF ECEF (Quaternion)

4-378

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Planet model
Specifies the planet model to use:

Custom

Earth (WGS84)

Flattening
Specifies the flattening of the planet. This option is only available when
Planet model is set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for ECEF position. This
option is only available when Planet model is set to Custom.

Rotational rate
Specifies the scalar rotational rate of the planet in rad/sec. This option is
only available when Planet model is set to Custom.

Simple Variable Mass 6DoF ECEF (Quaternion)

4-379

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude:

Celestial longitude of Greenwich
The initial angle between Greenwich meridian and the x-axis of the ECI
frame.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
body-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the ECEF
reference frame.

The second output is a three-element vector containing the position in the
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic
latitude, longitude and altitude, in degrees, degrees and selected units of
length respectively.

The fourth output is a three-element vector containing the body rotation angles
[roll, pitch, yaw], in radians.

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the
body-fixed frame.

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.

Simple Variable Mass 6DoF ECEF (Quaternion)

4-380

The ninth output is a three-element vector containing the relative angular
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in
body-fixed axes.

The thirteenth output is a scalar element containing a flag for fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and Limitations

This implementation assumes that the applied forces are acting at the center
of gravity of the body.

This implementation generates a geodetic latitude that lies between
degrees, and longitude that lies between degrees. Additionally, the MSL
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical
planet can be achieved. The Earth’s precession, nutation, and polar motion are
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at
the center of the planet, the x-axis is the continuation of the line from the
center of the Earth through the center of the Sun toward the vernal equinox,
the z-axis points in the direction of the mean equatorial plane’s north pole,
positive to the north, and the y-axis completes the right-hand system.

90±
180±

Simple Variable Mass 6DoF ECEF (Quaternion)

4-381

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF Wind (Quaternion)

4-382

4Simple Variable Mass 6DoF Wind (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to wind axes

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF Wind (Quaternion) block considers the
rotation of a wind-fixed coordinate frame about an Earth-fixed
reference frame . The origin of the wind-fixed coordinate frame is
the center of gravity of the body, and the body is assumed to be rigid, an
assumption that eliminates the need to consider the forces acting between
individual elements of mass. The Earth-fixed reference frame is considered
inertial, a simplification that allows the forces due to the Earth’s motion
relative to a star-fixed reference system to be neglected.

The translational motion of the wind-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the wind-fixed frame.

Xw Yw Zw, ,()
Xe Ye Ze, ,()

Fw

Fx

Fy

Fz

= m Vw
· ωw Vw×+() m· Vw+=

Simple Variable Mass 6DoF Wind (Quaternion)

4-383

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O. Inertia tensor I is much easier to define in body-fixed frame.

The inertia tensor is determined using a table lookup which linearly
interpolates between Ifull and Iempty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

The integration of the rate of change of the quaternion vector is given below.

Vw

V
0
0

ωw,
pw

qw

rw

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

wb

pb

qb

rb

=,= = =

I

Mb

L
M
N

= Iωb
· ωb Iωb()× I·ωb+ +=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

I·
Ifull I empty–

mfull mempty–
--m·=

q· 0

q1
·

q· 2

q· 3

1
2
---–

0 p q r
p– 0 r– q
q– r 0 p–

r– q– p 0

q0

q1

q2

q3

=

Simple Variable Mass 6DoF Wind (Quaternion)

4-384

Dialog Box

Simple Variable Mass 6DoF Wind (Quaternion)

4-385

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Simple Variable Mass 6DoF Wind (Quaternion)

4-386

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body, in
body-fixed axes.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed
axes.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

Simple Variable Mass 6DoF Wind (Quaternion)

4-387

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

The eleventh output is a scalar element containing a flag for fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

Simple Variable Mass 6DoF Wind (Quaternion)

4-388

Stevens, B. L., and F. L. Lewis, “Aircraft Control and Simulation,” John Wiley
& Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF Wind (Wind Angles)

4-389

4Simple Variable Mass 6DoF Wind (Wind Angles)Purpose Implement a wind angle representation of six-degrees-of-freedom equations of
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the Simple Variable Mass 6DoF
(Quaternion) block.

The relationship between the wind angles, []T, can be determined by
resolving the wind rates into the wind-fixed coordinate frame.

Inverting then gives the required relationship to determine the wind rate
vector.

The body-fixed angular rates are related to the wind-fixed angular rate by the
following equation.

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular rates.

μγχ

pw

qw

rw

μ·

0
0

1 0 0
0 μcos μsin
0 μsin– μcos

0

γ·

0

1 0 0
0 μcos μsin
0 μsin– μcos

γcos 0 γsin–

0 1 0
γsin 0 γcos

0
0

χ·
+ + J 1–

μ·

γ·

χ·
≡=

J

μ·

γ·

χ·
J

pw

qw

rw

1 μ γtansin() μ γtancos()
0 μcos μsin–

0 μsin
γcos

------------ μcos
γcos

pw

qw

rw

= =

pw

qw

rw

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

=

Simple Variable Mass 6DoF Wind (Wind Angles)

4-390

Dialog Box

μ·

γ·

χ·
J

pw

qw

rw

1 μ γtansin() μ γtancos()
0 μcos μsin–

0 μsin
γcos

------------ μcos
γcos

DMCwb

pb β· αsin–

qb α·–

rb β· αcos+

= =

Simple Variable Mass 6DoF Wind (Wind Angles)

4-391

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Wind Angles selection conforms to the previously described equations
of motion.

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Simple Variable Mass 6DoF Wind (Wind Angles)

4-392

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body, in
body-fixed axes.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed
axes.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

Simple Variable Mass 6DoF Wind (Wind Angles)

4-393

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

The eleventh output is a scalar element containing a flag for fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

Simple Variable Mass 6DoF Wind (Wind Angles)

4-394

Stevens, B. L., and F. L. Lewis, “Aircraft Control and Simulation,” John Wiley
& Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simulation Pace

4-395

4Simulation PacePurpose Set the simulation pace for FlightGear Flight Simulator

Library Animation/Animation Support Utilities

Description The Simulation Pace block lets you run the simulation at the specified pace so
that connected animations appear aesthetically pleasing.

Use the Sample time parameter to set how often Simulink synchronizes with
the wall clock.

The sample time of this block should be considered for human interaction with
visualizations. The default is 1/30 sec, chosen to correspond to a 30
frames-per-second visualization rate (typical for common systems). Choose as
slow of a sample time as needed for smooth animation, since oversampling has
little benefit and undersampling can cause “jumpiness” in animations and
potentially problematic blocking of MATLAB’s main thread.

Dialog Box

Simulation Pace

4-396

Simulation pace
Specifies the ratio of simulation time to clock time. The default is 1 second
of simulation time per second of clock time.

Sleep mode
Setting the Sleep mode parameter to off lets you disable the pace
functionality and run as fast as possible.

Output pace error
If you select this check box, the block outputs the “pace error” value
(simulationTime minus ClockTime), in seconds. The pace error is positive
if the simulation is running faster than the specified pace and negative if
slower than the specified pace.

Sample time
Specify the sample time (-1 for inherited). Larger sample times result in
more efficient simulations, but less “smoothness” in output pace when
there are multiple Simulink time steps between pacer block samples. If the
Sample time is too large, MATLAB may become less responsive as
MATLAB and Simulink calculations are blocked from running when the
block puts MATLAB to sleep.

Inputs and
Outputs

The block optionally outputs the “pace error” value (simulationTime minus
ClockTime), in seconds. The pace error is positive if the simulation is running
faster than the specified pace and negative if slower than the specified pace.

Outputting the pace error from the block lets you record the overall pace
achieved during the simulation or routing the signal to other blocks to make
decisions about the simulation if the simulation is too slow to keep up with the
specified pace.

