Aerospace
Blockset

For Use with Simulink®

Modeling
Simulation

Implementation

User’s Guide --.‘\The MathWorks

Version 2

X LB

How to Contact The MathWorks:

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www .mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset User’s Guide
© COPYRIGHT 2002-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

July 2002

July 2003

June 2004
October 2004
March 2005
May 2005
September 2005
March 2006

Online only
Online only
Online only
Online only
Online only
Online only
First printing
Online only

New for Version 1.0 (Release 13)

Revised for Version 1.5 (Release 13SP1)
Revised for Version 1.6 (Release 14)
Revised for Version 1.6.1 (Release 14SP1)
Revised for Version 1.6.2 (Release 14SP2)
Revised for Version 2.0 (Release 14SP2+)
Revised for Version 2.0.1 (Release 14SP3)
Revised for Version 2.1 (Release 2006a)

Notice

THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR CERTIFIED BY
ANY GOVERNMENT AGENCY OR INDUSTRY REGULATORY ORGANIZATION OR
ANY OTHER THIRD PARTY. THE PROGRAMS SHOULD NOT BE RELIED ON AS
THE SOLE BASIS TO SOLVE A PROBLEM WHOSE INCORRECT SOLUTION
COULD RESULT IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE
NOT DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE FOR
USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR OTHER
INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF WHICH CAN
REASONABLY BE EXPECTED TO CAUSE DEATH OR PERSONAL INJURY OR
PROPERTY OR ENVIRONMENTAL DAMAGE. LICENSEE AGREES THAT PRIOR
TO USING, INCORPORATING OR DISTRIBUTING THE PROGRAMS IN ANY
PRODUCT, IT WILL THOROUGHLY TEST THE PRODUCT AND THE
FUNCTIONALITY OF THE PROGRAMS IN THAT PRODUCT AND BE SOLELY
RESPONSIBLE FOR ANY PROBLEMS OR FAILURES.

Contents

Getting Started
What Is the Aerospace Blockset? 1-2
Related Products 1-3
RunningaDemoModel 14
What This Demo Illustrates 14
Openingthe Model 14
Key Subsystems 1-6
RunningtheDemo 1-8
Modifying the Model 1-12
Learning More0t 1-16
Using the MATLAB Help System for Documentation
andDemos 1-16
Finding Aerospace Blockset Help 1-16

Using the Aerospace Blockset

2

Introducing the Aerospace Blockset Libraries 2-2
Opening the Aerospace Blockset in Windows 2-2
Opening the Aerospace Blockset on UNIX Platforms 2-5
Summary of Aerospace Block Libraries 2-5

Creating AerospaceModels 2-9

Building a Simple Actuator System 2-10
Building the Model 2-10
Running the Simulation 2-18

ii

About Aerospace Coordinate Systems 2-20

Fundamental Coordinate System Concepts 2-20
Coordinate Systems for Modeling 2-21
Coordinate Systems for Navigation 2-23
Coordinate Systems for Display 2-26
References i 2-28
Introducing the Flight Simulator Interface 2-29
About the FlightGear Interface 2-29
Obtaining FlightGear 2-29
Configuring Your Computer for FlightGear 2-30
Installing and Starting FlightGear 2-33
Working with the Flight Simulator Interface 2-34
About Aircraft Geometry Models 2-34
Working with Aircraft Geometry Models 2-37
Running FlightGear with Simulink 2-39
Running the NASA HL-20 Demo with FlightGear 2-48

Case Studies

3|

Ideal Airspeed Correction 3-2
Airspeed Correction Models 3-2
Measuring Airspeed e 3-3
Modeling Airspeed Correction 3-4
Simulating Airspeed Correction 3-7

1903 Wright Flyer 3-9
Wright Flyer Model 3-10
Airframe Subsystem 3-10
Environment Subsystem 3-14
Pilot Subsystem 3-15
Running the Simulation 3-16
References 3-17

Contents

NASA HL-20 Lifting Body Airframe 3-19

NASA HL-20 LiftingBody 3-19
The HL-20 Airframe and Controller Model 3-21
References 3-32
Missile Guidance System 3-33
Missile Guidance System Model 3-33
Modeling Airframe Dynamics 3-34
Modeling a Classical Three-Loop Autopilot 341
Modeling the Homing Guidance Loop 3-43
Simulating the Missile Guidance System 3-49
Extending the Model 3-51
Referencesot 3-52

Block Reference

4|

Blocks — Categorical List 4-2
Actuators Library 4-3
Aerodynamics Library 4-3
Animation Library 4-3
Environment Library 4-3
Flight Parameters Library 4-5
Equations of Motion Library 4-5
GNC Library e e 4-6
Mass Properties Library, 4-8
Propulsion Library, 4-8
Utilities Library, 4-8

iii

iv

Contents

Blocks — Alphabetical List

Aerospace Units

Al

Index

Getting Started

The Aerospace Blockset lets you model aerospace systems for use with Simulink® and MATLAB®.

What Is the Aerospace Blockset? (p. 1-2) Introduction to the Aerospace Blockset and the
Simulink environment

Related Products (p. 1-3) Products you might want to use with the Aerospace
Blockset and requirements for virtual reality
visualization

Running a Demo Model (p. 1-4) Learn how to run an aerospace model in Simulink,

examine the results, and modify the model settings
and parameters

Learning More (p. 1-16) Where to get online help

1 Geii ng Started

What Is the Aerospace Blockset?

The Aerospace Blockset brings the full power of Simulink to aerospace system
design, integration, and simulation by providing key aerospace subsystems
and components in the adaptable Simulink block format. From environmental
models to equations of motion, from gain scheduling to animation, the blockset
gives you the core components to assemble a broad range of large aerospace
system architectures rapidly and efficiently.

You can use the Aerospace Blockset and Simulink to develop your aerospace
system concepts and to efficiently revise and test your models throughout the
life cycle of your design. Use the Aerospace Blockset with Real-Time
Workshop® to automatically generate code for real-time execution in rapid
prototyping and for hardware-in-the-loop systems.

1-2

Related Products

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Aerospace Blockset. In particular, the
Aerospace Blockset requires current versions of these products:

e MATLAB

¢ Control System Toolbox

® Simulink
For more information about any of these products

¢ Consult the online documentation for that product

® Visit the MathWorks Web site, at www.mathworks.com; see the “Products”
section

Virtual Reality Visualization

The optional virtual reality visualization blocks in the Aerospace Blockset
require the Virtual Reality Toolbox. The Virtual Reality Toolbox includes a
default viewer compatible with all the platforms supported by MATLAB.

See the Virtual Reality Toolbox documentation for more information about
virtual reality viewers.

1-3

http://www.mathworks.com
http://www.mathworks.com/products/control/
http://www.mathworks.com/products/virtualreality/
http://www.mathworks.com/access/helpdesk/help/toolbox/vr/

1 Geii ng Started

Running a Demo Model

14

This section introduces a missile guidance model that uses blocks from the
Aerospace Blockset to simulate a three-degrees-of-freedom missile guidance
system, in conjunction with other Simulink blocks.

The model simulates a missile guidance system with a target acquisition and
interception subsystem. The model implements a nonlinear representation of
the rigid body dynamics of the missile airframe, including aerodynamic forces
and moments. The missile autopilot is based on the trimmed and linearized
missile airframe. The missile homing guidance system regulates missile
acceleration and measures the distance between the missile and its target.

For more information on this model, see Chapter 3, “Case Studies.”

What This Demo lllustrates

The missile guidance demo illustrates the following features of the blockset:

® Representing bodies and degrees of freedom with the Equations of Motion
library blocks

¢ Using the Aerospace Blockset with other Simulink blocks
¢ Using the Aerospace Blockset with Stateflow®

¢ Feeding in and feeding out Simulink signals to and from Aerospace Blockset
blocks with Actuator and Sensor blocks

® Encapsulating groups of blocks into subsystems

¢ Visualizing and animating an aircraft with the Animation library blocks

Note The Stateflow module in this demo is precompiled and does not require
Stateflow to be installed.

Opening the Model

Open the Demos browser, then locate and open the missile guidance demo. You
can also open it by entering the demo name, aeroblk guidance, at the
MATLAB command line. The model opens.

http://www.mathworks.com/products/stateflow/

Running a Demo Model

Elaeroblk_g M= B3
File Edit WYiew Simulation Format Tools Help
D eda| 2R (st r afn Nomal || HE RS Y REE®
Three Degrees of Freedom Cuided Missile
Cemanded ok angle during tamet s=ach Lxez‘
Sigma_d
Sigmadot [Sigradat Sigva_d e, .z,
Laliza-sd
Target v Vie [l v sz _d|—plaz_d e »
— Lok Angle
et & 30oF Animatin
ositon Wfissile = Tamget Fim || i Mss @
Sepamtion il
SeeberTmcker Guidance Arame
Auopilot
Miss Distance
Wizl Body Angular Rz
Wissik Auitude
Wis=ile Pastion
Double click here to go to a
dema on timming and linearizing
Copyright 19902005 The Mathitia ks, Inc. e
Ready |100% [|odeas v

A Stateflow chart for the guidance control processor also appears.

7 Guidance é{az,fkrgﬂt}

Taroet_Seanch
en: Mode=1;Sigma_o=0;incr=100;Acquire_time=t;
olu: Sigma_ckeSigma_d+0 01 *incr;

[ini Guidkance. Rackr_ Guidked)&&Rance=1000]
[Sioma_cl=2011Sioma,_cl=-230] ¥ incr=incr,

[Bcquire=]

[t-Acquire times 7] S Timecout]

enter{Guidance. Tarmget_Search)
|Abort
len: Detonate=1;

B

1-5

1 Geii ng Started

Key Subsystems

The model implements the missile environment, airframe, autopilot, and
homing guidance system in subsystems.

¢ The Airframe & Autopilot subsystem implements the ISA Atmosphere Model
block, the Incidence & Airspeed block, and the 3DoF (Body Axes) block, along
with other Simulink blocks.
The airframe model is a nonlinear representation of rigid body dynamics.
The aerodynamic forces and moments acting on the missile body are
generated from coefficients that are nonlinear functions of both incidence
and Mach number.

2] aeroblk_guidance/Airframe & Autopilot
File Edit View Simulaton Format Tools Help

DS tRB|E= 452 0] Nomal =]/ L

BT

(=)

P (Pa) ﬁl =

p flg/m’)
Atmosphere bodel
YeZe
Fro

Amituds

Anfude

b i)

Thrust

Fin

Apba

Aemdynanmiss &
Equations of hotian

Fin Desrard

Auopiat

Ready |100% | [|odeds 4

¢ The model implements the missile autopilot as a classical three-loop design
using measurements from an accelerometer located ahead of the missile’s
center of gravity and from a rate gyro to provide additional damping.

1-6

Running a Demo Model

E!aernbIk_guidance,a"l\irframe & Autopilot /Autopilot

File Edit View Simulation Format Tools Help

=10l x|

DEE& %R 2 r 5 |Nomd '”@Iﬁ”ﬁﬂ%?@

Ka
Corwomm
Alpha. Kl
K
e
[LEL Ka
Gain

Scheduled

Goeffisents

D, Antiindup
Az_m
5k Fin
Az Demand
(&
q_m
Ready

|100% [[lodeds

® The model implements the homing guidance system as two subsystems: the

Guidance subsystem and the Seeker/Tracker subsystem.

= The Guidance subsystem uses a Stateflow state chart to control the
tracker directly by sending demands to the seeker gimbals.

o .

& Guidance J {az_fix=021; k

Taroet_Search
en: Mode=1, Sigma_c=0, inc r=100; Acquire_time=t;
u: Sigma_d=Sigma_d+0 01 %ncr;

[Bigma_ci=2011Sigma_ck-20] £ inor=inor;
[Acquire=]

T
2 T [Acquire—1]
¥

Tanget_Lock
en:Mode=2;Acquine_time=t;

[FAcquire_time=02]

H i

E [Abort Radar_Guided

: en:Detonate=1; en:Mlode=3;

B Az _Tie=az _ckm, !

£ [-Acquire_times7] 4 Timeout

H 2 [Range-200]
H T
E Blind_Range
3 en: Ilocke=:,
s
.

1 Geii ng Started

= The Seeker/Tracker subsystem consists of Simulink blocks that control the
seeker gimbals to keep the seeker dish aligned with the target and provide
the guidance law with an estimate of the sight line rate.

E!aernhlk_guidance,s"SEEkEr,s"Tracker i - D|L|
File Edit View Simulation Format Tools Help

D‘ﬁné‘%ﬂ‘9Q|} = |Nomal '”@@mlﬁlﬁﬁ}®

ED; . | Lok #agle
Look Angle
foquire Flag - Aoquire

Look £ngle
Gimbal Angle [— | Gimbal Angle

(& Lkl Target
a Acquisition y
sightline Raz ({1)
(1} Sigma_d Sigmadot Closing ‘elocity |—{_ &)
Sigma_d
Vi
Tracker and Sightline Rate (2w
Estimator Fange Range
Am

Range and
Closing elocity Estimates

Ready [100% jodeds 7

Running the Demo

Running a demo lets you observe the model simulation in real time. After you
run the demo, you can examine the resulting data in plots, graphs, and other
visualization tools. To run the missile guidance model, follow these steps:

1 Ifit is not already open, open the aeroblk_guidance demo.

2 From the Simulation menu, select Start. In Windows, you can also click the
start button in the model window toolbar.

The simulation proceeds until the missile intercepts the target, which takes
approximately 3 seconds. Once the interception has occurred, four scope
figures open to display the following data:

1-8

Running a Demo Model

a A three-dimensional animation of the missile and target interception
course

-} Figure No. 1: Animation Figure

1 Geii ng Started

b Plots that measure flight parameters over time, including Mach number,
fin demand, acceleration, and degree of incidence

=loix

File Edit Wiew Insert Tools Web Desktop Window Help

Ded&S k2200 | OEHOCHN N Ak 0O

20

=
£ E
= =,
& 3
[@ {0
2 &
B =
=
s E 3
= :
@ :
4] 1 2 3
Time [Sec] Time [Sec]
a3 T T T &

=
[L
L) =l
E Y
2 5
E =

£

4] 1 2 3 4] 1 2 3
Time [Sec] Time [Sec]

1-10

Running a Demo Model

¢ A plot that measures gimbal versus true look angles

-0l

File Edit Wiew Insert Tools Web Desktop Window Help
D& hpeM | OEOOm

a0

— = True Look Angle
Girmbal Angle
Meode Changes

20

Gimbal & Look Angles [deg]
<

focy)

d A plot that measures missile and target trajectories

~i0i

File Edit Wiew Insert Tools Web Desktop Window Help

s NN A =] =l uleln

Missile and Target Trajectories

-2600

-2600

-2400

-2300

Z [m]

-2200

-2100

-2000

0 1000 2000 2000 4000 5000
*[m]

1-11

1 Geii ng Started

Modifying the Model

You can adjust the missile guidance model settings and examine the effects on
simulation performance. Here are two modifications that you can try. The first
modification adjusts the missile engine thrust (dynamic pressure). The second
modification changes the camera point of view for the interception animation.