Assumptions
and Limitations

The simulation pace is implemented by putting the entire MATLAB thread to
sleep until it needs to run again to keep up the pace. Simulink is single
threaded and runs on the one MATLAB thread, so only one Simulation Pace
block can be active at a time.

Examples See the asbhl20 demo for an example of this block.

See Also Pilot Joystick

SinCos

4-397

4SinCosPurpose Compute the sine and cosine of the input angle

Library Utilities/Math Operations

Description The SinCos block computes the sine and cosine of the input angle, theta.

Dialog Box

Inputs and
Outputs

The first input is an angle, in radians.

The first output is the sine of the input angle.

The second output is the cosine of the input angle.

Symmetric Inertia Tensor

4-398

4Symmetric Inertia TensorPurpose Create an inertia tensor from moments and products of inertia

Library Mass Properties

Description The Symmetric Inertia Tensor block creates an inertia tensor from moments
and products of inertia. Each input corresponds to an element of the tensor.

The inertia tensor has the form of

Dialog Box

Inputs and
Outputs

The first input is the moment of inertia about the x-axis.

The second input is the product of inertia in the xy plane.

The third input is the product of inertia in the xz plane.

The fourth input is the moment of inertia about the y-axis.

The fifth input is the product of inertia in the yz plane.

The sixth input is the moment of inertia about the z-axis.

The output of the block is a symmetric 3-by-3 inertia tensor.

See Also Create 3x3 Matrix

Inertia

Ixx Ixy– Iyz–

Ixy– Iyy Ixz–

Iyz– Ixz– Izz

=

Temperature Conversion

4-399

4Temperature ConversionPurpose Convert from temperature units to desired temperature units

Library Utilities/Unit Conversions

Description The Temperature Conversion block computes the conversion factor from
specified input temperature units to specified output temperature units and
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is the temperature in initial temperature units.

The output is the temperature in final temperature units.

K Kelvin

F Degrees Fahrenheit

C Degrees Celsius

R Degrees Rankine

Temperature Conversion

4-400

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Velocity Conversion

Three-Axis Accelerometer

4-401

4Three-Axis AccelerometerPurpose Implement a three-axis accelerometer

Library GNC/Navigation

Description The Three-Axis Accelerometer block implements an accelerometer on each of
the three axes. The ideal measured accelerations include the
acceleration in body axes at the center of gravity , lever arm effects due to
the accelerometer not being at the center of gravity, and, optionally, gravity in
body axes can be removed.

where are body-fixed angular rates, are body-fixed angular
accelerations and is the lever arm. The lever arm is defined as the
distances that the accelerometer group is forward, right and below the center
of gravity.

The orientation of the axes used to determine the location of the accelerometer
group and center of gravity is from the zero
datum (typically the nose) to aft, to the right of the vertical centerline and
above the horizontal centerline. The x-axis and z-axis of this measurement axes
are opposite the body-fixed axes producing the negative signs in the lever arms
for x-axis and z-axis.

Measured accelerations output by this block contain error sources
and are defined as

where is a 3-by-3 matrix of scaling factors on the diagonal and
misalignment terms in the nondiagonal, and are the biases.

Aimeas()
Ab()

Aimeas Ab ω+ b ωb d×()× ω· b d× g–+=

ωb ω· b
d d()

d

dx

dy

dz

xacc xCG–()–

yacc yCG–

zacc zCG–()–

= =

xacc yacc zacc, ,() xCG yCG zCG, ,()

Ameas()

Ameas Aimeas ASFCC⋅ A+ bias noise+=

ASFCC
Abias

Three-Axis Accelerometer

4-402

Optionally discretizations can be applied to the block inputs and dynamics
along with nonlinearizations of the measured accelerations via a Saturation
block.

Dialog Box

Three-Axis Accelerometer

4-403

Units
Specifies the input and output units:

Accelerometer location
The location of the accelerometer group is measured from the zero datum
(typically the nose) to aft, to the right of the vertical centerline and above
the horizontal centerline. This measurement reference is the same for the
center of gravity input. The units are in selected length units.

Units Acceleration Length

Metric (MKS) Meters per second squared Meters

English Feet per second squared Feet

Three-Axis Accelerometer

4-404

Subtract gravity
Select to subtract gravity from acceleration readings.

Second order dynamics
Select to apply second-order dynamics to acceleration readings.

Natural frequency (rad/sec)
The natural frequency of the accelerometer. The units of natural frequency
are radians per second.

Damping ratio
The damping ratio of the accelerometer. A dimensionless parameter.

Scale factors and cross-coupling
The 3-by-3 matrix used to skew the accelerometer from body axes and to
scale accelerations along body axes.

Measurement bias
The three-element vector containing long-term biases along the
accelerometer axes. The units are in selected acceleration units.

Update rate (sec)
Specify the update rate of the accelerometer. An update rate of 0 will create
a continuous accelerometer. If noise is selected and the update rate is 0,
then the noise will be updated at the rate of 0.1. The units of update rate
are seconds.

Noise on
Select to apply white noise to acceleration readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of the
accelerometer.

Noise power
The height of the PSD of the white noise for each axis of the accelerometer.

Lower and upper output limits
The six-element vector containing three minimum values and three
maximum values of acceleration in each of the accelerometer axes. The
units are in selected acceleration units.

Three-Axis Accelerometer

4-405

Inputs and
Outputs

The first input is a three-element vector containing the actual accelerations in
body-fixed axes, in selected units.

The second input is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The third input is a three-element vector containing the angular accelerations
in body-fixed axes, in radians per second squared.

The fourth input is a three-element vector containing the location of the center
of gravity, in selected units.

The optional fifth input is a three-element vector containing the gravity, in
selected units.

The output is a three-element vector containing the measured accelerations
from the accelerometer, in selected units.

Assumptions
and Limitations

Vibro-pendulous error and hysteresis effects are not accounted for in this block.
Additionally, it is not the intention of this block to model the internal dynamics
of differing forms of instrument.

This block requires the Control System Toolbox.

References Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA
Education Series, 2000.

See Also Three-Axis Gyroscope

Three-Axis Inertial Measurement Unit

Three-Axis Gyroscope

4-406

4Three-Axis GyroscopePurpose Implement a three-axis gyroscope

Library GNC/Navigation

Description The Three-Axis Gyroscope block implements a gyroscope on each of the three
axes. The measured body angular rates include the body angular
rates , errors, and optionally discretizations and nonlinearizations of the
signals.

where is a 3-by-3 matrix of scaling factors on the diagonal and
misalignment terms in the nondiagonal, are the biases, are the Gs
on the gyroscope, and are the g-sensitive biases.

Optionally discretizations can be applied to the block inputs and dynamics
along with nonlinearizations of the measured body angular rates via a
Saturation block.

ωmeas()
ωb()

ωmeas ωb ωSFCC⋅ ω+
bias

Gs ωgsens noise+⋅+=

ωSFCC
ωbias Gs()

ωgsens

Three-Axis Gyroscope

4-407

Dialog Box

Three-Axis Gyroscope

4-408

Second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Natural frequency (rad/sec)
The natural frequency of the gyroscope. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

Scale factors and cross-coupling
The 3-by-3 matrix used to skew the gyroscope from body axes and to scale
angular rates along body axes.

Measurement bias
The three-element vector containing long-term biases along the gyroscope
axes. The units are in radians per second.

G-sensitive bias
The three-element vector contains the maximum change in rates due to
linear acceleration. The units are in radians per second per G’s.

Update rate (sec)
Specify the update rate of the gyroscope. An update rate of 0 will create a
continuous gyroscope. If noise is selected and the update rate is 0, then the
noise will be updated at the rate of 0.1. The units of update rate are
seconds.

Noise on
Select to apply white noise to gyroscope readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of the
gyroscope.

Noise power
The height of the PSD of the white noise for each axis of the gyroscope.

Three-Axis Gyroscope

4-409

Lower and upper output limits
The six-element vector containing three minimum values and three
maximum values of angular rates in each of the gyroscope axes. The units
are in radians per second.

Inputs and
Outputs

The first input is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The second input is a three-element vector containing the accelerations in
body-fixed axes, in G’s.

The output is a three-element vector containing the measured angular rates
from the gyroscope, in radians per second.

Assumptions
and Limitations

Anisoelastic bias and anisoinertial bias effects are not accounted for in this
block. Additionally, it is not the intention of this block to model the internal
dynamics of differing forms of instrument.

This block requires the Control System Toolbox.

References Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA
Education Series, 2000.

See Also Three-Axis Accelerometer

Three-Axis Inertial Measurement Unit

Three-Axis Inertial Measurement Unit

4-410

4Three-Axis Inertial Measurement UnitPurpose Implement a three-axis inertial measurement unit (IMU)

Library GNC/Navigation

Description The Three-Axis Inertial Measurement Unit block implements an inertial
measurement unit (IMU) containing a three-axis accelerometer and a
three-axis gyroscope.

For a description of the equations and application of errors, see the Three-Axis
Accelerometer block and the Three-Axis Gyroscope block reference pages.

Dialog Box

Three-Axis Inertial Measurement Unit

4-411

Three-Axis Inertial Measurement Unit

4-412

Units
Specifies the input and output units:

IMU location
The location of the IMU, which is also the accelerometer group location, is
measured from the zero datum (typically the nose) to aft, to the right of the
vertical centerline and above the horizontal centerline. This measurement
reference is the same for the center of gravity input. The units are in
selected length units.

Update rate (sec)
Specify the update rate of the accelerometer and gyroscope. An update rate
of 0 will create a continuous accelerometer and continuous gyroscope. If

Units Acceleration Length

Metric (MKS) Meters per second squared Meters

English Feet per second squared Feet

Three-Axis Inertial Measurement Unit

4-413

noise is selected and the update rate is 0, then the noise will be updated at
the rate of 0.1. The units of update rate are seconds.

Second order dynamics for accelerometer
Select to apply second-order dynamics to acceleration readings.

Accelerometer natural frequency (rad/sec)
The natural frequency of the accelerometer. The units of natural frequency
are radians per second.

Accelerometer damping ratio
The damping ratio of the accelerometer. A dimensionless parameter.

Accelerometer scale factors and cross-coupling
The 3-by-3 matrix used to skew the accelerometer from body-axis and to
scale accelerations along body-axis.

Accelerometer measurement bias
The three-element vector containing long-term biases along the
accelerometer axes. The units are in selected acceleration units.

Accelerometer lower and upper output limits
The six-element vector containing three minimum values and three
maximum values of acceleration in each of the accelerometer axes. The
units are in selected acceleration units.

Gyro second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Gyro natural frequency (rad/sec)
The natural frequency of the gyroscope. The units of natural frequency are
radians per second.

Gyro damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

Gyro scale factors and cross-coupling
The 3-by-3 matrix used to skew the gyroscope from body axes and to scale
angular rates along body axes.

Three-Axis Inertial Measurement Unit

4-414

Gyro measurement bias
The three-element vector containing long-term biases along the gyroscope
axes. The units are in radians per second.

G-sensitive bias
The three-element vector contains the maximum change in rates due to
linear acceleration. The units are in radians per second per G’s.

Gyro lower and upper output limits
The six-element vector containing three minimum values and three
maximum values of angular rates in each of the gyroscope axes. The units
are in radians per second.

Noise on
Select to apply white noise to acceleration and gyroscope readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of the
accelerometer and gyroscope.

Noise power
The height of the PSD of the white noise for each axis of the accelerometer
and gyroscope.

Inputs and
Outputs

The first input is a three-element vector containing the actual accelerations in
body-fixed axes, in selected units.

The second input is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The third input is a three-element vector containing the angular accelerations
in body-fixed axes, in radians per second squared.

The fourth input is a three-element vector containing the location of the center
of gravity, in selected units.

The fifth input is a three-element vector containing the gravity, in selected
units.

The first output is a three-element vector containing the measured
accelerations from the accelerometer, in selected units.

Three-Axis Inertial Measurement Unit

4-415

The second output is a three-element vector containing the measured angular
rates from the gyroscope, in radians per second.

Assumptions
and Limitations

Vibro-pendulous error, hysteresis affects, anisoelastic bias and anisoinertial
bias are not accounted for in this block. Additionally, it is not the intention of
this block to model the internal dynamics of differing forms of instrument.

This block requires the Control System Toolbox.

Examples See the asbhl20 demo for an example of this block.

References Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA
Education Series, 2000.

See Also Three-Axis Accelerometer

Three-Axis Gyroscope

Turbofan Engine System

4-416

4Turbofan Engine SystemPurpose Implement a first-order representation of a turbofan engine with controller

Library Propulsion

Description The Turbofan Engine System block computes the thrust and the weight of fuel
flow of a turbofan engine and controller at a specific throttle position, Mach
number, and altitude.

This system is represented by a first-order system with unitless heuristic
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine
time constant. For the lookup table data, thrust is a function of throttle position
and Mach number, TSFC is a function of thrust and Mach number, and engine
time constant is a function of thrust. The unitless lookup table outputs are
corrected for altitude using the relative pressure ratio δ and relative
temperature ratio θ, and scaled by maximum sea level static thrust, fastest
engine time constant at sea level static, sea level static thrust specific fuel
consumption, and ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output units
selected from the Units list.

Turbofan Engine System

4-417

Dialog Box

Units
Specifies the input and output units:

Initial thrust source
Specifies the source of initial thrust:

Units Altitude Thrust Fuel Flow

Metric (MKS) Meters Newtons Kilograms per second

English Feet Pound force Pound mass per second

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.

Turbofan Engine System

4-418

Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Fastest engine time at sea level.

Sea-level static thrust specific fuel consumption
Thrust specific fuel consumption at sea level, at Mach = 0, and at maximum
thrust, in specified mass units per hour per specified thrust units.

Ratio of installed thrust to uninstalled thrust
Coefficient representing the loss in thrust due to engine installation.

Inputs and
Outputs

The first input is the throttle position. Throttle position can vary from zero to
one, corresponding to no to full throttle.

The second input is the Mach number.

The third input is the altitude in specified length units.

The first output is the thrust in specified force units.

The second output is the fuel flow in specified mass units per second.

Assumptions
and Limitations

The atmosphere is at standard day conditions and an ideal gas.

The Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used
as a reference model.

This engine system is assumed to have a high bypass ratio.

References Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

Raymer, D. P., Aircraft Design: A Conceptual Approach, AIAA Education
Series, Washington, DC, 1989.

Hill, P. G., and C. R. Peterson, Mechanics and Thermodynamics of Propulsion,
Addison-Wesley Publishing Company, Reading, MA, 1970.

Velocity Conversion

4-419

4Velocity ConversionPurpose Convert from velocity units to desired velocity units

Library Utilities/Unit Conversions

Description The Velocity Conversion block computes the conversion factor from specified
input velocity units to specified output velocity units and applies the
conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s Meters per second

ft/s Feet per second

km/s Kilometers per second

in/s Inches per second

km/h Kilometers per hour

mph Miles per hour

kts Nautical miles per hour

ft/min Feet per minute

Velocity Conversion

4-420

Inputs and
Outputs

The input is the velocity in initial velocity units.