Adjusting the Thrust

As in any Simulink model, you can adjust aerospace model parameters from
the MATLAB workspace. To demonstrate this, change the Thrust variable in
the model workspace and evaluate the results in the simulation.

1 Open the aeroblk guidance model.

2 In the MATLAB desktop, find the Thrust variable in the Workspace pane.

l-1a(x]
File Edit Wiew Graphics Web Desktop Window Help
J ': Eﬁ é | ’E | '|Stac:k:|Eiase 'l
IVaIue |Class |
287 26 double |
0.040877 double
288.16 double
<Txf struct= struct
oo~ iowe
<4758 double= double
0 double
[00.0625130.139... double
=d7xT double= double
0.000215 double =l
4

The Thrust variable is defined in the aeroblk_guid_dat.m file, which the
aeroblk _guidance model uses to populate parameter and variable values.
By default, the Thrust variable should be set to 10000.

3 Single-click the Thrust variable to select it. To edit the value, right-click the
Thrust variable and select Edit Value. Change the value to 5000.

Before you run the demo again, locate the Miss Distance block display in the
aeroblk_guidance model.

1-12

Running a Demo Model

5 aeroblk_guidance [_ O]
File Edit WYiew Simulation Format Tools Help
Dl 2R (e 4|2y = o Nomel ~||Hes B REE®
Three Degrees of Freedom Guided Missile
L Demanded look angle during tamget seamh Lx*z‘
Sigva_d
Sigadot [Sigradat Sigra_d HeZe .
Laliza-sd
Target v Ve [l e Az dl—plfzd Aminde >
— Look Angle
Tamet & 30oF Animatian
Fositan Wissike - Tamat Fin || Fm Miss al—
Sepamtion il
SeeberTrcker Guidance Airfrme
Autapint
Miss
ez Diaree Distance
Wissie Bady Angular Fate d |
W=k Aritude Isplay
sl Posfian
Double clidk here to goto a
demo on timming and linearizing
Gopyright 12302005 The Mathiorks, Inc. sifframe models
Ready [100% [[lodeds 4

Start the demo, and after it finishes, note the miss distance display again. The
miss distance should become greater than the original distance. You can
experiment with different values in the Thrust variable and assess the effects
on missile accuracy.

Changing the Animation Point of View

By default, the missile animation view is F1ly Alongside, which means the
view tracks with the missile’s flight path. You can easily change the animation
point of view by adjusting a parameter of the 3DoF Animation block:

1 Open the aeroblk_guidance model, and double-click the 3DoF Animation
block. The Block Parameters dialog box appears.

1-13

1 Geii ng Started

Block Parameters: 3DoF Animation |
r— 3DoF_Animation [mazk)] (link]

Create a 3-D animated view of a three-degrees-of-freedom craft and itz
target, where # and £ target position [T argetPog], % and £ craft position
[#eZe], and craft attitude are inputs.

Dizplay parameters are in the same units of length as the input parameters.

=
F

Ames limits [xmin smasx ymin ymax zmin zmas]:
|[D 5000 -2000 2000 -5050 -3050]

Time interval between updates:
Jooz

Size of craft displayed:
|18

Enter view: |[HE

Enter view

Position of camera [=c ye zc]:
J1200 200 50]

Wiew angle:
20

[¥ Enable animation

QK I Cancel | Help | Apply

2 Change the view to Cockpit.

3 Click the OK button.

Run the demo again, and watch the animation. Instead of moving alongside the
missile’s flight path, the animation point of view lies in the cockpit. Upon target
interception, the screen fills with blue, the target’s color.

1-14

Running a Demo Model

=101 x|

=} Figure 1: Animation Figure
File Edit View Insert Tools ‘“Web Deskbop Window Help Camera (Orbit, 23

Ded& K RAG® LI 0B 50

You can experiment with different views to watch the animation from different
perspectives.

1-15

1 Geii ng Started

Learning More

You can get help online in a number of ways to assist you while using the
Aerospace Blockset.

Using the MATLAB Help System for Documentation
and Demos

The MATLAB Help browser allows you to access the documentation and demo
models for all the MathWorks products that you have installed. The online help
includes an online index and search system.

Consult the Help for Using MATLAB section of the Using MATLAB
documentation for more about the MATLAB help system.

Opening Aerospace Demos

To open an Aerospace Blockset demo from the Help browser, open the Demos
library in the Help browser by clicking the Demos tab in the Help Navigator
pane on the left.

You can also open the Aerospace Blockset demos from the Start button of the
MATLAB desktop:

1 Click the Start button.
2 Select Blocksets, then Aerospace, and then Demos.

This opens the Help browser with Demos selected in the Help Navigator
pane.

Alternatively, you can open the Demos window by entering demos at the
MATLAB command line.

Finding Aerospace Blockset Help

This user’s guide also includes a reference chapter.

® “Aerospace Units” explains the unit systems used by the blockset.

1-16

Using the Aerospace

Blockset

Constructing a simple model with the Aerospace Blockset is easy to learn if you know how to create
Simulink models. If you are not familiar with Simulink, please see the Simulink documentation.

Introducing the Aerospace Blockset Libraries
(p. 2-2)

Creating Aerospace Models (p. 2-9)

Building a Simple Actuator System (p. 2-10)
About Aerospace Coordinate Systems (p. 2-20)
Introducing the Flight Simulator Interface

(p. 2-29)

Working with the Flight Simulator Interface
(p. 2-34)

Overview of the Aerospace Blockset libraries and
how to access them

Summary of the most important steps for building
models with the Aerospace Blockset

Tutorial to model and simulate a simple actuator
system

Overview of coordinate systems for representing
aircraft and spacecraft motion

Obtaining and installing the third-party
FlightGear flight simulator

Tutorial on the FlightGear interface, included with
the Aerospace Blockset

2 Using the Aerospace Blockset

Introducing the Aerospace Blockset Libraries

The Aerospace Blockset is organized into hierarchical libraries of closely
related blocks for use in Simulink. The following sections explain how to access
the libraries from MATLAB and summarize the blocks in each library.

® “Opening the Aerospace Blockset in Windows”

® “Opening the Aerospace Blockset on UNIX Platforms” on page 2-5

® “Summary of Aerospace Block Libraries” in Chapter 2

View the details for each block in Chapter 4, “Block Reference.”

Opening the Aerospace Blockset in Windows
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the E button in the MATLAB toolbar, or enter

simulink

at the command line.

Simulink Libraries

The libraries in the Simulink Library Browser contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset

On Windows platforms, the Simulink Library Browser opens when you start
Simulink. The left pane contains a list of all the blocksets that you currently
have installed.

Introducing the Aerospace Blockset Libraries

[simulink Library Browser

File Edit WYiew Help

=101 x|

DS =

Actuators: aeroliby AActuators

- Tl simulink:

E|§| Aerospace Blockset

----- y Actuators

----- | Aerodynamics

----- y Anirnation

[]---y Environment

[+ y Equations of Mation
----- 2] Flight Parameters
] GHC

----- y Mass Properties

----- 2+ Propulsion

- 2 Utilities

- i COMA Refersnce Blockset
- | Communications Blockset
----- W Control System Toolbox
----- W Data Acquisition Elacksst
- W Embedded Target for Infineon CleaE
- i Embedded Target for Matorola® HCL
- i Embedded Target for Matorola® MPC
El Embedded Target for QOSEK/VDRE

- i Embedded Target for TI C2000 DSP

- i Embedded Target for TI C5000 DSP
El Fuzzy Logic Toolbox

- W Gauges Blacksst

----- El Image Acquisition Blockset

----- B Instrument Control Blockset

----- W Link For MadsdSim

- g Maoded Predictive Control Toolbox

- | Meural Metwork Blockset

-l RF Blockset

----- B Real-Time Windows Targst

- W Real-Time Workshop

- W] Real-Time Workshop Embedded Code |
----- El Report Generatar

El Signal Processing Blockset

- g SimDriveline

El SimEvents

- g SimMechanics

El SimPowerSystems

- g Simulink Control Design -
7 | _’I_I

Ready

-
[[+

Fn W= B e W= B e WO = O P
[l L [[[]

T[]
[l

el
[+

el
[+

Fen I = e B = =]

el

[+]

[+]

[+]

[+]

=<

=]

s, B g

Aerodynamics
Animation
Environment
Equations of Mation
Flight Parameters
GHC

Mazz Properties
Propulzion

Utilities

2 Using the Aerospace Blockset

2-4

The first item in the list is Simulink itself, which is already expanded to show
the available Simulink libraries. Click the # symbol to the left of any blockset
name to expand the hierarchical list and display that blockset’s libraries within
the browser.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

Double-click any library in the window to display its contents. The following
figure shows the Aerospace Blockset library window.

IZlLibrary: aerolibvl - ol x|
File Edit Wiew Format Help

F
Ly S (ol ||
e e | | ek
Equations Actustons GG Envimnment

of otion

= & | el E»HAT =

Asmdynamics Mazs Flight Utilities Anirmation
Fmparies Pammatars
Info Aemspace Blockset 21 Demos

Copynight 10002005 The MathWorks, Inc.

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — By Category” on page 4-2.

See the Simulink documentation for a complete description of the Simulink
Library Browser.

Introducing the Aerospace Blockset Libraries

Opening the Aerospace Blockset on UNIX Platforms

On UNIX platforms, the Simulink Library window opens when you start
Simulink. To open the Aerospace Blockset, double-click the Aerospace

Blockset icon to open the Aerospace Blockset.

To open the Aerospace Blockset window from the MATLAB command line,

enter

aerolib

Double-click any library in the window to display its contents. The following
figure shows the Aerospace Blockset library window.

File Edit “iew Format Help

2

= Tt M~ —

- E:E H(s) YEle
Eqjuations Propulsion Actuators GMNC Enwironrment

aof Wotion
fto—e-m
TAS . B
-] +=
L ﬁ % g ;_:Im w_'D'{>:’
Agrodynamics Mazs Flight Litilities Apirnation
Properties Parameters

Infia

For a complete list of all the blocks in the Aerospace Blockset by library, see

Aerospace Blockset 2.1

Copyright 1330-2005 The Math'Works, Inc.

“Blocks — By Category” on page 4-2.

Summary of Aerospace Block Libraries
The blocks of the Aerospace Blockset are organized into these libraries.

Actuators Library

The Actuators library provides blocks for representing linear and nonlinear
actuators with saturation and rate limits.

Demos

2-5

2 Using the Aerospace Blockset

2-6

Aerodynamics Library

The Aerodynamics library provides the Aerodynamic Forces and Moments
block using the aerodynamic coefficients, dynamic pressure, center of gravity,
and center of pressure.

Animation Library

The Animation library provides the animation blocks for visualizing flight
paths and trajectories and for working with a flight simulator interface. The
Animation library contains the MATLAB-Based Animation, Flight Simulator
Interfaces, and Animation Support Utilities sublibraries.

MATLAB-Based Animation Sublibrary. The MATLAB-Based Animation sublibrary
provides the 3DoF Animation block and the 6DoF Animation block. Using the
animation blocks, you can visualize flight paths and trajectories.

Flight Simulator Interfaces Sublibrary. The Flight Simulator Interfaces sublibrary
provides the interface blocks to connect Aerospace Blockset to the third-party
FlightGear flight simulator.

Animation Support Utilities Sublibrary. The Animation Support Utilities sublibrary
provides additional blocks for running the FlightGear flight simulator. It
contains a joystick interface for Windows platform and a block that lets you set
the simulation pace.

Environment Library

The Environment library provides blocks that simulate aspects of an aircraft
and spacecraft environment, such as atmospheric conditions, gravity, magnetic
fields, and wind. The Environment library contains the Atmosphere, Gravity,
and Wind sublibraries.

Atmosphere Sublibrary. The Atmosphere sublibrary provides general
atmospheric models, such as ISA and COESA, and other blocks, including
nonstandard day simulations, lapse rate atmosphere, and pressure altitude.

Gravity Sublibrary. The Gravity sublibrary provides blocks that calculate the
gravity and magnetic fields for any point on the Earth.

Wind Sublibrary. The Wind sublibrary provides blocks for wind-related
simulations, including turbulence, gust, shear, and horizontal wind.

Introducing the Aerospace Blockset Libraries

Equations of Motion Library

The Equations of Motion library provides blocks for implementing the
equations of motion to determine body position, velocity, attitude, and related
values.The Equations of Motion library contains the 3DoF, 6DoF, and Point
Mass sublibraries.

3DoF Sublibrary. The 3DoF sublibrary provides blocks for implementing
three-degrees-of-freedom equations of motion in your simulations, including
custom variable mass models.

6DoF Sublibrary. The 6DoF sublibrary provides blocks for implementing
six-degrees-of-freedom equations of motion in your simulations, using Euler
angles and quaternion representations.

Point Mass Sublibrary. The Point Mass sublibrary provides blocks for
implementing point mass equations of motion in your simulations.

Flight Parameters Library

The Flight Parameters library provides blocks for various parameters,
including ideal airspeed correction, Mach number, and dynamic pressure.

GNC Library

The GNC library provides blocks for creating control and guidance systems,
including various controller models. The GNC library contains the Control,
Guidance, and Navigation sublibraries.

Control Sublibrary. The Control sublibrary provides blocks for simulating various
control types, such as one-dimensional, two-dimensional, and
three-dimensional models.

Guidance Sublibrary. The Guidance sublibrary provides the Calculate Range
block, which computes the range between two vehicles.

Navigation Sublibrary. The Navigation sublibrary provides blocks for three-axis
measurement of accelerations, angular rates, and inertias.

Mass Properties Library

The Mass Properties library provides blocks for simulating the center of
gravity and inertia tensors.

2-7

2 Using the Aerospace Blockset

2-8

Propulsion Library

The Propulsion library provides the Turbofan Engine System block, which
simulates an engine system and controller.

Utilities Library

The Utilities library contains miscellaneous blocks useful in building models.
The library contains the Axes Transformations, Math Operations, and Unit
Conversions sublibraries.

Axes Transformations Sublibrary. The Axes Transformations sublibrary provides
blocks for transforming axes of coordinate systems to different types, such as
Euler angles to quaternions and vice versa.