The output is the velocity in final velocity units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Von Karman Wind Turbulence Model (Continuous)

4-421

4Von Karman Wind Turbulence Model (Continuous)Purpose Generate continuous wind turbulence with the Von Kármán velocity spectra

Library Environment/Wind

Description The Von Kármán Wind Turbulence Model (Continuous) block uses the Von
Kármán spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters. This
block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Ω radians per meter, the circular
frequency ω is calculated by multiplying V by Ω. The following table displays
the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

 Φu ω()

 Φp ω()

2σu
2Lu

πV
------------------ 1

1 1.339Lu
ω
V
----()

2
+[]

5 6⁄
---⋅

2σu
2Lu

πV
------------------ 1

1 1.339Lu
ω
V
----()

2
+[]

5 6⁄
---⋅

σw
2

VLw

0.8
πLw
4b

-----------⎝ ⎠
⎛ ⎞

1
3

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

-----------------------------⋅ σw
2

2VLw

0.8
2πLw

4b
---------------⎝ ⎠
⎛ ⎞

1
3

1 4bw
πV

------------⎝ ⎠
⎛ ⎞ 2

+

--------------------------------⋅

Von Karman Wind Turbulence Model (Continuous)

4-422

The variable b represents the aircraft wingspan. The variables
represent the turbulence scale lengths. The variables σu, σv, σw represent the
turbulence intensities:

Lateral

Vertical

 MIL-F-8785C MIL-HDBK-1797

Φv ω()

Φr ω()

σv
2Lv
πV

1 8

3
--- 1.339Lv

ω
V
----()

2
+

1 1.339Lv
ω
V
----()

2
+[]

11 6⁄
---⋅

2σv
2Lv

πV

1 8
3
--- 2.678Lv

ω
V
----()

2
+

1 2.678Lv
ω
V
----()

2
+[]

11 6⁄
---⋅

ω
V
----⎝ ⎠
⎛ ⎞+−

2

1 3bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φv ω()⋅

ω
V
----⎝ ⎠
⎛ ⎞+−

2

1 3bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φv ω()⋅

Φw ω()
σw

2Lw
πV

1 8

3
--- 1.339Lw

ω
V
----()

2
+

1 1.339Lw
ω
V
----()

2
+[]

11 6⁄
--⋅

2σw
2Lw

πV

1 8
3
--- 2.678Lw

ω
V
----()

2
+

1 2.678Lw
ω
V
----()

2
+[]

11 6⁄
--⋅

 Φq ω()

ω
V
----⎝ ⎠
⎛ ⎞±

2

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φw ω()⋅

ω
V
----⎝ ⎠
⎛ ⎞±

2

1 4bω
πV

-----------⎝ ⎠
⎛ ⎞ 2

+

----------------------------- Φw ω()⋅

Lu Lv Lw, ,

Von Karman Wind Turbulence Model (Continuous)

4-423

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

, multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra.

Vertical Lateral

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------–=

pg
∂wg
∂y

----------=

qg
∂wg
∂x

----------=

rg
∂vg
∂x
---------=

pg
∂wg
∂y

----------–= qg
∂wg
∂x

----------–= rg
∂vg
∂x
---------=

Φp ω()

Φw ω()

Φq ω() Φ– r ω()

Φq ω() Φr ω()

Φ– q ω() Φr ω()

Von Karman Wind Turbulence Model (Continuous)

4-424

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is passed through forming filters. The forming
filters are approximations of the Von Kármán velocity spectra which are valid
in a range of normalized frequencies of less than 50 radians. These filters can
be found in both the Military Handbook MIL-HDBK-1797 and the reference by
Ly and Chan.

The following two tables display the transfer functions.

 MIL-F-8785C

Longitudinal

Lateral

Hu s()

Hp s()

σu
2
π

Lu
V

--------⋅ 1 0.25
Lu
V

--------s+()

1 1.357
Lu
V

--------s 0.1987
Lu
V

--------()
2
s2

+ +

σw
0.8
V

π
4b()

-----------⎝ ⎠
⎛ ⎞ 1 6⁄

Lw
1 3⁄ 1 4b

πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
--

Hv s()

Hr s()

σv
1
π

Lv
V

-------⋅ 1 2.7478
Lv
V

-------s 0.3398
Lv
V

-------()
2
s2

+ +()

1 2.9958
Lv
V

-------s 1.9754
Lv
V

-------()
2
s2 0.1539

Lv
V

-------()
3
s3

+ + +

--

s
V
----+−

1 3b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hv s()⋅

Von Karman Wind Turbulence Model (Continuous)

4-425

Vertical

 MIL-HDBK-1797

Longitudinal

 MIL-F-8785C

Hw s()

Hq s()

σw
1
π

Lw
V

---------⋅ 1 2.7478
Lw
V

---------s 0.3398
Lw
V

---------()
2
s2

+ +()

1 2.9958
Lw
V

---------s 1.9754
Lw
V

---------()
2
s2 0.1539

Lw
V

---------()
3
s3

+ + +

--

s
V
----±

1 4b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hw s()⋅

Hu s()

Hp s()

σu
2
π

Lu
V

--------⋅ 1 0.25
Lu
V

--------s+()

1 1.357
Lu
V

--------s 0.1987
Lu
V

--------()
2
s2

+ +

σw
0.8
V

π
4b()

-----------⎝ ⎠
⎛ ⎞ 1 6⁄

2Lw()1 3⁄ 1 4b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞

Von Karman Wind Turbulence Model (Continuous)

4-426

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Note The same transfer functions result after evaluating the turbulence
scale lengths. The differences in turbulence scale lengths and turbulence
transfer functions balance offset.

Lateral

Vertical

 MIL-HDBK-1797

Hv s()

Hr s()

σv
1
π

2Lv
V

-------------⋅ 1 2.7478
2Lv

V
-------------s 0.3398

2Lv
V

-------------()
2
s2

+ +⎝ ⎠
⎛ ⎞

1 2.9958
2Lv

V
-------------s 1.9754

2Lv
V

-------------()
2
s2 0.1539

2Lv
V

-------------()
3
s3

+ + +

s
V
----+−

1 3b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hv s()⋅

Hw s()

Hq s()

σw
1
π

2Lw
V

--------------⋅ 1 2.7478
2Lw

V
--------------s 0.3398

2Lw
V

--------------()
2
s2

+ +⎝ ⎠
⎛ ⎞

1 2.9958
2Lw

V
--------------s 1.9754

2Lw
V

--------------()
2
s2 0.1539

2Lw
V

--------------()
3
s3

+ + +

s
V
----±

1 4b
πV
-------⎝ ⎠
⎛ ⎞ s+⎝ ⎠

⎛ ⎞
------------------------------- Hw s()⋅

Von Karman Wind Turbulence Model (Continuous)

4-427

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low
altitudes, where is the altitude in feet, are represented in the following table:

The turbulence intensities are given below, where is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

 MIL-F-8785C MIL-HDBK-1797

h

Lw h

Lu Lv
h

0.177 0.000823h+()1.2
--

=

= =

2Lw h

Lu 2Lv
h

0.177 0.000823h+()1.2
--

=

= =

W20

σw 0.1W20

σu
σw

σv
σw
------- 1

0.177 0.000823h+()0.4
--

=

= =

Von Karman Wind Turbulence Model (Continuous)

4-428

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

 MIL-F-8785C MIL-HDBK-1797

Lu Lv Lw 2500= = = ft Lu 2Lv 2Lw 2500= = = ft

σu σv σw= =

Von Karman Wind Turbulence Model (Continuous)

4-429

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates:

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Von Karman Wind Turbulence Model (Continuous)

4-430

Dialog Box

Units
Define the units of wind speed due to the turbulence.

Units Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English
(Velocity in
ft/s)

Feet/second Feet Feet/second

English
(Velocity in
kts)

Knots Feet Knots

Von Karman Wind Turbulence Model (Continuous)

4-431

Specification
Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Continuous Von Kármán (+q -r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kármán (+q
+r)

Use continuous representation of Von
Kármán velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von
Kármán velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Von Karman Wind Turbulence Model (Continuous)

4-432

The Continuous Von Kármán selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 20 feet (6 meters) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 20 feet (6 meters) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

Von Karman Wind Turbulence Model (Continuous)

4-433

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated.

Noise seeds
There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

The first input is the altitude in units selected.

The second input is the aircraft speed in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Assumptions
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, are small
relative to the aircraft’s ground speed.

Von Karman Wind Turbulence Model (Continuous)

4-434

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education
Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

Von Karman Wind Turbulence Model (Continuous)

4-435

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

WGS84 Gravity Model

4-436

4WGS84 Gravity ModelPurpose Implement the 1984 World Geodetic System (WGS84) representation of Earth’s
gravity

Library Environment/Gravity

Description The WGS84 Gravity Model block implements the mathematical representation
of the geocentric equipotential ellipsoid of the World Geodetic System
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity
precision is controlled via the Type of gravity model parameter.

The WGS84 Gravity Model block icon displays the input and output units
selected from the Units list.

Dialog Box

Type of gravity model
Specifies the method to calculate gravity:

-WGS84 Taylor Series

-WGS84 Close Approximation

-WGS84 Exact

WGS84 Gravity Model

4-437

Units
Specifies the input and output units:

Exclude Earth’s atmosphere
Select for the value for the Earth’s gravitational field to exclude the mass
of the atmosphere.

Clear for the value for the Earth’s gravitational field to include the mass of
the atmosphere.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated using the
International Astronomical Union (IAU) value of the Earth’s angular
velocity and the precession rate in right ascension. In order to obtain the
precession rate in right ascension, Julian centuries from Epoch J2000.0 is
calculated using the dialog parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of the
standard Earth rotating at a constant angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian centuries from Epoch J2000.0.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Day
Specifies the day used to calculate Julian centuries from Epoch J2000.0.

Units Height Gravity

Metric (MKS) Meters Meters per second squared

English Feet Feet per second squared

WGS84 Gravity Model

4-438

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Year
Specifies the year used to calculate Julian centuries from Epoch J2000.0.
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

No centrifugal effects
When selected, calculated gravity is based on pure attraction resulting
from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The first input is a scalar containing the altitude in specified length units.

The second input is a scalar containing the latitude in degrees.

The third input is a scalar containing the longitude in degrees. This input is
only available with Type of Gravity Model WGS84 Close Approximation or
WGS84 Exact.

The output is a scalar value of gravity with the direction normal to the Earth’s
surface.

WGS84 Gravity Model

4-439

Assumptions
and Limitations

The WGS84 gravity calculations are based on the assumption of a geocentric
equipotential ellipsoid of revolution. Since the gravity potential is assumed to
be the same everywhere on the ellipsoid, there must be a specific theoretical
gravity potential that can be uniquely determined from the four independent
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is not
necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic
height of 20,000.0 m (approximately 65,620.0 feet). Below this height, it gives
results with submicrogal precision.

Examples See the Airframe subsystem in the aeroblk_HL20 model for an example of this
block.

References [1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its
Definition and Relationship with Local Geodetic Systems.”

Wind Angles to Direction Cosine Matrix

4-440

4Wind Angles to Direction Cosine MatrixPurpose Convert wind angles to direction cosine matrix

Library Utilities/Axes Transformations

Description The Wind Angles to Direction Cosine Matrix block converts three wind rotation
angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs
the coordinate transformation of a vector in earth axes into a
vector in wind axes . The order of the axis rotations required to
bring into coincidence with is first a rotation
about through the bank angle to axes . Second a
rotation about through the flight path angle to axes ,
and finally a rotation about through the heading angle to axes

.

Combining the three axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,()
ox3 oy3 oz3,,()

ox3 oy3 oz3,,() ox0 oy0 oz0,,()
ox3 μ() ox2 oy2 oz2,,()

oy2 γ() ox1 oy1 oz1,,()
oz1 χ()

ox0 oy0 oz0,,()

ox3

oy3

oz3

DCMwe

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 μcos μsin
0 μsin– μcos

γcos 0 γsin–

0 1 0
γsin 0 γcos

χcos χsin 0
χsin– χcos 0

0 0 1

ox0

oy0

oz0

=

DCMwe

γ χcoscos γ χsincos γsin–

μ γ χcossinsin μ χsincos–() μ γ χsinsinsin μ χcoscos+() μ γcossin
μ γ χcossincos μ χsinsin+() μ γ χsinsincos μ χcossin–() μ γcoscos

=

Wind Angles to Direction Cosine Matrix

4-441

Dialog Box

Inputs and
Outputs

The input is a 3-by-1 vector of wind angles, in radians.

The output is a 3-by-3 direction cosine matrix which transforms earth vectors
to wind vectors.

Assumptions
and Limitations

This implementation generates a flight path angle that lies between
degrees, and bank and heading angles that lie between degrees.

See Also Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

90±
180±

Wind Angular Rates

4-442

4Wind Angular RatesPurpose Calculate wind angular rates from body angular rates, angle of attack, sideslip
angle, rate of change of angle of attack and rate of change of sideslip

Library Flight Parameters

Description The Wind Angular Rates block supports the equations of motion in wind-fixed
frame models by calculating the wind-fixed angular rates . The
body-fixed angular rates , angle of attack , sideslip angle ,
rate of change of angle of attack , and rate of change of sideslip are
related to the wind-fixed angular rate by the following equation.

Dialog Box

Inputs and
Outputs

The first input is the 2-by-1 vector containing angle of attack and sideslip, in
radians.

The second input is the 2-by-1 vector containing rate of change of angle of
attack and rate of change of sideslip, in radians per second.

The third input is the body angular rates, in radians per second.

The output is the wind angular rates, in radians per second.

See Also 3DoF (Body Axes)

6DoF Wind (Quaternion)

pw qw rw, ,()
pb qb rb, ,() α() β()

α·() β·()

pw

qw

rw

α βcoscos βsin α βcossin
α βsincos– βcos α βsinsin–

αsin– 0 αcos

pb β· αsin–

qb α·–

rb β· αcos+

=

Wind Angular Rates

4-443

6DoF Wind (Wind Angles)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Wind Shear Model

4-444

4Wind Shear ModelPurpose Calculate wind shear conditions

Library Environment/Wind

Description The Wind Shear Model block adds wind shear to the aerospace model. This
implementation is based on the mathematical representation in the Military
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by
the following equation for the mean wind profile as a function of altitude and
the measured wind speed at 20 feet (6 m) above the ground.

where uw is the mean wind speed, W20 is the measured wind speed at an
altitude of 20 feet, is the altitude, and is a constant equal to 0.15 feet for
Category C flight phases and 2.0 feet for all other flight phases. Category C
flight phases are defined in reference [1] to be terminal flight phases, which
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to
body-fixed axis coordinates by multiplying by the direction cosine matrix
(DCM) input to the block. The block output is the mean wind speed in the
body-fixed axis.

uw W20

h
z0
-----⎝ ⎠
⎛ ⎞ln

20
z0
------⎝ ⎠
⎛ ⎞ln

------------------ 3ft h 1000ft< <,=

h z0

Wind Shear Model

4-445

Dialog Box

Units

Define the units of wind shear.

Flight phase
Select flight phase:

- Category C Terminal Flight Phases

- Other

Wind speed at 6 m (20 feet) altitude (m/s, f/s, or knots)
The measured wind speed at an altitude of 20 feet (6 m) above the ground.