Math Operations Sublibrary. The Math Operations sublibrary provides blocks for
common mathematical and matrix operations, including sine and cosine
generation and various 3-by-3 matrix operations.

Unit Conversions Sublibrary. The Unit Conversions sublibrary provides blocks for
converting common measurement units from one system to another, such as
converting velocity from feet per second to meters per second and vice versa.

Creating Aerospace Models

Creating Aerospace Models

Regardless of the model’s complexity, you use the same essential steps for
creating an aerospace model as you would for creating any other Simulink
model. For general model-building rules, see the Simulink documentation.

1 Select and position the blocks. You must first select the blocks that you need
to build your model, and then position the blocks in the model window. For
the majority of Simulink models, you select one or more blocks from each of
the following categories:

a Source blocks generate or import signals into the model, such as a sine
wave, a clock, or limited-band white noise.

b Simulation blocks can consist of almost any type of block that performs
an action in the simulation. A simulation block represents a part of the
model functionality to be simulated, such as an actuator block, a
mathematical operation, a block from the Aerospace Blockset, and so on.

¢ Signal Routing blocks route signals from one point in a model to another.
If you need to combine or redirect two or more signals in your model, you
will probably use a Signal Routing block, such as Mux and Demux.

d Sink blocks display, write, or save model output. To see the results of the
simulation, you must use a Sink block.

2 Configure the blocks. Most blocks feature configuration options that let you
customize block functionality to specific simulation parameters. For
example, the ISA Atmosphere Model block provides configuration options
for setting the height of the troposphere, tropopause, and air density at sea
level.

3 Connect the blocks. To create signal pathways between blocks, you connect
the blocks to each other. You can do this manually by clicking and dragging,
or you can connect blocks automatically.

4 Encapsulate subsystems. Systems made with the Aerospace Blockset can
function as subsystems of larger, more complex models, like subsystems in
any Simulink model.

2-9

2 Using the Aerospace Blockset

Building a Simple Actuator System

In this tutorial, you drag, drop, and configure a some basic blocks to drive,
simulate, and measure an aerospace actuator. The tutorial guides you through
these aspects of model building:

¢ “Building the Model” on page 2-10

¢ “Running the Simulation” on page 2-18

By the end of the tutorial, you will have constructed a simple actuator model
that measures the actuator’s position in relation to a sine wave.

Building the Model

Simulink is a software environment for modeling, simulating, and analyzing
dynamic systems. Try building a simple model that drives an actuator with a
sine wave and displays the actuator’s position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of
building it, enter aeroblktutorial at the MATLAB command line.

=] aeroblktutorial * =] 3

File Edit WYiew Simulation Format Tools Help

% % l L [t Azetral |§|
Scope

Sine Wave Second Order Linear Actuator

¥

¥

Ready 100% odeds
4

The following sections explain how to build a model on Windows and UNIX
platforms:

® “Creating a Model on Windows Platforms” on page 2-11
® “Creating a Model on UNIX Platforms” on page 2-15

2-10

Building a Simple Actuator System

Creating a Model on Windows Platforms

1 Click the #i button in the MATLAB toolbar or enter simulink at the
MATLAB command line. The Simulink library browser appears.

File Edit View Help

i

D g

Used Blocks

Commonly Used Blocks: simulink/Commanly

-] Simulink

m Commonly Used Blocks
m Continuous

m Discontinuities

m Discrete

m Logic and Bit Cperations
m Lookup Tables

m Math Cperations

2| Model Verification

2| Model-wide Utiities
m Ports & Subsystems
m Signal Attributes

m Signal Routing

2] sinks

m Sources

| User-Defined Funcions
= m Additional Math & Discrete
ez E| Aerospace Blockset

BB/ COMA Reference Blockset
BB/ Communications Blockset
E| Control System Toolbox
E| Data Acquisition Blockset

-0
B

E| Fuzzy Logic Toolbox

E| Gauges Blockset

E| Image Acquisition Blockset

B Instrument Control Blockset

BB/ Link For ModelSim

BB/ Modsl Predictive Contral Toolbox
BB Heural Network Blocksst:

- B RF Blockset

E| Real-Time Windows Target

) E| Real-Time Workshop

B-E-E-E-0-0--E
E-E-E-E-E-E-E-E

H-E-E
B

-0

E| Report Generator
g

Ready

E| Embedded Target for Infineon C166E
E| Embedded Target for Motorola® HCL
E| Embedded Target for Motorola@ MPC
B Embedded Target for OSEK/VDE®
E| Embedded Target for TI C2000 DSP
E| Embedded Target for TI C6000 DSP

) E| Real-Time Workshop Embedded Code

il

Continuous

Discontinuities

Discrete

Logic and Bit Operations

Lookup Tables

Math Operations

Model Verification

Misc Modelwide Utilties

lnv.r é Parts & Subspstems
= Signal Attributes
|

E Signal Routing

=@ Sinks

Sources

UserDefined Functions

2t sdiditional Math & Discrete

A

2 Select New > Model from the File menu in the Library Browser. A new
model window appears on your screen.

2-11

2 Using the Aerospace Blockset

2-12

3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink
Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the 7] symbol next to Aerospace Blockset in the Library Browser
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator
library.

¢ Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink
Sinks library.

b Drag the Scope block from the Sinks library into the model window.
7 Resize the Mux block in the model.
a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

Building a Simple Actuator System

8 Connect the blocks.

Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

b

Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

Click OK.

2-13

2 Using the Aerospace Blockset

Block Parameters: Sine Wave x|

—Sine Wave

Output a sine wave:

0] = Amp*Sin[2 pi*Freq t+Phase] + Bias

Sine type determines the computational technique used. The parameters in the two
types are related through:

Samples per period = 2°pi / [Frequency * 5 ample time)
Mumber of offset zamples = Phase * Samples per period / [27pi]

Uze the zample-based sine type if numernical problems due to running for large times
[e.g. overflow in absolute time] ocour.

el

Sine type:

Time [t]: I Use simulation time LI
Amplitude:

Jh

Bias:

Jo

Frequency [rad/zec]:
Jio

Fhase [rad):

Jo

Sample time:

Jo

V' Interpret vector parameters as 1-D

Ok I Lancel | Help |

¢ Double-click the Second Order Linear Actuator block.

In this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

2-14

Building a Simple Actuator System

Block Parameters: Second Order Linear Ackw |

— Second Order Linear Actuator [mask)] [link]

Implement a second-order actuator model

P
Matural frequency:
150

[ramping ratio:
jo7

Initial position:
jo

QK I Cancel | Help | Apply |

Creating a Model on UNIX Platforms

The steps for creating a model in UNIX are similar to the steps in Windows.

1 Enter simulink at the MATLAB command line. The Simulink library
window appears.

File Edit Wiew

X BN N Y e

Sources Sinks Continuous Discrete Discontinuities Signal Signal
Routing Attributes

a8 2 T F
e O I O

Math Loggic: and Bit Lookup User- Defined Model Ports & Model-ide
Operations Operations Tables Functions Werification Subsystemns Hilities

Help |

Simulink Block Library 6.4
Demos Copyright {c) 1990-2008
The Mathorks, Ihc

Blocksets &
Toolboxes

commanly Adeltional hiath
used blocks & Dizcrete

2 Select New > Model from the File menu in the Simulink Library window. A
new model window appears on your screen.

3 Add a Sine Wave block to the model.

a Double-click Sources in the Simulink Library window to view the blocks
in the Simulink Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

2-15

2 Using the Aerospace Blockset

2-16

Add a Second Order Linear Actuator block to the model.

a Double-click Aerospace Blockset in the Simulink Library browser. This
opens the Aerospace Blockset block libraries.

b In the Aerospace Blockset block libraries, click Actuators to view the
blocks in the Actuator library.

¢ Drag the Second Order Linear Actuator block into the model window.

Add a Mux block to the model.

a Double-click Signal Routing in the Simulink Library to view the Signal
Routing blocks.

b Drag the Mux block from the Signal Routing library into the model
window.

Add a Scope block to the model.

a Double-click Sinks in the Simulink Library window to view the blocks in
the Simulink Sinks library.

b Drag the Scope block from the Sinks library into the model window.

Resize the Mux block in the model.
a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

¢ Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.

Building a Simple Actuator System

Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

In this example, configure the block to generate a 10 rad/sec sine wave by
entering 10 for the Frequency parameter. The sinusoid has the default
amplitude of 1 and phase of 0 specified by the Amplitude and Phase
offset parameters.

b Click OK.

2-17

2 Using the Aerospace Blockset

2-18

¢ Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

=/ Flock Paraneters: Second order Linear fotuater ||

—&econd Order Linear Actuator (mask) (link)

Implement a second-order actuator model

—Parameters
Matural frequency:
[150
Damping ratio:
0.7
Initial position:
o

OK_| Cancel | Help | Apply |

Running the Simulation

You can now run the model that you built to see how the system behaves in
time:

1 Double-click the Scope block if the Scope window is not already open on your
screen. The Scope window appears.

2 Select Start from the Simulation menu in the model window. The signal
containing the 10 rad/s sinusoid and the signal containing the actuator
position are plotted on the scope.

3 Adjust the Scope block’s display. While the simulation is running, right-click
the y-axis of the scope and select Autoscale. The vertical range of the scope
is adjusted to better fit the signal.

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open
its parameter dialog box. This causes the simulation to pause.

Building a Simple Actuator System

b You can then change the frequency of the sinusoid. Try entering 1 or
20 in the Frequency field. Close the Sine Wave dialog box to enter your
change and allow the simulation to continue. You can then observe the
changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s
dimensions or sample rate. However, there are some parameters, like the Sine
Wave Frequency parameter, that you can tune without stopping the
simulation.

Note Opening a dialog box for a source block causes the simulation to pause.
While the simulation is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow the simulation to
continue.

Running a Simulation from an M-File

You can also modify and run a Simulink simulation from a MATLAB M-file. By
doing this, you can automate the variation of model parameters to explore a
large number of simulation conditions rapidly and efficiently. For information
on how to do this, see the Simulink documentation.

2-19

2 Using the Aerospace Blockset

2-20

About Aerospace Coordinate Systems

Coordinate systems allow you to keep track of an aircraft or spacecraft’s
position and orientation in space. This section introduces important
terminology and the major coordinate systems used by the Aerospace Blockset.

¢ “Fundamental Coordinate System Concepts”

® “Coordinate Systems for Modeling” on page 2-21

® “Coordinate Systems for Navigation” on page 2-23
® “Coordinate Systems for Display” on page 2-26

The “References” on page 2-28 point you to further information.

Fundamental Coordinate System Concepts

The Aerospace Blockset coordinate systems are based on these underlying
concepts from geodesy, astronomy, and physics.

Definitions

The Aerospace Blockset uses right-handed (RH) Cartesian coordinate systems.
The right-hand rule establishes the x-y-z sequence of coordinate axes.

An inertial frame is a nonaccelerating motion reference frame. Loosely
speaking, acceleration is defined with respect to the distant cosmos. In an
inertial frame, Newton’s second law (force = mass X acceleration) holds.

Strictly defined, an inertial frame is a member of the set of all frames not
accelerating relative to one another. A noninertial frame is any frame
accelerating relative to an inertial frame. Its acceleration, in general, includes
both translational and rotational components, resulting in pseudoforces
(pseudogravity, as well as Coriolis and centrifugal forces).

The blockset models the Earth’s shape (the geoid) as an oblate spheroid, a
special type of ellipsoid with two longer axes equal (defining the equatorial
plane) and a third, slightly shorter (geopolar) axis of symmetry. The equator is
the intersection of the equatorial plane and the Earth’s surface. The geographic
poles are the intersection of the Earth’s surface and the geopolar axis. In
general, the Earth’s geopolar and rotation axes are not identical.

Latitudes parallel the equator. Longitudes parallel the geopolar axis. The zero
longitude or prime meridian passes through Greenwich, England.

About Aerospace Coordinate Systems

Approximations

The Aerospace Blockset makes three standard approximations in defining
coordinate systems relative to the Earth.

¢ The Earth’s surface or geoid is an oblate spheroid, defined by its longer
equatorial and shorter geopolar axes. In reality, the Earth is slightly
deformed with respect to the standard geoid.

¢ The Earth’s rotation axis and equatorial plane are perpendicular, so that the
rotation and geopolar axes are identical. In reality, these axes are slightly
misaligned, and the equatorial plane wobbles as the Earth rotates. This
effect is negligible in most applications.

¢ The only noninertial effect in Earth-fixed coordinates is due to the Earth’s
rotation about its axis. This is a rotating, geocentric system. The blockset
ignores the Earth’s motion around the Sun, the Sun’s motion in the Galaxy,
and the Galaxy’s motion through cosmos. In most applications, only the
Earth’s rotation matters.

This approximation must be changed for spacecraft sent into deep space, i.e.,
outside the Earth-Moon system, and a heliocentric system is preferred.

Motion with Respect to Other Planets

The Aerospace Blockset uses the standard WGS-84 geoid to model the Earth.
You can change the equatorial axis length, the flattening, and the rotation rate.

You can represent the motion of spacecraft with respect to any celestial body
that is well approximated by an oblate spheroid by changing the spheroid size,
flattening, and rotation rate. If the celestial body is rotating westward
(retrogradely), make the rotation rate negative.

Coordinate Systems for Modeling

Modeling aircraft and spacecraft is simplest if you use a coordinate system
fixed in the body itself. In the case of aircraft, the forward direction is modified
by the presence of wind, and the craft’s motion through the air is not the same
as its motion relative to the ground.

See the “Equations of Motion Library” on page 4-6 for further details on how
the Aerospace Blockset implements body and wind coordinates.

2-21

2 Using the Aerospace Blockset

2-22

Body Coordinates

The noninertial body coordinate system is fixed in both origin and orientation
to the moving craft. The craft is assumed to be rigid.

The orientation of the body coordinate axes is fixed in the shape of body.

® The x-axis points through the nose of the craft.

® The y-axis points to the right of the x-axis (facing in the pilot’s direction of
view), perpendicular to the x-axis.

® The z-axis points down through the bottom the craft, perpendicular to the x-y
plane and satisfying the RH rule.

Translational Degrees of Freedom. Translations are defined by moving along these
axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles P, @, R
or ¢, 0, y. They are

® P or ¢: Roll about the x-axis
® @ or 0: Pitch about the y-axis

® R or y: Yaw about the z-axis

About Aerospace Coordinate Systems

Wind Coordinates

The noninertial wind coordinate system has its origin fixed in the rigid aircraft.
The coordinate system orientation is defined relative to the craft’s velocity V.

The orientation of the wind coordinate axes is fixed by the velocity V.
® The x-axis points in the direction of V.

¢ The y-axis points to the right of the x-axis (facing in the direction of V),
perpendicular to the x-axis.

¢ The z-axis points perpendicular to the x-y plane in whatever way needed to
satisfy the RH rule with respect to the x- and y-axes.

Translational Degrees of Freedom. Translations are defined by moving along these
axes by distances x, y, and z from the origin.

Rotational Degrees of Freedom. Rotations are defined by the Euler angles ¢, v, x.
They are

* ¢: Bank angle about the x-axis
¢ v. Flight path about the y-axis
¢ v: Heading angle about the z-axis

Coordinate Systems for Navigation

Modeling aerospace trajectories requires positioning and orienting the aircraft
or spacecraft with respect to the rotating Earth. Navigation coordinates are
defined with respect to the center and surface of the Earth.

2-23

2 Using the Aerospace Blockset

2-24

Geocentric and Geodetic Latitudes

The geocentric latitude A on the Earth’s surface is defined by the angle
subtended by the radius vector from the Earth’s center to the surface point
with the equatorial plane.

The geodetic latitude | on the Earth’s surface is defined by the angle subtended
by the surface normal vector n and the equatorial plane.

n
-lp
Equatorial
plane*
Polar
axis *Oblateness exaggerated

About Aerospace Coordinate Systems

NED Coordinates

The north-east-down (NED) system is a noninertial system with its origin fixed
at the aircraft or spacecraft’s center of gravity. Its axes are oriented along the
geodetic directions defined by the Earth’s surface.

® The x-axis points north parallel to the geoid surface, in the polar direction.
¢ The y-axis points east parallel to the geoid surface, along a latitude curve.

¢ The z-axis points downward, toward the Earth’s surface, antiparallel to the
surface’s outward normal n.

Flying at a constant altitude means flying at a constant z above the Earth’s
surface.

Earth

ECI Coordinates

The Earth-centered inertial (ECI) system is a mixed inertial system. It is
oriented with respect to the Sun. Its origin is fixed at the center of the Earth.
¢ The z-axis points northward along the Earth’s rotation axis.

¢ The x-axis points outward in the Earth’s equatorial plane exactly at the Sun.
(This rule ignores the Sun’s oblique angle to the equator, which varies with
season. The actual Sun always remains in the x-z plane.)

¢ The y-axis points into the eastward quadrant, perpendicular to the x-z plane
so as to satisfy the RH rule.

2-25

2 Using the Aerospace Blockset

2-26

AN
zz ECl(x v z)
— — — ECEFx' vy Z)
Earth \ Q =2=/{1 day)

Prime \ E

meridian \
Zero longitude,
Zero latitude

w

S Sun

Earth-Centered Coordinates

ECEF Coordinates

The Earth-center, Earth-fixed (ECEF) system is a noninertial system that
rotates with the Earth. Its origin is fixed at the center of the Earth.

® The z-axis points northward along the Earth’s rotation axis.

¢ The x-axis points outward along the intersection of the Earth’s equatorial
plane and prime meridian.

¢ The y-axis points into the eastward quadrant, perpendicular to the x-z plane
so as to satisfy the RH rule.

Coordinate Systems for Display

Several display tools are available for use with the Aerospace Blockset. Each
has a specific coordinate system for rendering motion.

About Aerospace Coordinate Systems

MATLAB Graphics Coordinates

See the MATLAB Graphics documentation for more information about the
MATLAB Graphics coordinate axes.

MATLAB Graphics uses this default coordinate axis orientation:

® The x-axis points out of the screen.
® The y-axis points to the right.

® The z-axis points up.

FlightGear Coordinates

FlightGear is an open-source, third-party flight simulator with an interface

supported by Aerospace Blockset.

* “Working with the Flight Simulator Interface” on page 2-34 discusses the
blockset interface to FlightGear.

® See the FlightGear documentation at www.flightgear.org for complete
information about this flight simulator.

The FlightGear coordinates form a special body-fixed system, rotated from the
standard body coordinate system about the y-axis by —180 degrees:

® The x-axis is positive toward the back of the vehicle.

¢ The y-axis is positive toward the right of the vehicle.

® The z-axis is positive upward, e.g., wheels typically have the lowest z values.

2-27

http://www.flightgear.org/

2 Using the Aerospace Blockset

2-28

AC3D Coordinates

AC3D is a low-cost, widely used, geometry editor available from www.ac3d.org.
Its body-fixed coordinates are formed by inverting the three standard body
coordinate axes:

® The x-axis is positive toward the back of the vehicle.

¢ The y-axis is positive upward, e.g., wheels typically have the lowest y values.

¢ The z-axis is positive to the left of the vehicle.

References

Recommended Practice for Atmospheric and Space Flight Vehicle Coordinate
Systems, R-004-1992, ANSI/AIAA, February 1992.

Mapping Toolbox User’s Guide, The MathWorks, Inc., Natick, Massachusetts.
www.mathworks.com/access/helpdesk/help/toolbox/map/.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA,
Reston, Virginia, 2000.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, 2nd ed.,
Aircraft Control and Simulation, Wiley-Interscience, New York, 2003.

Thomson, W. T., Introduction to Space Dynamics, John Wiley & Sons, New
York, 1961/Dover Publications, Mineola, New York, 1986.

World Geodetic System 1984 (WGS 84), www.wgs84.com.

http://www.mathworks.com/access/helpdesk/help/toolbox/map/
http://www.wgs84.com/
http://www.ac3d.org

Introducing the Flight Simulafor Interface

Introducing the Flight Simulator Interface

The Aerospace Blockset supports an interface to the third-party FlightGear
flight simulator, an open source software package available through a GNU
General Public License (GPL).

® “About the FlightGear Interface”

¢ “Obtaining FlightGear”

® “Configuring Your Computer for FlightGear” on page 2-30
¢ “Installing and Starting FlightGear” on page 2-33

About the FlightGear Interface

The FlightGear flight simulator interface included with Aerospace Blockset is
a unidirectional transmission link from Simulink to FlightGear using
FlightGear’s published net_fdm binary data exchange protocol. Data is
transmitted via UDP network packets to a running instance of FlightGear.

FlightGear is a separate software entity neither created, owned, nor
maintained by The MathWorks.

¢ To report bugs or request enhancements to the Aerospace Blockset
FlightGear interface blocks, contact MathWorks Technical Support by
sending e-mail to support@mathworks.com or suggest@mathworks.com,
respectively.

® To report bugs or request enhancements to FlightGear itself, visit
www.flightgear.org and use the contact page.

Obtaining FlightGear

You can obtain FlightGear from www.flightgear.org in the download area or
by ordering CDs from FlightGear. The download area contains extensive
documentation for installation and configuration. Because FlightGear is an
open source project, source downloads are also available for customization and
porting to custom environments.

Aerospace Blockset supports the standard binary distributions of FlightGear
versions 0.9.3, 0.9.8a, and 0.9.9. If you would like to use other stable releases
with Aerospace Blockset, send e-mail to suggest@mathworks.com.

2-29

http://www.flightgear.org
http://www.flightgear.org

2 Using the Aerospace Blockset

2-30

Configuring Your Computer for FlightGear

You must have a high performance graphics card with stable drivers to use
FlightGear. For more information, see the FlightGear CD distribution or the
hardware requirements and documentation areas of the FlightGear Web site,
www.flightgear.org.

MathWorks tests of FlightGear’s performance and stability indicate significant
sensitivity to computer video cards, driver versions, and driver settings. You
need OpenGL support with hardware acceleration activated. The OpenGL
settings are particularly important. Without proper setup, performance can
drop from about a 30 frames-per-second (fps) update rate to less than 1 fps.

Graphics Recommendations for Windows
The MathWorks recommends the following for Windows users:

® Choose a graphics card with good OpenGL performance.

* Always use the latest tested and stable driver release for your video card.
Test the driver thoroughly on a few computers before deploying to others.

For Microsoft Windows 2000 or XP systems running on x86 (32-bit) or
AMD-64/EM64T chip architectures, the graphics card operates in the
unprotected kernel space known as Ring Zero. This means that glitches in
the driver can cause Windows to lock or crash. Before buying a large number
of computers for 3-D applications, test, with your vendor, one or two
computers to find a combination of hardware, operating system, drivers, and
settings that are stable for your applications.

Setting Up OpenGL Graphics on Windows

For complete information on OpenGL settings, go to the OpenGL Web site:
www.opengl.org/documentation/index.html.

Follow these steps to optimize your video card settings. Your driver’s panes
might look different.

1 Ensure that you have activated the OpenGL hardware acceleration on your
video card. On Windows, access this configuration through Start > Settings
> Control Panel > Display, which opens the following dialog box. Select the
Settings tab.

http://www.opengl.org/documentation/index.html
http://www.flightgear.org

Introducing the Flight Simulator Interface

Display Properties ﬂil

Background| SaeenSmrlAppemnce]Web EEffecte Sefttings |

Display:
(Multiple Monitors) on ATI MOBILITY RADEON 9000
-Screen area
Less)_ More
1280 by 1024 pixels
Troubleshoot.. | Advanced... |

| 0K I Cancel | Anply

2 Click the Advanced button in the lower right of the dialog box, which brings
up the graphics card’s custom configuration dialog box, and go to the
OpenGL tab. For an ATI Mobility Radeon 9000 video card, the OpenGL

pane looks like this:

2-31

2 Using the Aerospace Blockset

{Multiple Monitors) and ATI MOBILITY RADEON 9000 Properties 21x
ERl POWERPLAY{tm) | B OnScreen Display
General | Adapter | Monitor | T ing | Color M | £ Displeys | Z0 Color
gl OpencL | DirectsD | Opions | Overlay
Main Settings

|] QpenGL

<~ Parformance Optirnal Quality - :
o " Custom Setings

Custom Settings
Anisotropic Filering

J—
F Application Preference f a . '
Agti-aliasing
 Bartormer & Qu
W Application Preferance

J—

<-Pedomance | Quality ->
Teuture Preferenca: Pt

I
¢

Mipmap Detail Level: Per }

‘Wit for Vertical Sync: & Abways Off " Apphication Preference

Compatibility Setings. I Defaults |
Ok | Cancel | | |

3 For best performance, move the Main Settings slider near the top of the
dialog box to the Performance end of the slider.

4 If stability is a problem, try other screen resolutions, other color depths in
the Displays pane, and other OpenGL acceleration modes.

Many cards perform much better at 16 bits-per-pixel color depth (also known
as 65536 color mode, 16-bit color). For example, on an ATI Mobility Radeon
9000 running a given model, 30 fps are achieved in 16-bit color mode, while 2
fps are achieved in 32-bit color mode.

Setup on Linux, Macintosh, and Other Platforms

FlightGear distributions are available for Linux, Macintosh, and other UNIX
platforms from the FlightGear Web site, www.flightgear.org. Installation on
these platforms, like Windows, requires careful configuration of graphics cards

and drivers. Consult the documentation and hardware requirements sections
at the FlightGear Web site.

2-32

http://www.flightgear.org

Introducing the Flight Simulafor Interface

Using MATLAB Graphics Controls to Configure Your OpenGL Settings

You can also control your OpenGL rendering from the MATLAB command line
with the MATLAB Graphics opengl command. Consult the opengl command
reference for more information.

Installing and Starting FlightGear

The extensive FlightGear documentation guides you through the installation
in detail. Consult the documentation section of the FlightGear Web site for
complete installation instructions: www.flightgear.org.

Keep the following points in mind:

¢ Generous central processor speed, system and video RAM, and virtual
memory are essential for good flight simulator performance.

The MathWorks recommends a minimum of 512 megabytes of system RAM
and 128 megabytes of video RAM for reasonable performance.

® Be sure to have sufficient disk space for the FlightGear download and
installation.

¢ The MathWorks recommends configuring your computer’s graphics card
before you install FlightGear. See the preceding section, “Configuring Your
Computer for FlightGear” on page 2-30.

¢ Shutting down all running applications (including MATLAB) before
installing FlightGear is recommended.

® MathWorks tests indicate that the operational stability of FlightGear is
especially sensitive during startup. It is best to not move, resize, mouse over,
overlap, or cover up the FlightGear window until the initial simulation scene
appears after the startup splash screen fades out.

® The current releases of FlightGear are optimized for flight visualization at
altitudes below 100,000 feet. FlightGear does work well or at all with very
high altitude and orbital views.

2-33

http://www.flightgear.org

2 Using the Aerospace Blockset

2-34

Working with the Flight Simulator Interface

Use this section to learn how to use the FlightGear flight simulator and
Aerospace Blockset to visualize your Simulink aircraft models:

® “About Aircraft Geometry Models”

® “Working with Aircraft Geometry Models” on page 2-37

¢ “Running FlightGear with Simulink” on page 2-39

¢ “Running the NASA HL-20 Demo with FlightGear” on page 2-48

If you have not yet installed FlightGear, see “Introducing the Flight Simulator
Interface” on page 2-29.

sl L g

Simulink-Driven HL-20 Model in a Landing Flare at KSFC

About Aircraft Geometry Models

Before you can visualize your aircraft’s dynamics, you need to create or obtain
an aircraft model file compatible with FlightGear. This section explains how to
do this.

Working with the Flight Simulator Interface

Aircraft Geometry Editors and Formats
You have a competitive choice of over twelve 3-D geometry file formats
supported by FlightGear.

Currently, the most popular 3-D geometry file format is the AC3D format,
which has the suffix *.ac. AC3D is a low-cost geometry editor available from
www.ac3d.org. Another popular 3-D editor for aircraft models is Flight Sim
Design Studio, distributed by Abacus Publications at www.abacuspub.com.

Aircraft Model Structure and Requirements

Aircraft models live in the F1ightGearRoot/data/Aircraft/ directory and
subdirectories. A complete aircraft model must contain a directory linked
through the required aircraft master file named model-set.xml.

All other model elements are optional. This is a partial list of the optional
elements you can put in an aircraft data directory:

® Vehicle objects and their shapes and colors

® Vehicle objects’ surface bitmaps

® Variable geometry descriptions

® Cockpit instrument 3-D models

¢ Vehicle sounds to tie to events (e.g., engine, gear, wind noise)

¢ Flight dynamics model

¢ Simulator views

® Submodels (independently movable items) associated with the vehicle
Model behavior reverts to defaults when these elements are not used. For
example,

® Default sound: no vehicle-related sounds are emitted.

¢ Default instrument panel: no instruments are shown.

Models can contain some, all, or even none of the above elements. If you always

run FlightGear from the cockpit view, the aircraft geometry is often secondary
to the instrument geometries.