Units Wind Altitude

Metric (MKS) Meters/second Meters

English (Velocity in ft/s) Feet/second Feet

English (Velocity in kts) Knots Feet

Wind Shear Model

4-446

Wind direction at 6 m (20 feet) altitude (degrees clockwise from north)
The direction of the wind at an altitude of 20 feet (6 m), measured in
degrees clockwise from the direction of the Earth x-axis (north). The wind
direction is defined as the direction from which the wind is coming.

Inputs and
Outputs

The first input is the altitude in units selected.

The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame,
in the selected units.

Examples See the Airframe subsystem in the aeroblk_HL20 model for an example of this
block.

References U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Discrete Wind Gust Model

Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Von Karman Wind Turbulence Model (Continuous)

World Magnetic Model 2000

4-447

4World Magnetic Model 2000Purpose Calculate the Earth’s magnetic field at a specific location and time using the
World Magnetic Model 2000 (WMM2000)

Library Environment/Gravity

Description The WMM2000 block implements the mathematical representation of the
National Geospatial Intelligence Agency (NGA) World Magnetic Model 2000.
The WMM2000 block calculates the Earth’s magnetic field vector, horizontal
intensity, declination, inclination, and total intensity at a specified location
and time.

Dialog Box

World Magnetic Model 2000

4-448

Units
Specifies the input and output units:

Input decimal year
When selected, the decimal year is an input for the World Magnetic Model
2000 block. Otherwise, a date must be specified using the dialog
parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and the
magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal plane and
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

Units Height Magnetic Field Horizontal Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss

World Magnetic Model 2000

4-449

Inputs and
Outputs

The first input is the height, in selected units.

The second input is the latitude in degrees.

The third input is the longitude in degrees.

The fourth optional input is the desired year in a decimal format to include any
fraction of the year that has already passed. The value is the current year plus
the number of days that have passed in this year divided by 365.

The following code illustrates how to calculate the decimal year, 'dyear', for
March 21, 2005:

%%%BEGIN CODE%%%
year = '2005';
year_selected = str2num(year);
month = 'March';
day = '21';

if (mod(year_selected,400)&&~mod(year_selected,100))
% leapyear = false;
ndays = 365;
elseif ~mod(year_selected,4)
% leapyear = true;
ndays = 366;
else
% leapyear = false;
ndays = 365;
end

day_of_year = datenum([day '-' month '-'
year])-datenum(['1-january-' year]);
dyear = year_selected + day_of_year/ndays;
%%%END CODE%%%

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.

The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.

World Magnetic Model 2000

4-450

Limitations The WMM2000 specification produces data that is reliable five years after the
epoch of the model, which is January 1, 2000.

The internal calculation of decimal year does not take into account local time
or leap seconds.

The WMM2000 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth's core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the mantle
and crust), are not included. Also, the substantial fluctuations of the
geomagnetic field, which occur constantly during magnetic storms and almost
constantly in the disturbance field (auroral zones), are not included.

References Macmillian, S. and J. M. Quinn, 2000. “The Derivation of the World Magnetic
Model 2000,” British Geological Survey Technical Report WM/00/17R.

http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml

See Also World Magnetic Model 2005

World Magnetic Model 2005

4-451

4World Magnetic Model 2005Purpose Calculate the Earth’s magnetic field at a specific location and time using the
World Magnetic Model 2005 (WMM2005)

Library Environment/Gravity

Description The WMM2005 block implements the mathematical representation of the
National Geospatial Intelligence Agency (NGA) World Magnetic Model 2005.
The WMM2005 block calculates the Earth’s magnetic field vector, horizontal
intensity, declination, inclination, and total intensity at a specified location
and time.

Dialog Box

World Magnetic Model 2005

4-452

Units
Specifies the input and output units:

Input decimal year
When selected, the decimal year is an input for the World Magnetic Model
2005 block. Otherwise, a date must be specified using the dialog
parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and the
magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal plane and
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

Units Height Magnetic Field Horizontal Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss

World Magnetic Model 2005

4-453

Inputs and
Outputs

The first input is the height, in selected units.

The second input is the latitude in degrees.

The third input is the longitude in degrees.

The fourth optional input is the desired year in a decimal format to include any
fraction of the year that has already passed. The value is the current year plus
the number of days that have passed in this year divided by 365.

The following code illustrates how to calculate the decimal year, 'dyear', for
March 21, 2005:

%%%BEGIN CODE%%%
year = '2005';
year_selected = str2num(year);
month = 'March';
day = '21';

if (mod(year_selected,400)&&~mod(year_selected,100))
% leapyear = false;
ndays = 365;
elseif ~mod(year_selected,4)
% leapyear = true;
ndays = 366;
else
% leapyear = false;
ndays = 365;
end

day_of_year = datenum([day '-' month '-'
year])-datenum(['1-january-' year]);
dyear = year_selected + day_of_year/ndays;
%%%END CODE%%%

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.

The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.

World Magnetic Model 2005

4-454

Limitations The WMM2005 specification produces data that is reliable five years after the
epoch of the model, which is January 1, 2005.

The internal calculation of decimal year does not take into account local time
or leap seconds.

The WMM2005 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth's core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the mantle
and crust), are not included. Also, the substantial fluctuations of the
geomagnetic field, which occur constantly during magnetic storms and almost
constantly in the disturbance field (auroral zones), are not included.

References http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml

See Also World Magnetic Model 2000

A
Aerospace Units

The main blocks of the Aerospace Blockset support standard measurement
systems. The Unit Conversion blocks support all units listed in this table.

Quantity Metric (MKS) English

Acceleration meters/second2 (m/s2),
kilometers/second2 (km/s2),
(kilometers/hour)/second
(km/h-s), g-unit (g's)

inches/second2 (in/s2),
feet/second2 (ft/s2),
(miles/hour)/second
(mph/s), g-unit (g's)

Angle radian (rad), degree (deg),
revolution

radian (rad), degree (deg),
revolution

Angular
acceleration

radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute (rpm),
revolutions/second (rps)

radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute (rpm),
revolutions/second (rps)

Angular
velocity

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

Density kilogram/meter3 (kg/m3) pound mass/foot3
(lbm/ft3), slug/foot3
(slug/ft3), pound
mass/inch3 (lbm/in3)

Force newton (N) pound (lb)

Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)

Length meter (m) inch (in), foot (ft), mile
(mi), nautical mile (nm)

Mass kilogram (kg) slug (slug), pound mass
(lbm)

A Aerospace Units

A-2

Pressure Pascal (Pa) pound/inch2 (psi),
pound/foot2 (psf),
atmosphere (atm)

Temperature kelvin (oK), Celsius (oC) degrees Fahrenheit (oF),
degrees Rankine (oR)

Torque newton-meter (N-m) pound-feet (lb-ft)

Velocity meters/second (m/s),
kilometers/second (km/s),
kilometers/hour (km/h)

inches/second (in/sec),
feet/second (ft/sec),
feet/minute (ft/min),
miles/hour (mph), knots

Quantity Metric (MKS) English

Index-1

Index

A
AC3D coordinates 2-28
Acceleration Conversion block 4-112
Actuators library 2-5
Adjoint of 3x3 Matrix block 4-114
Aerodynamic Forces and Moments block 4-116
Aerodynamics library 2-6
airspeed correction 3-2
Angle Conversion block 4-118
Angular Acceleration Conversion block 4-120
Angular Velocity Conversion block 4-122
Animation library 2-6

Animation Support Utilities sublibrary 2-6
Flight Simulator Interfaces sublibrary 2-6
MATLAB-Based Animation sublibrary 2-6