A how-to document for including optional elements is included in the
FlightGear documentation at:

http://www.flightgear.org/Docs/fgfs-model-howto.html

2-35

http://www.ac3d.org
http://www.abacuspub.com
http://www.flightgear.org/Docs/fgfs-model-howto.html

2 Using the Aerospace Blockset

2-36

Required Flight Dynamics Model Specification

The flight dynamics model (FDM) specification is a required element for an
aircraft model. To set Simulink as the source of the flight dynamics model data
stream for a given geometry model, you put this line in
data/Aircraft/model/model-set.xml:

<flight-model>network</flight-model>

Obtaining and Modifying Existing Aircraft Models

You can quickly build models from scratch by referencing instruments, sounds,

and other optional elements from existing FlightGear models. Such models

provide examples of geometry, dynamics, instruments, views, and sounds. It is

simple to copy an aircraft directory to a new name, rename the model-set.xml

file, modify it for network flight dynamics, and then run FlightGear with the
aircraft flag set to the name in model-set.xml.

Many existing 3-D aircraft geometry models are available for use with
FlightGear. Visit the download area of www.flightgear.org to see some of the
aircraft models available. Additional models can be obtained via Web search.
Search key words such as “flight gear aircraft model” are a good starting point.
Be sure to comply with copyrights when distributing these files.

Hardware Requirements for Aircraft Geometry Rendering

When creating your own geometry files, keep in mind that your graphics card
can efficiently render a limited number of surfaces. Some cards can efficiently
render fewer than 1000 surfaces with bitmaps and specular reflections at the
nominal rate of 30 frames per second. Other cards can easily render on the
order of 10,000 surfaces.

If your performance slows while using a particular geometry, gauge the effect
of geometric complexity on graphics performance by varying the number of
aircraft model surfaces. An easy way to check this is to replace the full aircraft
geometry file with a simple shape, such as a single triangle, then test
FlightGear with this simpler geometry. If a geometry file is too complex for
smooth display, use a 3-D geometry editor to simplify your model by reducing
the number of surfaces in the geometry.

http://www.flightgear.org/Docs/fgfs-model-howto.html
http://www.flightgear.org

Working with the Flight Simulator Interface

Working with Aircraft Geometry Models

Once you have obtained, modified, or created an aircraft data file, you need to
put it in the correct directory for FlightGear to see it.

Importing Aircraft Models into FlightGear
To install a compatible model into FlightGear:

1 Go to your installed FlightGear directory. Open the data directory, then the
Aircraft directory: /FlightGear/data/Aircraft/.

2 Make a subdirectory /model/ here for your aircraft data.
3 Put model-set.xml in that subdirectory, plus any other files needed.

It is common practice to make subdirectories for the vehicle geometry files
(/model/), instruments (/instruments/), and sounds (/sounds/).

Example: Animating Vehicle Geometries

This example illustrates how to prepare hinge line definitions for animated
elements such as vehicle control surfaces and landing gear. To enable
animation, each element must be a named entity in a geometry file. The
resulting code forms part of the HL20 lifting body model presented in “Running
the NASA HL-20 Demo with FlightGear” on page 2-48.

1 The standard body coordinates used in FlightGear geometry models form a
right-handed system, rotated from the standard body coordinate system in
Y by —180 degrees:

= X = positive toward the back of the vehicle
= Y = positive toward the right of the vehicle

= Z = positive is up, e.g., wheels typically have the lowest Z values.
See “About Aerospace Coordinate Systems” on page 2-20 for more details.

2 Find two points that lie on the desired named-object hinge line in body
coordinates and write them down as XYZ triplets or put them into a
MATLAB calculation like this:

a = [2.98, 1.89, 0.53];
b = [3.54, 2.75, 1.46];

2-37

2 Using the Aerospace Blockset

3 Calculate the difference between the points:
pdiff b - a
pdiff =
0.5600 0.8600 0.9300

4 The hinge point is either of the points in step 2 (or the midpoint as shown
here):

mid = a + pdiff/2
mid =
3.2600 2.3200 0.9950

5 Put the hinge point into the animation scope in model-set.xml:

<center>
<x-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>

</center>

6 Use the difference from step 3 to define the relative motion vector in the
animation axis:

<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>

</axis>

7 Put these steps together to obtain the complete hinge line animation used in
the HL20 demo model:

<animation>
<type>rotate</type>
<object-name>RightAileron</object-name>
<property>/surface-positions/right-aileron-pos-norm</property>
<factor>30</factor>
<offset-deg>0</offset-deg>
<center>
<X-m>3.26</x-m>
<y-m>2.32</y-m>
<z-m>1.00</z-m>

2-38

Working with the Flight Simulator Interface

</center>
<axis>
<x>0.56</x>
<y>0.86</y>
<z>0.93</z>
</axis>
</animation>

Running FlightGear with Simulink

To run a Simulink model of your aircraft and simultaneously animate it in
FlightGear with an aircraft data file model -set.xml, you need to configure the
aircraft data file and modify your Simulink model with some new blocks.

These are the main steps to connecting and using FlightGear with Simulink:
® “Setting the Flight Dynamics Model to Network in the Aircraft Data File” on

page 2-39 explains how to create the network connection you need.

® “Obtaining the Destination IP Address” on page 2-40 starts by determining
the IP address of the computer running FlightGear.

¢ “Adding and Connecting Interface Blocks” on page 2-40 shows how to add
and connect interface and pace blocks to your Simulink model.

¢ “Creating a FlightGear Run Script” on page 2-43 shows how to write a
FlightGear run script compatible with your Simulink model.

¢ “Starting FlightGear” on page 2-46 guides you through the final steps to
making Simulink work with FlightGear.

¢ “Improving Performance” on page 2-48 helps you speed your model up.

Setting the Flight Dynamics Model to Network in the Aircraft Data File
Be sure to

® Remove any pre-existing flight dynamics model (FDM) data from the aircraft
data file.

¢ Indicate in the aircraft data file that its FDM is streaming from the network
by adding this line:
<flight-model>network</flight-model>

2-39

2 Using the Aerospace Blockset

2-40

Obtaining the Destination IP Address

You need the destination IP address for your Simulink model to stream its
flight data to FlightGear.

¢ If you know your computer’s name, enter at the MATLAB command line:
java.net.InetAddress.getByName ('www.mathworks.com')

® Ifyou are running FlightGear and Simulink on the same computer, get your
computer’s name by entering at the MATLAB command line:

java.net.InetAddress.getLocalHost

e If you are working in Windows, get your computer’s IP address by entering
at the DOS prompt:

ipconfig /all

Examine the IP address entry in the resulting output. There is one entry per
Ethernet device.

Adding and Connecting Interface Blocks

The easiest way to connect your model to FlightGear with the Aerospace
Blockset is to use the FlightGear Preconfigured 6DoF Animation block:

SlLibrary: aerolibfitsims 10l =|

File Edit WYiew Format Help

Flight Sirmulatar Intefaces

longitude
*1 latitude
attitude . ugend Lt GEN
ECLE A i aket netiom pas
b8 phi P " o FightGear FG
theta, Rl
psi Send Hene e
FlightGaar " net_fdm Paclket Run Script
y A to FlightGear
azres f et
for FlightGear

Version Sdected: w0.9.5

Gopyright 10002005 The MathWarks, Inc.

FlightGear Preconfigured 6DoF Animation Block

Working with the Flight Simulator Interface

The FlightGear Preconfigured 6DoF Animation block is a subsystem
containing the Pack net_fdm Packet for FlightGear and Send net_fdm Packet

to FlightGear blocks:

SlLibrary: aerolibfitsims 10l =|

File Edit WYiew Format Help

abitude Send
net_fdrm pachet

to FlightGear

3
g
¥

L8y

Send
net_fdr Packet
Fack o FlightGie.

Geneme
Run Script

FlightGear
Freconfigured
BDoF Animation

Gopyright 10002005 The MathWarks, Inc.

Pack and Send net_fdm Packet to FlightGear Blocks

These transmit data to a FlightGear session. The blocks are separate for
maximum flexibility and compatibility.

¢ The Pack net_fdm Packet for FlightGear block formats a binary structure
compatible with FlightGear from model inputs. In its default configuration,
only the 6DoF ports are shown, but you can configure the full FlightGear
interface supporting more than 50 distinct signals from the block dialog box:

2-41

2 Using the Aerospace Blockset

luntitled *

File Edit WYiew Simulation Format Tools Help

=10l x|

D eEH&| &R

w_wind_body_sast
w_wind_body_dawn
A_X_pilt

AW _pikt
A_T_pilot
stall_waming
slip_deg

ekvator
elkvator_trirm_tab
left_flap

rght_flap packet
left_ailmn
right_aileron

rudder

nosz_wheel
speedbmbe
spoiers
nurm_engines
eng_state

fuel_quantity

num_wheelks

o

gear_pos

gear_steer

QEear_comprRssion
|

23l
CUr_time

wamp
wisibility

Pack
net_fdr Packet

for FlightGear
Version Sdected: w0.9.5

Fl1o0%

lodet

¢ The Send net_fdm Packet to FlightGear block transmits this packet via UDP
to the specified IP address and port where a FlightGear session awaits an
incoming datastream.

¢ The Simulation Pace block, available in the Animation Support Utilities
Sublibrary, slows down the simulation so that its aggregate run rate is 1
second of simulation time per second of clock time. You can also use it to
specify other ratios of simulation time to clock time.

2-42

Working with the Flight Simulator Interface

SLibrary: aerolibanimutils 10l =|
File Edit WYiew Format Help

Animation Suppart Utilities

moll
pitch Set
yaw Fane
thmottle

Simulation Pace
Filot Joystick 1 secizen

Gopyright 10002005 The MathWarks, Inc.

Creating a FlightGear Run Script

To start FlightGear with the desired initial conditions (location, date, time,
weather, operating modes), it is best to create a run script by using the
Generate Run Script block or the interface included in FlightGear.

If you make separate run scripts for each model you intend to link to
FlightGear and place them in separate directories, run the appropriate script
from MATLAB just before starting your Simulink model.

Using the Generate Run Script Block. The easiest way to create a run script is by
using the Generate Run Script block. Use the following procedure:

1 Open the Flight Simulator Interfaces Sublibrary of the Animation Library.
2 Create a new Simulink model or open an existing model.

3 Drag a Generate Run Script block into the Simulink diagram.

2-43

2 Using the Aerospace Blockset

2-44

4 Double-click the Generate Run Script block. Its dialog opens.

Z1Block Parameters: Generate Run x|

—Generate FlightGear Run Script

Generate a custom FlightGear run script file on the current platform.

To generate the run script, fill in the information then press Generate Script. |tems
marked with an asterizk [*] are evaluated az MATLAB expreszions, the rest of the fields
are literal tewt.

Output file name:

Irunfg.bat

FlightGear baze directory:
ID:\Applications\FIightGear
FlightGear geometry model name:
JHL20

Drestination port:

|5802

Airport D

JksFO

Fiurway [D:

JioL

Initial altitude [ft]*

|7224

Initial heading [deg])™

E]

Offset distance [miles]™
J472

Offset azimuth [deg]™

Jo

QK. | Cancel | Help | Apply |

5 In the Output file name field, type the name of the output file. This name
should be the name of the command, with the .bat extension, you want to
use to start FlightGear with these initial parameters.

For example, if your filename is runfg.bat, use the runfg command to
execute the run script and start FlightGear.

6 Inthe FlightGear base directory field, specify the name of your FlightGear
installation directory.

Working with the Flight Simulator Interface

7 In the FlightGear geometry model name field, specify the name of the
subdirectory, in the F1ightGear/data/Aircraft directory, containing the
desired model geometry.

8 Specify the initial conditions as needed.
9 Click the Generate Script button at the top of the Parameters area.

Aerospace Blockset generates the run script, and saves it in your MATLAB
working directory under the filename that you specified in the Output file
name field.

10 Repeat steps 5 through 9 to generate other run scripts, if needed.

11 Click OK to close the dialog box. You do not need to save the Generate Run
Script block with the Simulink model.

The Generate Run Script block saves the run script as a text file in your
working directory. This is an example of the contents of a run script file:

cd D:\Applications\FlightGear-0.9.8a
SET FG_ROOT=D:\Applications\FlightGear-0.9.8a\data

.\bin\win32\fgfs --aircraft=HL20

- -fdm=network,localhost,5501,5502,5503 --fog-fastest
--disable-clouds --start-date-1at=2004:06:01:09:00:00
--disable-sound --in-air --enable-freeze --airport-id=KSFO
--runway=10L --altitude=7224 --heading=113 --offset-distance=4.72
--offset-azimuth=0

Using the Interface Provided with FlightGear. The FlightGear launcher GUT (part of
FlightGear, not Aerospace Blockset) lets you build simple and advanced
options into a visible FlightGear run command:

2-45

2 Using the Aerospace Blockset

B FlightGear wizard

Display

Resolution ISUDKGUU Vl

[" Game mode (Fullscreen)

[Horizon effect [3D clouds (experimental)
[~ Enhanced runway lighting
™ Specular highlight

2-46

Features

¥ Time of day |noon VI

[" Random objects [~ Real weather fetch

[Al models [™ Auto-coordination
[~ Atlas [Multiplayer Callsign
Hostname : | o Hostname in:[_l out:[il

Dhapplications\FlightGear-0.9 8atbinWWina2ifgrs exe
-—fg—mot=D:\A8pI|cat|nns\F lightGear-0.9 8a\data
--fg-scenery=DApplications\FlightGear-0.9 Bavdata\Scenery, DAApplications\FlightGear-0.9 8a\scenery
-—-airport-id=KSFO
--runway=10L
--aircraft=c172p-2dpanel
--control=joystick
--disable-random-objects
--disable-specular-highlight
--disable-al-models
--in-air
--altitude=1000
--heading=117
-ve=150
--geometry=800x600
--timeofday=noon

¥ Show command line

Advanced... |

Prev |i Run il Quit |

Starting FlightGear

If your computer has enough computational power to run both Simulink and
FlightGear at the same time, a simple way to start FlightGear is to create a
MATLAB desktop button containing the following command to execute a run

script like the one created above:
dos('runfg &')

To create a desktop button:

1 From the Start button on your MATLAB desktop, click Shortcuts > New

Shortcut. The Shortcut Editor dialog opens.

2 Set the Label, Callback, Category, and Icon fields as shown in the
following figure.

Working with the Flight Simulator Interface

) Shortcut Editor =10l x|

Label: |FIightG ear
Calback

: dos('runfg &');

Category: |Too|harShortcuis []

loon: Iﬁ Sirmulink icon LJ J

Saves shortcut to Start button. Selecting "Toolbar Shortcuts® category also saves
to Shortcuts toolbar.

Save Cancel | Help |

3 Click Save.

The FlightGear toolbar button appears in your MATLAB desktop. If you
click it, the runfg.bat file runs in the current directory.

< MATLAB =[ol x|
Fle Edt Debug Desktop Window Help

[} ﬂv"| $ BB o Mi&\work\demo LI _l
Shortcuts <k clc ¥ HL-{ % FlightGear ‘

>>

4 Start|

OvR

Once you have completed the setup, start FlightGear and run your model:

1 Make sure your model is in a writable directory. Open the model, and update
the diagram. This step ensures that any referenced block code is compiled
and that the block diagram is compiled before running. Once you start
FlightGear, it uses all available processor power while it is running.

2 Click the FlightGear button or run the FlightGear run script manually.

2-47

2 Using the Aerospace Blockset

2-48

3 When FlightGear starts, it displays the initial view at the initial coordinates
specified in the run script. If you are running Simulink and FlightGear on
different computers, arrange to view the two displays at the same time.

4 Now begin the simulation and view the animation in FlightGear.

Improving Performance

If your Simulink model is complex and cannot run at the aggregate rate needed
for the visualization, you might need to

® Use the Simulink Accelerator to speed up your model execution.

® Free up processor power by running the Simulink model on one computer
and FlightGear on another computer. Use the Destination IP Address
parameter of the Send net_fdm Packet to FlightGear block to specify the
network address of the computer where FlightGear is running.

Running the NASA HL-20 Demo with FlightGear

Aerospace Blockset contains a demo model of the NASA HL-20 lifting body that
uses the FlightGear interface.

You need to have FlightGear installed and configured before attempting to
simulate this model. See “Introducing the Flight Simulator Interface” on
page 2-29.

To run this demo:

1 Copy the HL20 folder from matlabroot\toolbox\aeroblks\aerodemos\
directory to F1ightGear\data\Aircraft\ directory. This folder contains the
preconfigured geometries for the HL-20 simulation and HL20-set.xml. The
file matlabroot\toolbox\aeroblks\aerodemos\HL20\models\HL20.xml
defines the geometry.

For more about this step, see “Importing Aircraft Models into FlightGear”
on page 2-37.

2 Start MATLAB. Open the demo either by entering asbh120 in the MATLAB
Command Window or by finding the demo entry (NASA HL-20 with
FlightGear Interface) in the Demos browser and clicking Open this model
on its demo page. The model opens.

Working with the Flight Simulator Interface

1ol

File Edit Wiew Simulation Format Tools Help

O SE&E By s |ue - BEDeés REBC ®

See the dosumantation for instnuctions an setting up FlightSear.

Inztali tha HLED geametry mods| from toolboxzemblks/ae mdamos
 FlightGears datafa it mh diectony

To start FlightGiear, generte mn soript and run genersted batch

file by typing dosrunfa bat &7 in the WA TLAE command window.

» e
e _chita ey
Filat F&
it RUN
- Genermta Aun Seript
i Erm RFEw wFlightGear (it F3 i instalad)
RF Signals HL-20 demanstration madel,
— version 2.0.11
N ~Fartiat, o gsdhnr fierodynamic model fram
bt B] Jadeon E. B, Cruz €. L,
“Freliminany Subsonic #erodynamic
FEF—— Wodel for Simulation Studias of the
HL-20 Vehicle Systems Model NAS:"T'Z:Q';E‘Z"‘%S;:;'%QQZ
Gopyrght 1090-2005 The hathiors Inc
Ready 100% |odeds 4

3 Ifthis is your first time running FlightGear for this model, double-click the
Generate Run Script block to create a run script. Make sure to specify your
FlightGear installation directory in the FlightGear base directory field.
For more information, see “Creating a FlightGear Run Script” on page 2-43.

4 Execute the script you just created manually by entering the following at the
MATLAB Command Line:

dos('runfg &')

If you created a FlightGear desktop button, you can click it instead to start
the run script and start FlightGear. For more information, see “Starting
FlightGear” on page 2-46.

5 Now start the simulation and view the animation in FlightGear.

Tip With the FlightGear window in focus, press the V key to alternate
between the different aircraft views: cockpit view, helicopter view, chase view,
and so on.

2-49

2 Using the Aerospace Blockset

2-50

Case Studies

These case studies illustrate how to model realistic aerospace problems with Simulink and the
Aerospace Blockset.

Ideal Airspeed Correction (p. 3-2) Calculating indicated and true airspeed

1903 Wright Flyer (p. 3-9) Modeling the airframe, environment, and pilot of the first
aircraft, the Wright Flyer

NASA HL-20 Lifting Body Airframe Modeling the airframe of a NASA HL-20 lifting body, a
(p. 3-19) low-cost complement to the Space Shuttle orbiter

Missile Guidance System (p. 3-33) Designing and simulating a three-degrees-of-freedom
missile guidance system

3 Case Studies

Ideal Airspeed Correction

This case study simulates indicated and true airspeed. It constitutes a

fragment of a complete aerodynamics problem, including only measurement
and calibration.

The following sections demonstrate the details:

Airspeed Correction block is implemented.

Airspeed Correction Models

To view the airspeed correction models, enter the following at the MATLAB
command line:

aeroblk_indicated
aeroblk_calibrated

=] aeroblk_indicated

File Edit Wew Simulaton Format Tools Help

“Airspeed Correction Models” shows how to open the models.
“Measuring Airspeed” on page 3-3 describes the different types of airspeed.
“Modeling Airspeed Correction” on page 3-4 describes how the Ideal

“Simulating Airspeed Correction” on page 3-7 runs the model.

=Tk

DISEHE| s 2R 42|y afion Jim DBy REBE®

True Airspesd

T2

Indicated Airspeed From True Airspeed Calculation

Ahiude
500
Flap s=tting

40

= (las) = (las) CAS (lis)
P {psi}

Ideal Aispeed Comestion

h (it

TR Lb TAS ez}

F (psi)
GOESA
p (shig#t’)
GOESA Atrmosphere hodel

Flap samings:

0 degrees,
10 dearees, or
40 degres

Ready

Cakulate 14Z
Cessna 150 Commuter

See Alspeed Calibrtion Tablke

Gopynght 1990 £005 The Mathworks, Inc

100%

[FixedStepDiscrate

4

aeroblk_indicated Model

Ideal Airspeed Correction

[Zlaeroblk_calibrated _ ol

File Edit Wiew Simulation Format Tools Help

DedaE| fBiBecs 42| r sfon [um CJHaRed nEE®

True Airspeed from Indicated Airspeed Calculation

Indicated Airspeed
70 o 145
s satings | PRE NS cas | J—=
0 degrees, o >
" 10 | Fap
10 dearees, or
40 degres » . i
9 Afitude TR Gabulste GAS 545 las) i
a (hes)] (os) TAS (i)
h .
" e P & P =il
f ighg#r J—". Ideal Aispeed Comection Scope

COESA Atmospher bodal

Cessna 150 Commuter

See Aispeed Galbmtion Table
Gopynght 1990 2005 The MathWorks, Inc.

Ready 100% |FixedstepDiscrete 4

aeroblk_calibrated Model

Measuring Airspeed

To measure airspeed, most light aircraft designs implement pitot-static
airspeed indicators based on Bernoulli’s principle. Pitot-static airspeed
indicators measure airspeed by an expandable capsule that expands and
contracts with increasing and decreasing dynamic pressure. This is known as
calibrated airspeed (CAS) and is what a pilot sees in the cockpit of an aircraft.

To compensate for measurement errors, it helps to distinguish three types of
airspeed.

Airspeed Type Description See Also

Calibrated Indicated airspeed “Calibration Error” on
corrected for calibration page 3-4
error

Equivalent Calibrated airspeed “Compressibility Error”
corrected for on page 3-4

compressibility error

True Equivalent airspeed “Density Error” on
corrected for density error page 3-4

3-3

3 Case Studies

Calibration Error

An airspeed sensor features a static vent to maintain its internal pressure
equal to atmospheric pressure. Position and placement of the static vent with
respect to the angle of attack and velocity of the aircraft determines the
pressure inside the airspeed sensor and therefore the calibration error. Thus,
a calibration error is specific to an aircraft’s design.

An airspeed calibration table, which is usually included in the pilot operating
handbook or other aircraft documentation, helps pilots convert the indicated
airspeed to the calibrated airspeed.

Compressibility Error

The density of air is not constant, and the compressibility of air increases with
altitude and airspeed, or when contained in a restricted volume. A pitot-static
airspeed sensor contains a restricted volume of air. At high altitudes and high
airspeeds, calibrated airspeed is always higher than equivalent airspeed.
Equivalent airspeed can be derived by adjusting the calibrated airspeed for
compressibility error.

Density Error

At high altitudes, airspeed indicators read lower than true airspeed because
the air density is lower. True airspeed represents the compensation of
equivalent airspeed for the density error, the difference in air density at
altitude from the air density at sea level, in a standard atmosphere.

Modeling Airspeed Correction

The aeroblk_indicated and aeroblk_calibrated models show how to take
true airspeed and correct it to indicated airspeed for instrument display in a
Cessna 150M Commuter light aircraft. The aeroblk indicated model
implements a conversion to indicated airspeed. The aeroblk calibrated
model implements a conversion to true airspeed.

Each model consists of two main components:

® “COESA Atmosphere Model Block” on page 3-5 calculates the change in
atmospheric conditions with changing altitude.

¢ “Ideal Airspeed Correction Block” on page 3-5 transforms true airspeed to
calibrated airspeed and vice versa.

3-4

Ideal Airspeed Correction

COESA Atmosphere Model Block

The COESA Atmosphere Model block is a mathematical representation of the
U.S. 1976 COESA (Committee on Extension to the Standard Atmosphere)
standard lower atmospheric values for absolute temperature, pressure,
density, and speed of sound for input geopotential altitude. Below 32,000
meters (104,987 feet), the U.S. Standard Atmosphere is identical with the
Standard Atmosphere of the ICAO (International Civil Aviation Organization).

The aeroblk_indicated and aeroblk_calibrated models use the COESA
Atmosphere Model block to supply the speed of sound and air pressure inputs
for the Ideal Airspeed Correction block in each model.

Ideal Airspeed Correction Block

The Ideal Airspeed Correction block compensates for airspeed measurement
errors to convert airspeed from one type to another type. The following table
contains the Ideal Airspeed Correction block’s inputs and outputs.

Airspeed Input Airspeed Output

True Airspeed Equivalent airspeed
Calibrated airspeed

Equivalent Airspeed True airspeed
Calibrated airspeed

Calibrated Airspeed True airspeed

Equivalent airspeed

In the aeroblk_indicated model, the Ideal Airspeed Correction block
transforms true to calibrated airspeed. In the aeroblk_calibrated model, the
Ideal Airspeed Correction block transforms calibrated to true airspeed.

The following sections explain how the Ideal Airspeed Correction block
mathematically represents airspeed transformations:

® “True Airspeed Implementation” on page 3-6

e “Calibrated Airspeed Implementation” on page 3-6

¢ “Equivalent Airspeed Implementation” on page 3-6

3 Case Studies

True Airspeed Implementation. True airspeed (TAS) is implemented as an input
and as a function of equivalent airspeed (EAS), expressible as

TAS = EAS xa

where

o Speed of sound at altitude in m/s

) Relative pressure ratio at altitude

ap Speed of sound at mean sea level in m/s

Calibrated Airspeed Implementation. Calibrated airspeed (CAS), derived using the
compressible form of Bernoulli’s equation and assuming isentropic conditions,
can be expressed as

2YP, (v-1)/y
CAS = —[g .1 -1}
A/('Y— Dpg (PO)

where

Po Air density at mean sea level in kg/m3

P, Static pressure at mean sea level in N/m?
Ratio of specific heats

q Dynamic pressure at mean sea level in N/m?

Equivalent Airspeed Implementation. Equivalent airspeed (EAS) is the same as
CAS, except static pressure at sea level is replaced by static pressure at
altitude.

3-6

Ideal Airspeed Correction

EAS = «/(vflf))po[(l%

G-/
+ 1) _ 1]

The symbols are defined as follows:

Po Air density at mean sea level in kg/m?

P Static pressure at altitude in N/m?

Y Ratio of specific heats

q Dynamic pressure at mean sea level in N/m?

Simulating Airspeed Correction

In the aeroblk_indicated model, the aircraft is defined to be traveling at a
constant speed of 72 knots (true airspeed) and altitude of 500 feet. The flaps
are set to 40 degrees. The COESA Atmosphere Model block takes the altitude
as input and outputs the speed of sound and air pressure. Taking the speed of
sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction
block converts true airspeed to calibrated airspeed. Finally, the Calculate IAS
subsystem uses the flap setting and calibrated airspeed to calculate indicated

airspeed.

The model’s Display block shows both indicated and calibrated airspeeds.

ﬁaernhlk_inditated

File Edit WView Simulation Format Tools Help

10 x|

D SEHS| $BE|5 2 » = Nm o] i B | BT ®

True Aispesd

7z

Ahitude

500

Flap s=tting

2]

40

hifth

TR
& fas)

TAS (ks

= (k=]

coEsa P lbsi
P islugft)

GOESA Atmospher hiode|

b [

¥ 1T£

P_ipsi)

GAS (s

Ideal Aicpeed Gomection

Flap settings:

0 degrees,
10 deames, or
40 degres

Ready

Cessna 150M Commuter

See Airspeed Calibmtion Tablke

Cakulzte 145

[100%%

|FizedstepDiscrete &

In the aeroblk_calibrated model, the aircraft is defined to be traveling at a
constant speed of 70 knots (indicated airspeed) and altitude of 500 feet. The

3-7

3 Case Studies

flaps are set to 10 degrees. The COESA Atmosphere Model block takes the
altitude as input and outputs the speed of sound and air pressure. The
Calculate CAS subsystem uses the flap setting and indicated airspeed to
calculate the calibrated airspeed. Finally, using the speed of sound, air
pressure, and true calibrated airspeed as inputs, the Ideal Airspeed Correction
block converts calibrated airspeed back to true airspeed.

The model’s Display block shows both calibrated and true airspeeds.

=l aeroblk_calibrated =131 x|

File Edit View Simulation Format Toaols Help

D\D’“Hé\éﬂﬁ\@fﬂb = |Momal '”@@ﬁlﬂﬁ®

Indicated Airspeed
0 P 145
Flap attngs: | F3E==tna o4z I
0 degees, 10 w{Rap 5051
10 degmes, or
40 deqrees i
? Alitude T » . Gakulate GAS GAS () bisplay
= (ki) = fkts) TAS (kts)
500 o =R o Wl P, (Pl
2 ..
fislugitt) ldeal Airspeed Gomection Seope
COESA Atrosphers Wodel
Cessna 1500 Commuter
See Airspeed Calibmtion Tablke
Ready [100% |FixedstepDiscrete v

3-8

1903 Wright Flyer

1903 Wright Flyer

Note The final section of this study requires the Virtual Reality Toolbox.