B
Besselian Epoch to Julian Epoch block 4-124
body coordinates 2-22

C
Calculate Range block 4-126
COESA Atmosphere Model block 4-127
coordinate systems

display 2-26
modeling 2-21
navigation 2-23
overview 2-20

Create 3x3 Matrix block 4-130
creating an aerospace model

basic steps 2-9
Custom Variable Mass 3DoF (Body Axes) block

4-132
Custom Variable Mass 3DoF (Wind Axes) block

4-137

Custom Variable Mass 6DoF (Euler Angles) block
4-142

Custom Variable Mass 6DoF (Quaternion) block
4-148

Custom Variable Mass 6DoF ECEF (Quaternion)
block 4-153

Custom Variable Mass 6DoF Wind (Quaternion)
block 4-161

Custom Variable Mass 6DoF Wind (Wind Angles)
block 4-167

D
demo models

running 1-16
Density Conversion block 4-173
Determinant of 3x3 Matrix block 4-175
Direction Cosine Matrix Body to Wind block

4-176
Direction Cosine Matrix Body to Wind to Alpha

and Beta block 4-178
Direction Cosine Matrix ECEF to NED block

4-180
Direction Cosine Matrix ECEF to NED to Latitude

and Longitude block 4-183
Direction Cosine Matrix to Euler Angles block

4-186
Direction Cosine Matrix to Quaternions block

4-188
Direction Cosine Matrix to Wind Angles block

4-190
Discrete Wind Gust Model block 4-192
Dryden Wind Turbulence Model (Continuous)

block 4-196
Dryden Wind Turbulence Model (Discrete) block

4-209

Index

Index-2

Dynamic Pressure block 4-221

E
ECEF coordinates 2-26
ECEF Position to LLA block 4-222
ECI coordinates 2-25
Environment library 2-6

Atmosphere sublibrary 2-6
Gravity sublibrary 2-6
Wind sublibrary 2-6

Equations of Motion library 2-7
3DoF sublibrary 2-7
6DoF sublibrary 2-7
Point Mass sublibrary 2-7

Estimate Center of Gravity block 4-227
Estimate Inertia Tensor block 4-229
Euler Angles to Direction Cosine Matrix block

4-231
Euler Angles to Quaternions block 4-233

F
Flat Earth to LLA block 4-235
Flight Parameters library 2-7
FlightGear

aircraft models 2-34
example 2-48
flight simulator overview 2-29
installing 2-33
obtaining 2-29
running 2-39

FlightGear coordinates 2-27
FlightGear Preconfigured 6DoF Animation block

4-240
Force Conversion block 4-243
4th Order Point Mass (Longitudinal) block 4-66

4th Order Point Mass Forces (Longitudinal) block
4-69

G
Gain Scheduled Lead-Lag block 4-245
Generate Run Script block 4-246
Geocentric to Geodetic Latitude block 4-249
Geodetic to Geocentric Latitude block 4-255
GNC Library

Control sublibrary 2-7
Guidance sublibrary 2-7
Navigation sublibrary 2-7

H
Horizontal Wind Model block 4-258

I
Ideal Airspeed Correction block 4-260
Incidence & Airspeed block 4-263
Incidence, Sideslip & Airspeed block 4-264
Interpolate Matrix(x) block 4-265
Interpolate Matrix(x,y) block 4-267
Interpolate Matrix(x,y,z) block 4-269
Invert 3x3 Matrix block 4-272
ISA Atmosphere Model block 4-273

J
Julian Epoch to Besselian Epoch block 4-274

L
Lapse Rate Model block 4-276
latitude 2-24
Length Conversion block 4-280

Index

Index-3

lifting body (HL-20) 3-19
LLA to ECEF Position block 4-282

M
Mach Number block 4-286
Mass Conversion block 4-287
Mass Properties library 2-7
MATLAB

opening demos
using the command line 1-16
using the Start button 1-16

M-files
running simulations from 2-19

missile guidance system 3-33
Moments about CG due to Forces block 4-289

N
NED coordinates 2-25
Non-Standard Day 210C block 4-290
Non-Standard Day 310 block 4-294

O
Controllers

1D Controller [A(v),B(v),C(v),D(v)] block 4-12
1D Controller [A(v),B(v),C(v),D(v)] block 4-12
1D Controller Blend u=(1-L).K1.y+L.K2.y block

4-15
1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

4-18
1D Self-Conditioned [A(v),B(v),C(v),D(v)] block

4-21

P
Pack net_fdm Packet for FlightGear block 4-298
parameters

tuning 2-18
Pilot Joystick block 4-311
Pressure Altitude block 4-314
Pressure Conversion block 4-316
Propulsion library 2-8

Q
Quaternion Conjugate block 4-318
Quaternion Division block 4-319
Quaternion Inverse block 4-321
Quaternion Modulus block 4-322
Quaternion Multiplication block 4-323
Quaternion Norm block 4-325
Quaternion Normalize block 4-326
Quaternion Rotation block 4-327
Quaternions to Direction Cosine Matrix block

4-329
Quaternions to Euler Angles block 4-331

R
Radius at Geocentric Latitude block 4-333
Relative Ratio block 4-336

S
Second Order Linear Actuator block 4-338
Second Order Nonlinear Actuator block 4-339
Self-Conditioned [A,B,C,D] block 4-341
Send net_fdm Packet to FlightGear block 4-345
Simple Variable Mass 3DoF (Body Axes) block

4-347

Index

Index-4

Simple Variable Mass 3DoF (Wind Axes) block
4-353

Simple Variable Mass 6DoF (Euler Angles) block
4-359

Simple Variable Mass 6DoF (Quaternion) block
4-366

Simple Variable Mass 6DoF ECEF (Quaternion)
block 4-372

Simple Variable Mass 6DoF Wind (Quaternion)
block 4-382

Simple Variable Mass 6DoF Wind (Wind Angles)
block 4-389

Simulation Pace block 4-395
simulations

running from M-file 2-19
Simulink

block libraries 2-2
modifying models 1-12
opening demos

using the Help browser 1-16
opening the Aerospace Blockset 2-2
running demos 1-8
using the Simulink Library Browser in

Microsoft Windows 2-2
using the Simulink Library window in UNIX

2-5
SinCos block 4-397
6DoF (Euler Angles) block 4-74
6DoF (Quaternion) block 4-80
6DoF Animation block 4-71
6DoF ECEF (Quaternion) block 4-85
6DoF Wind (Quaternion) block 4-93
6DoF Wind (Wind Angles) block 4-100
6th Order Point Mass (Coordinated Flight) block

4-106
6th Order Point Mass Forces (Coordinated

Flight) block 4-110

Symmetric Inertia Tensor block 4-398

T
Temperature Conversion block 4-399
Three-Axis Accelerometer block 4-401
Three-axis Gyroscope block 4-406
Three-Axis Inertial Measurement Unit block

4-410
3x3 Cross Product block 4-65
3D Controller [A(v),B(v),C(v),D(v)] block 4-40
3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

4-44
3D Self-Conditioned [A(v),B(v),C(v),D(v)] block

4-48
3DoF (Body Axes) block 4-55
3DoF (Wind Axes) block 4-60
3DoF Animation block 4-52
tuning parameters 2-18
Turbofan Engine System block 4-416
2D Controller [A(v),B(v),C(v),D(v)] block 4-25
2D Controller Blend block 4-28
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

4-32
2D Self-Conditioned [A(v),B(v),C(v),D(v)] block

4-36

U
Utilities library 2-8

Axes Transformation sublibrary 2-8
Math Operations sublibrary 2-8
Unit Conversions sublibrary 2-8