This case study describes a model of the 1903 Wright Flyer. Built by Orville
and Wilbur Wright, the Wright Flyer took to the skies in December 1903 and
opened the age of controlled flight. The Wright brothers’ flying machine
achieved the following goals:

¢ Left the ground under its own power

® Moved forward and maintained its speed

¢ Landed at an elevation no lower than where it started

This model is based on an earlier simulation [1] that explored the longitudinal
stability of the Wright Flyer and therefore modeled only forward and vertical
motion along with the pitch angle. The Wright Flyer suffered from numerous
engineering challenges, including dynamic and static instability. Laterally, the
Flyer tended to overturn in crosswinds and gusts, and longitudinally, its pitch
angle would undulate [2].

Under these constraints, the model recreates the longitudinal flight dynamics
that pilots of the Wright Flyer would have experienced. Because they were able
to control lateral motion, Orville and Wilbur Wright were able to maintain a
relatively straight flight path.

The study consists of these sections:

® “Wright Flyer Model” on page 3-10 shows how to open the model used in this
case study.

® “Airframe Subsystem” on page 3-10 describes the airframe subsystem.

¢ “Environment Subsystem” on page 3-14 describes the environment
subsystem.

¢ “Pilot Subsystem” on page 3-15 describes the Pilot subsystem.

¢ “Running the Simulation” on page 3-16 provides a demonstration of the
Wright Flyer model, including a virtual world visualization.

http://www.mathworks.com/products/virtualreality/

3 Case Studies

3-10

Wright Flyer Model

Open the Wright Flyer model by entering aeroblk_wf 3dof at the MATLAB
command line.

= aerobllc_wf_3dof

| =1ix]
File Edit Wiew Simulation Format Tools Help

1903 Wright Flyer
based on
Hooven, FrederideJ., "Longitudinal
Dynamics of the Wiright Brothers’ Early Flyers
*# Study in Computer Simulation of Flight",
fram The Wiright Flyer An Engineering Ferspective
edited by Howard 5. ialko, 1987

I * H“ <Pmsmu'_mnh|
lphe_ax B

~vielceity_body -
~Amituder

Envimnmant
o Mg

Hevatr anger

Atitude flyer miation

1 tyeer. tation
fhertmnsktion —— fyer tansiation
Position elevator. Dtation -
por_pmp.miation [—— parpopeler Dt
THeerags, PERvatr starb_pop miation — ampmpeler mtaton
Gonwer 1o VR Sk
Ready [100% [od=4s v

Airframe Subsystem

The Airframe subsystem simulates the rigid body dynamics of the Wright Flyer
airframe, including elevator angle of attack, aerodynamic coefficients, forces
and moments, and three-degrees-of-freedom equations of motion.

1903 Wright Flyer

[SlLink: aeroblk_wf_3dof/Airframe * -0l x|
File Edit Wiew Simulation Formst Tools Help

DB &| LB || r = nm Y REBEs REET @

P 3lpha s
Bus
Touch Down?
J— Hevator angis
Angle of Ansck v
ey f VW-E n L
R leped- ™ e I o 8 (mct
mia F |, ot {rad)
- » | Coefts
» m}‘ iradis)
) ()
el F_LlF_ bty D
- £ = dea_fdt Bus
E > ¥
e ™ X, 7,1
. P [o {lb)
PE—— P
U e (ftis)
Forces 2nd Moments
o) A,)
a

3CoF (Bady Axes)

Ready [100% [[[odeds 4

The Airframe subsystem consists of the following parts:

¢ “Elevator Angle of Attack Subsystem” on page 3-11
® “Aerodynamic Coefficients Subsystem” on page 3-12
® “Forces and Moments Subsystem” on page 3-13

¢ “3DoF (Body Axes) Block” on page 3-13

Elevator Angle of Attack Subsystem

The Elevator Angle of Attack subsystem calculates the effective elevator angle
for the Wright Flyer airframe and feeds its output to the Pilot subsystem.

3-11

3 Case Studies

E!Link: aeroblk_wf_3dof/airframe/Elevator Angle of Attack
File Edit WYiew Simulation Format Tools Help
DSE&| BR[| r = Nom - BB S
(Eo—»p
E
2w B
W u
GO R e PN
f
a Gakulate Effective | PP He
Elevator Angle Frelock-Up
Index Seamh
Ready [1o02 [|odets v

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the aerodynamic coefficients, which are summed and
passed to the Forces and Moments subsystem. Stored in data sets, the
aerodynamic coefficients are determined by interpolation using PreLook-Up

blocks.
E!Link: aeroblk_wf_3dof/ Airframe;Aerodynamic Co - |EI|1|
File Edit WYiew Simulation Format Tools Help
DSE&| BR[| r = Nom - B B
o CA_wird
alpha_a om
[]em
- -
Wing Aemdynamics = '®
Coeffs
(O » -
= o * Fem e L]
= - _ P
e L IS0
e e o
E
Elevator
Asmdynamics
Ready [1o02 |odets v

3-12

1903 Wright Flyer

Forces and Moments Subsystem

The aerodynamic forces and moments acting on the airframe are generated
from aerodynamic coefficients. The Forces and Moments subsystem calculates
the body forces and body moments acting on the airframe about the center of
gravity. These forces and moments depend on the aerodynamic coefficients,
thrust, dynamic pressure, and reference airframe parameters.

[S)Link: aeroblk_wf_3dof/Airframe Forces and Moments * _ (o] %]
File Edit Wiew Simulation Format Tools Help
D& L2 2 b 0 Nom N EeRE | REE G ®

b (D)

Fores

Thrust

Gampute Mament

Gompute Body Fomes

Ready [100% [ode4s 4

3DoF (Body Axes) Block

The 3DoF (Body Axes) block use equations of motion to define the linear and
angular motion of the Wright Flyer airframe. It also performs conversions from
the original model’s axis system and the body axes.

3-13

3 Case Studies

3-14

~3DOF EoM [mask] [ink]
Integrate the three-degrees-ol-fresdom equations of mation to deterrine body
posiian, velocity. atfitude, and related values
Units: [English (velociy n /5] =l
Mass type: | Fived |
Inital velocily:
[47.28
Inita] body atttude:
|-l _alphaa-wi_incidencelpi/180
Inital incidence:
[f_alphaz"pi/180
Inita] body rotation rate:
Jwi_g
Inital position [2
Jloo1]
Inital mass:
[wl_weight/wi_gravity
Inettia;
[wf_inertia
Giravily source: | Exterrsl =l
0K | Cancel | Help | Apply. |

3DoF (Body Axes) Block Parameters

Environment Subsystem

The first and final flights of the Wright Flyer occurred on December 17, 1903.
Orville and Wilbur Wright chose an area near Kitty Hawk, North Carolina,
situated near the Atlantic coast. Wind gusts of more than 25 miles per hour
were recorded that day. After the final flight on that blustery December day, a
wind gust caught and overturned the Wright Flyer, damaging it beyond repair.

The Environment subsystem of the Wright Flyer model contains a variety of
blocks from the Environment sublibrary of the Aerospace Blockset, including
wind, atmosphere, and gravity, and calculates airspeed and dynamic pressure.
The Discrete Wind Gust Model block provides wind gusts to the simulated
environment. The other blocks are

¢ The Incidence and Airspeed block calculates the angle of attack and
airspeed.
® The COESA Atmosphere Model block calculates the air density.

® The Dynamic Pressure block computes the dynamic pressure from the air
density and velocity.

1903 Wright Flyer

® The WGS84 Gravity Block produces the gravity at the Wright Flyer’s
latitude and height.

[S]Link: aeroblk_wf_3dof/Environment * N [=] 5]
File Edit Wiew Simulation Format Tools Help

D& L2 2 b 0 Nom N EeRE | REE G ®

R A
Dicete Gust

Discrete Wind Gust odel

sirspeed

TR
i)

=
ot P lesi
p ishug/fc)
COESA Atmosphers Mode|

h.

L L)

W
1o
| e

U

Dynamic Pressure

hft) Wesad
Lat (deg) (Taylor Series) 9 ()

Latiude WGSB4 Gravity Model
Kty Hawk, NG

Latiude: 36 11.0' N
Longitude: 750 44.8' W

Ready [100% Jodeds 4

Pilot Subsystem

The Pilot subsystem controls the aircraft by responding to both pitch angle
(attitude) and angle of attack. If the angle of attack differs from the set angle
of attack by more than one degree, the Pilot subsystem responds with a
correction of the elevator (canard) angle. When the angular velocity exceeds
+/— 0.02 rad/s, angular velocity and angular acceleration are also taken into
consideration with additional corrections to the elevator angle.

Pilot reaction time largely determined the success of the flights [1]. Without an
automatic controller, a reaction time of 0.06 seconds is optimal for successful

flight. The Delay of Pilot block recreates this effect by producing a delay of no
more than 0.08 second.

3-15

3 Case Studies

lLink: aeroblk_wf_3dof/Pilot * - (ol x|
File Edit Wiew Simulation Formst Tools Help
DEEES| sl 2] r ®tom BB Es REE T ®
[b2
L]
1o
S
s [GT—byce .
alpha_a) (IS
[Crml o
find B
Gowp
a
(3o P >
’ L
Fes =I =
Detemning How Much Delzy of Pilot

[100% [ode4s 4

Ready

Running the Simulation

The default values for this simulation allow the Wright Flyer model to take off
and land successfully. The pilot reaction time (wf_B3) is set to 0.06 seconds, the
desired angle of attack (wf_alphaa) is constant, and the altitude attained is
low. The Wright Flyer model reacts similarly to the actual Wright Flyer. It
leaves the ground, moves forward, and lands on a point as high as that from
which it started. This model exhibits the longitudinal “undulation” in attitude
of the original aircraft.

~ioix]
SBECLL ABRB B A S

Attitude Scope (Measured in Radians)

3-16

1903 Wright Flyer

A pilot with quick reaction times and ideal flight conditions makes it possible
to fly the Wright Flyer successfully. The Wright Flyer model confirms that
controlling its longitudinal motion was a serious challenge. The longest
recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Virtual Reality Visualization of the Wright Flyer

Note This section requires the Virtual Reality Toolbox.

The Wright Flyer model also provides a virtual world visualization, coded in
Virtual Reality Modeling Language (VRML) [3]. The VR Sink block in the main
model allows you to view the flight motion in three dimensions.

31903 wright Fiyer =IOl x|

File ¥ew Wewpoints Mavigation Rendering Simulation Recording Help

[sideFeavien [B Lifwa =[] d G| (B =

f \ 4 [E
Side-Rear Yiew T=0.00 wialk Posi[10.00 3.00-7.00] Dir:[-0.86 -0.150,49] 7

1903 Wright Flyer Virtual Reality World

References

[1] Hooven, Frederick J., “Longitudinal Dynamics of the Wright Brothers’
Early Flyers: A Study in Computer Simulation of Flight,” from The Wright
Flyer: An Engineering Perspective, ed. Howard S. Wolko, Smithsonian
Institution Press, 1987.

3-17

http://www.mathworks.com/products/virtualreality/

3 Case Studies

[2] Culick, F. E. C. and H. R. Jex, “Aerodynamics, Stability, and Control of the
1903 Wright Flyer,” from The Wright Flyer: An Engineering Perspective, ed.
Howard S. Wolko, Smithsonian Institution Press, 1987.

[3] Thaddeus Beier created the initial Wright Flyer model in Inventor format,
and Timothy Rohaly converted it to VRML.

Additional information about the 1903 Wright Flyer can be found at

® http://www.wrightexperience.com
® http://wright.nasa.gov

3-18

NASA HL-20 lifting Body Airframe

NASA HL-20 Lifting Body Airframe

This case study models the airframe of a NASA HL-20 lifting body, a low-cost
complement to the Space Shuttle orbiter. The HL-20 is unpowered, but the
model includes both airframe and controller.

For most flight control designs, the airframe, or plant model, needs to be
modeled, simulated, and analyzed. Ideally, this airframe should be modeled
quickly, reusing blocks or model structure to reduce validation time and leave
more time available for control design. In this study, the Aerospace Blockset
efficiently models portions of the HL-20 airframe. The remaining portions,
including calculation of the aerodynamic coefficients, are modeled with
Simulink. This case study examines the HL-20 airframe model and touches on
how the aerodynamic data are used in the model.

This study consists of these sections:

* “NASA HL-20 Lifting Body” provides an overview of the history and
purposes of the NASA HL-20 lifting body.

¢ “The HL-20 Airframe and Controller Model” on page 3-21 describes the
HL-20 combined plant and controller model.
¢ “References” on page 3-32 provides a selected bibliography.

NASA HL-20 Lifting Body

The HL-20, also known as the Personnel Launch System (PLS), is a lifting body
reentry vehicle designed to complement the Space Shuttle orbiter. It was
developed originally as a low-cost solution for getting to and from low Earth
orbit. It can carry up to 10 people and a limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically
with booster rockets or by transporting it in the payload bay of the Space
Shuttle orbiter. The HL-20 lifting body deorbits using a small onboard
propulsion system. Its reentry profile is nose first, horizontal, and unpowered.

3-19

3 Case Studies

3-20

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

e Rapid turnaround between landing and launch reduces operating costs.
¢ The HL-20 has exceptional flight safety.

¢ It can land conventionally on aircraft runways.
Potential uses for the HL-20 include

e Orbital rescue of stranded astronauts
¢ International Space Station crew exchanges
® Observation missions

® Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data
from HL-20 tests are being used in current NASA projects [2].

NASA HL-20 lifting Body Airframe

The HL-20 Airframe and Controller Model

You can open the HL-20 airframe and controller model by entering
aeroblk HL20 at the MATLAB command line.

[=aerobllc_HL20 - (ol x|
Fie Edt Wiew Smustion Format Tools Help

DB &| LB || r = nm el REE T ®

HL-20 Airframe and Controlier Demonstration

‘;‘M:\delafp bus I

Visualization
(R and Gauges)

Soapes

Guichreeiip IMUGFS o Cortd i/p
| Mo cip b
Gortel ifp Guidanoe System
bl G PS
& Fradar Atimeter N
HLZ0 wersion 1.0
Wodified on 26-Jun-2003 14:22.14
based on
| Mol ovpbus - Cormel ip Jadson E.B., Cruz . L.,
“Preliminary Subsanic Aerodynamic Model far
Studies of the HL-20 Lifting Bady",
Airdats, System NASA Thi4302, August 1982,
o
e Systencip
Fusitiors Demarnds Do IMUEERS olp

Guithroe o
—bl?l Actuators Gontol System

Limhed
Actuztors

Ready

[100% [ode4s 4

Modeling Assumptions and Limitations

Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA
document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

¢ The airframe is assumed to be rigid and have constant mass, center of

gravity, and inertia, since the model represents only the unpowered reentry
portion of a mission.

e HIL.-20 is assumed to be a laterally symmetric vehicle.
¢ Compressibility (Mach) effects are assumed to be negligible.

® Control effectiveness is assumed to vary nonlinearly with angle of attack and

linearly with angle of deflection. Control effectiveness is not dependent on
sideslip angle.

3-21

3 Case Studies

® The nonlinear six-degrees-of-freedom aerodynamic model is a representation
of an early version of the HL-20. Therefore, the model is not intended for
realistic performance simulation of later versions of the HL-20.

The typical airframe model consists of a number of components, such as

® Equations of motion

¢ Environmental models

e Calculation of aerodynamic coefficients, forces, and moments

The airframe subsystem of the HL-20 model contains five subsystems, which
model the typical airframe components:

® “6DoF (Euler Angles) Subsystem” on page 3-23

¢ “Environmental Models Subsystem” on page 3-24

® “Alpha, Beta, Mach Subsystem” on page 3-26

® “Aerodynamic Coefficients Subsystem” on page 3-27

® “Forces and Moments Subsystem” on page 3-31

3-22

NASA HL-20 lifting Body Airframe

[lLink: aeroblk_HL20/HLZ0 Airframe -0l x|
Fie Edt Wiew Smdstion Formst Teols Help
D(EES| $RE[Dr ao FHe | BREET ®
e o Aop Pecel &
Actuators v (mis) =®
4 o incid
(deg) Ve
o vtsch Contt o Goerr %, tm) »{&)
xa
v nrz Foe M
[y B8y () »{3)
—mlpar Euler
— o >
etodynamic
Coeffiients @—bmmsl Euler Angles Dk
Thast Fred ¥,] »{5)
™ Wass
b
@ jradis) =®
LN (M, (N-m) Paar
abar daldt
abar pdot.qdetrdot
A, s[5
char Farces and Moments GOGF (Eukr Angks)
Environment Models
7 e
gbar Speed of Sound peed of Sound
e
par iiind “elosity d “hlosity
Buler
Hir Density Density
v
Wind Fagular Rates d fogular Rates oCM
(@ och w
Mach
@: Incid par
slpha.beta Alpha Beta,Mach
Ready [100% [odeds 4

HL-20 Airframe Subsystem

6DoF (Euler Angles) Subsystem

The 6DoF (Euler Angles) subsystem contains the six-degrees-of-freedom
equations of motion for the airframe. In the 6DoF (Euler Angles) subsystem,
the body attitude is propagated in time using an Euler angle representation.
This subsystem is one of the equations of motion blocks from the Aerospace
Blockset. A quaternion representation is also available. See the 6DoF (Euler
Angles) and 6DoF (Quaternion) block reference pages for more information on
these blocks.

3-23

3 Case Studies

3-24

Environmental Models Subsystem

The Environmental Models subsystem contains the following subsystems and
blocks:

® The WGS84 Gravity Model block implements the mathematical

representation of the geocentric equipotential ellipsoid of the World Geodetic
System (WGS84).

See the WGS84 Gravity Model block reference page for more information on
this block.

The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) standard lower atmospheric values for absolute
temperature, pressure, density, and speed of sound, given the input
geopotential altitude.

See the COESA Atmosphere Model block reference page for more
information on this block.

The Wind Models subsystem contains the following blocks:

= The Wind Shear Model block adds wind shear to the model.

See the Wind Shear Model block reference page for more information on
this block.

= The Discrete Wind Gust Model block implements a wind gust of the
standard “1 — cosine” shape.
See the Discrete Wind Gust Model block reference page for more
information on this block.

= The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters.

See the Dryden Wind Turbulence Model (Continuous) block reference page
for more information on this block.

The environmental models implement mathematical representations within
standard references, such as U.S. Standard Atmosphere, 1976.

NASA HL-20 lifting Body Airframe

mLink: aeroblk_HL20/HLZ20 Airframe/Environment Models

File Edit Wiew Simulabion Format

Tools Help

I [=]

D EEE LB r 8 |tm || 1 &

[mE@E &

Inemalw Body 9

Euier
Euker
™ ugvgwg
wind Velcity
O, =3 - | firspesd
Ve
ol
B Asirte P10
oo Wind Angular Rates
Wind hladzls
Tk
-~ 2 {rvis)
lul P (mi) % Spead of Sound
N P Pa)
He Height z-=h COESA
o ety —————— {4)
Air De nsity
COESA Atrnosphenre iode|
()
DG
b ()
WESE
(Taylor Senes) a)
E—V Lat [deg) Grawity in Earth
Jt
Latitude s
WESE Grvity Model
Ready [100% [[

|ode4s5

Environmental Models in HL-20 Airframe Model

3-25

3 Case Studies

3-26

mLink: aeroblk_HL20/.../Environment ModelsWind Models — I Ellil

File Edit Wiew Simulation Format Tools Help

P hoim)
W in VS
(5 _brmloom Shear
DSt
Wind Shear iode|
Altitude .
@ P P Gontinuous
Vg IS
-2 Pl (i)
Airspeed Dinyden i
Ll DGt gy i (P —»{=]
" P3q9,9
Dnyden Wind Turbulence iode|
[Continuous {+g -1}

Y

W oniE) M ind WY
Discete Gust

Driscrete Wind Gust Model -On

][]

Ready 100% ode45
A

Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem

The Alpha, Beta, Mach subsystem calculates additional parameters needed for
the aerodynamic coefficient computation and lookup. These additional
parameters include

® Mach number

® Incidence angles (o, B)

® Airspeed

® Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity
and corrects the body rates for wind angular acceleration.

NASA HL-20 lifting Body Airframe

E!Link: aeroblk_HL20/HL20 Airframe/Alpha,Beta,Mach - |EI|1|

File Edit WYiew Simulation Format Tools Help

o At L
, e "
b F = Ineid
W 2)

Inzidence, Sideslip v
& Aispead 1

Wind Vaciy 2 Vet s)

Speed of Sound hdach Number Mach

LR PR

Air Density Cwnamic Fressue qbar

 JIERD

Par

Wind Angular
Rates

Ready [1o02 [[|odets v

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta,
Mach Subsystem)

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the six aerodynamic coefficients, which are
implemented as in reference [1]. The six aerodynamic coefficients follow.

Cy Axial-force coefficient

Cy Side-force coefficient

C, Normal-force coefficient

C Rolling-moment coefficient
Cn Pitching-moment coefficient
C, Yawing-moment coefficient

Ground and landing gear effects are not included in this model.

3-27

3 Case Studies

3-28

The contribution of each of these coefficients is calculated in the subsystems

(body rate, actuator increment, and datum), and then summed and passed to
the Forces and Moments subsystem.

E!Link: aeroblk_HLZ20/HL20 Airframe/Aerodynamic Coefficients - Dlﬂ
File Edit view Simulstion Format Tools Help

ODSEd&| 4Bl == » o Homal e RER T ®

| #ipha

Mk Body Rate
Damping

| Hipha hd

md deg ol .
Beta Coeff

Datum Coefficients

:

¥

¥

#pha

A4

Beta ol

Actuator Deflections [k
ctuators

Actuator
Ingrements

Ready |100% | | |odeds %

Aerodynamic Coefficients in HL-20 Airframe Model

The aerodynamic data was gathered from wind tunnel tests, mainly on scaled
models of a preliminary subsonic aerodynamic model of the HL-20. The data
was curve fitted, and most of the aerodynamic coefficients are described by
polynomial functions of angle of attack and sideslip angle. In-depth details

about the aerodynamic data and the data reduction can be found in
reference [1].

The polynomial functions contained in the M-file aeroblk_init h120.m are
used to calculate lookup tables used by the model’s preload function. Lookup
tables substitute for polynomial functions. Depending on the order and
implementation of the function, using lookup tables can be more efficient than
recalculating values at each time step with functions. To further improve
efficiency, most tables are implemented as PreLook-up Index Search and
Interpolation (n-D) using PreLook-up blocks. These blocks improve
performance most when the model has a number of tables with identical

NASA HL-20 lifting Body Airframe

breakpoints. These blocks reduce the number of times the model has to search
for a breakpoint in a given time step. Once the tables are populated by the
preload function, the aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided
among three subsystems:

¢ “Datum Coefficients Subsystem” on page 3-29

* “Body Rate Damping Subsystem” on page 3-30

¢ “Actuator Increment Subsystem” on page 3-31

Summing the Datum Coefficients, Body Rate Damping, and Actuator

Increments subsystem outputs generates the six aerodynamic coefficients used
to calculate the airframe forces and moments [1].

Datum Coefficients Subsystem. The Datum Coefficients subsystem calculates
coefficients for the basic configuration without control surface deflection. These
datum coefficients depend only on the incidence angles of the body.

[iLink: aeroblk_HL20/.../Aerodynamic Coefficients/Datum Coefficients =]]
Fie Edt Wiew Smdstion Fomst Tools Help

DEES| & =R = afons ZME s | BRET @

20 Ttk

Yy v
y

Gx

@y

AlphaLookup

Alpha

2D TikyT)

Beta Betalookup ferd @

Ready [100% [od=4s

3-29

3 Case Studies

Body Rate Damping Subsystem. Dynamic motion derivatives are computed in the
Body Rate Damping subsystem.

ﬂLink: aeroblk_HL20, erodynamic Coefficients/Body Rate Damping _|EI LI
File Edit Wiew Simulation Format Tools Help
D|D"H§H$E|9Q|> u |Narmal V‘ﬁ@ﬂlﬁﬁ@
Alphalookup
"] Apra delCoett
Alpha
Fefernce Span
P
(=] Alpa delCoett
Reternce Length
q
Lt delCoett
Referznce Span
=
2 >
par T
Ready 100% lodeds 4

3-30

NASA HL-20 lifting Body Airframe

Actuator Increment Subsystem. Lookup tables determine the incremental changes
to the coefficients due to the control surface deflections in the Actuator
Increment subsystem. Available control surfaces include symmetric wing flaps
(elevator), differential wing flaps (ailerons), positive body flaps, negative body
flaps, differential body flaps, and an all-movable rudder.

[=iLink: aeroblk_HL20;.../Aerodynamic Coefficients/Actuator Increments: -o] x|

File Edit Wiew Simulation Format Tools Help

D EHE| 285 = o @S| RE T ®
AlphsLackup
v

T oo

Alpha deCoeft

Aleon

delCoatt

@ Elewator
Beta

W Hlpia
dsoett

| tumtore

Rudder

G—

Actuator
Deflections

W Alpts

| tumtore

deinett

Flap(pos)

Apts

h 4 l h 4 \ h 4 A 4
+

At

Flapineg)

delCoatt

Flapidiff)

Ready [100% [Jodeds 4

Forces and Moments Subsystem. The Forces and Moments subsystem calculates
the body forces and body moments acting on the airframe about the center of
gravity. These forces and moments depend on the aerodynamic coefficients,
thrust, dynamic pressure, and reference airframe parameters.

3-31

3 Case Studies

[SiLink: aeroblk_HL20/HLZ20 Airframe,/Forces and Moments | =]]

File Edit Wiew Simulation Forst Tools Help

i3
Grss Product

G=AxB
[eg - % mf)0 0] '—b 3

Maments about 33 Grmss Product

Gentre of Gruity

Ready [100% [odeds 4

Completing the Model

These subsystems that you have examined complete the HL-20 airframe. The
next step in the flight control design process is to analyze, trim, and linearize
the HL-20 airframe so that a flight control system can be designed for it. You
can see an example of an auto-land flight control for the HL.-20 airframe in the
aeroblk HL20 demo.

References

[1] Jackson, E. B., and C. L. Cruz, “Preliminary Subsonic Aerodynamic Model
for Simulation Studies of the HL-20 Lifting Body,” NASA TM4302 (August
1992).

This document is included in the ZIP file available from MATLAB Central as
file 1815.

[2] Morring, F., Jr., “ISS ‘Lifeboat’ Study Includes ELVs,” Aviation Week &
Space Technology (May 20, 2002).

Find additional information about the HL-20 lifting body at

® http://www.astronautix.com/craft/hl20.htm

® http://www.aviationnow.com/content/publication/awst/20020520/aw46
.htm (requires subscription)

3-32

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=1815
http://www.mathworks.com/matlabcentral/

Missile Guidance System

Missile Guidance System

This case study explains the design and simulation of a guidance system for a
three-degrees-of-freedom missile. The model includes all aspects of the system,
from the missile airframe (plant) and environment to the controller.

¢ “Missile Guidance System Model” shows how to open the model used in this
study.

¢ “Modeling Airframe Dynamics” on page 3-34 describes the implementation
of the atmospheric equations and equations of motion for the missile
airframe.

® “Modeling a Classical Three-Loop Autopilot” on page 3-41 describes the
design of the missile autopilot to control the acceleration normal to the
missile body.

® “Modeling the Homing Guidance Loop” on page 3-43 describes the design of
a homing guidance loop to track the target and generate the demands that
are passed to the autopilot. This subsystem uses Stateflow.

¢ “Simulating the Missile Guidance System” on page 3-49 describes the
simulation of the model and evaluation of system performance.

¢ “Extending the Model” on page 3-51 examines a representation of the full
six-degrees-of-freedom equations of motion.

® “References” on page 3-52 provides a selected bibliography.

Note The Stateflow module in this demo is precompiled and does not require
Stateflow to be installed.

Missile Guidance System Model

To view the missile guidance system model, enter aeroblk guidance at the
MATLAB command line.

The missile airframe and autopilot are contained in the Airframe & Autopilot
subsystem. The Seeker/Tracker and Guidance subsystems model the homing
guidance loop.

3-33

http://www.mathworks.com/products/stateflow/

3 Case Studies

21 aeroblk_guidance |- [O] %]

File Edit “iew Sirmulation Format Tools Help
DSEE =R |csd [0y s e || HFeBed hERES®

Three Degrees of Freedom Guided Missile

Demanded bok anglke during tamget szamh
Sigma_d

Sigmadot [Sigmadat Sigma_d ¥aZe =, ﬁ
P Fang=
Target a Yo [l vic sz dl—pelazd Atinde »
- Leck Angle
PTa'QE‘ & 306F Animation
ostizn Missike --= Tamet