V
Velocity Conversion block 4-419

Index

Index-5

Virtual Reality Toolbox 1-3
Von Kármán Wind Turbulence Model

(Continuous) block 4-421

W
WGS84 Gravity Model block 4-436
Wind Angles to Direction Cosine Matrix block

4-440
Wind Angular Rates block 4-442
wind coordinates 2-23
Wind Shear Model block 4-444
World Magnetic Model 2000 block 4-447
World Magnetic Model 2005 block 4-451
Wright Flyer 3-9

Index

Index-6

	Getting Started
	What Is the Aerospace Blockset?
	Related Products
	Running a Demo Model
	What This Demo Illustrates
	Opening the Model
	Key Subsystems
	Running the Demo
	Modifying the Model

	Learning More
	Using the MATLAB Help System for Documentation and Demos
	Finding Aerospace Blockset Help

	Using the Aerospace Blockset
	Introducing the Aerospace Blockset Libraries
	Opening the Aerospace Blockset in Windows
	Opening the Aerospace Blockset on UNIX Platforms
	Summary of Aerospace Block Libraries

	Creating Aerospace Models
	Building a Simple Actuator System
	Building the Model
	Running the Simulation

	About Aerospace Coordinate Systems
	Fundamental Coordinate System Concepts
	Coordinate Systems for Modeling
	Coordinate Systems for Navigation
	Coordinate Systems for Display
	References

	Introducing the Flight Simulator Interface
	About the FlightGear Interface
	Obtaining FlightGear
	Configuring Your Computer for FlightGear
	Installing and Starting FlightGear

	Working with the Flight Simulator Interface
	About Aircraft Geometry Models
	Working with Aircraft Geometry Models
	Running FlightGear with Simulink
	Running the NASA HL-20 Demo with FlightGear

	Case Studies
	Ideal Airspeed Correction
	Airspeed Correction Models
	Measuring Airspeed
	Modeling Airspeed Correction
	Simulating Airspeed Correction

	1903 Wright Flyer
	Wright Flyer Model
	Airframe Subsystem
	Environment Subsystem
	Pilot Subsystem
	Running the Simulation
	References

	NASA HL-20 Lifting Body Airframe
	NASA HL-20 Lifting Body
	The HL-20 Airframe and Controller Model
	References

	Missile Guidance System
	Missile Guidance System Model
	Modeling Airframe Dynamics
	Modeling a Classical Three-Loop Autopilot
	Modeling the Homing Guidance Loop
	Simulating the Missile Guidance System
	Extending the Model
	References

	Block Reference
	Blocks — Categorical List
	Actuators Library
	Aerodynamics Library
	Animation Library
	Environment Library
	Flight Parameters Library
	Equations of Motion Library
	GNC Library
	Mass Properties Library
	Propulsion Library
	Utilities Library

	Blocks — Alphabetical List
	1D Controller [A(v),B(v),C(v),D(v)]
	1D Controller Blend u=(1-L).K1.y+L.K2.y
	1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	1D Self-Conditioned [A(v),B(v),C(v),D(v)]
	2D Controller [A(v),B(v),C(v),D(v)]
	2D Controller Blend
	2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	2D Self-Conditioned [A(v),B(v),C(v),D(v)]
	3D Controller [A(v),B(v),C(v),D(v)]
	3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	3D Self-Conditioned [A(v),B(v),C(v),D(v)]
	3DoF Animation
	3DoF (Body Axes)
	3DoF (Wind Axes)
	3x3 Cross Product
	4th Order Point Mass (Longitudinal)
	4th Order Point Mass Forces (Longitudinal)
	6DoF Animation
	6DoF (Euler Angles)
	6DoF (Quaternion)
	6DoF ECEF (Quaternion)
	6DoF Wind (Quaternion)
	6DoF Wind (Wind Angles)
	6th Order Point Mass (Coordinated Flight)
	6th Order Point Mass Forces (Coordinated Flight)
	Acceleration Conversion
	Adjoint of 3x3 Matrix
	Aerodynamic Forces and Moments
	Angle Conversion
	Angular Acceleration Conversion
	Angular Velocity Conversion
	Besselian Epoch to Julian Epoch
	Calculate Range
	COESA Atmosphere Model
	Create 3x3 Matrix
	Custom Variable Mass 3DoF (Body Axes)
	Custom Variable Mass 3DoF (Wind Axes)
	Custom Variable Mass 6DoF (Euler Angles)
	Custom Variable Mass 6DoF (Quaternion)
	Custom Variable Mass 6DoF ECEF (Quaternion)
	Custom Variable Mass 6DoF Wind (Quaternion)
	Custom Variable Mass 6DoF Wind (Wind Angles)
	Density Conversion
	Determinant of 3x3 Matrix
	Direction Cosine Matrix Body to Wind
	Direction Cosine Matrix Body to Wind to Alpha and Beta
	Direction Cosine Matrix ECEF to NED
	Direction Cosine Matrix ECEF to NED to Latitude and Longitude
	Direction Cosine Matrix to Euler Angles
	Direction Cosine Matrix to Quaternions
	Direction Cosine Matrix to Wind Angles
	Discrete Wind Gust Model
	Dryden Wind Turbulence Model (Continuous)
	Dryden Wind Turbulence Model (Discrete)
	Dynamic Pressure
	ECEF Position to LLA
	Estimate Center of Gravity
	Estimate Inertia Tensor
	Euler Angles to Direction Cosine Matrix
	Euler Angles to Quaternions
	Flat Earth to LLA
	FlightGear Preconfigured 6DoF Animation
	Force Conversion
	Gain Scheduled Lead-Lag
	Generate Run Script
	Geocentric to Geodetic Latitude
	Geodetic to Geocentric Latitude
	Horizontal Wind Model
	Ideal Airspeed Correction
	Incidence & Airspeed
	Incidence, Sideslip & Airspeed
	Interpolate Matrix(x)
	Interpolate Matrix(x,y)
	Interpolate Matrix(x,y,z)
	Invert 3x3 Matrix
	ISA Atmosphere Model
	Julian Epoch to Besselian Epoch
	Lapse Rate Model
	Length Conversion
	LLA to ECEF Position
	Mach Number
	Mass Conversion
	Moments About CG Due to Forces
	Non-Standard Day 210C
	Non-Standard Day 310
	Pack net_fdm Packet for FlightGear
	Pilot Joystick
	Pressure Altitude
	Pressure Conversion
	Quaternion Conjugate
	Quaternion Division
	Quaternion Inverse
	Quaternion Modulus
	Quaternion Multiplication
	Quaternion Norm
	Quaternion Normalize
	Quaternion Rotation
	Quaternions to Direction Cosine Matrix
	Quaternions to Euler Angles
	Radius at Geocentric Latitude
	Relative Ratio
	Second Order Linear Actuator
	Second Order Nonlinear Actuator
	Self-Conditioned [A,B,C,D]
	Send net_fdm Packet to FlightGear
	Simple Variable Mass 3DoF (Body Axes)
	Simple Variable Mass 3DoF (Wind Axes)
	Simple Variable Mass 6DoF (Euler Angles)
	Simple Variable Mass 6DoF (Quaternion)
	Simple Variable Mass 6DoF ECEF (Quaternion)
	Simple Variable Mass 6DoF Wind (Quaternion)
	Simple Variable Mass 6DoF Wind (Wind Angles)
	Simulation Pace
	SinCos
	Symmetric Inertia Tensor
	Temperature Conversion
	Three-Axis Accelerometer
	Three-Axis Gyroscope
	Three-Axis Inertial Measurement Unit
	Turbofan Engine System
	Velocity Conversion
	Von Karman Wind Turbulence Model (Continuous)
	WGS84 Gravity Model
	Wind Angles to Direction Cosine Matrix
	Wind Angular Rates
	Wind Shear Model
	World Magnetic Model 2000
	World Magnetic Model 2005

	Aerospace Units
	Index

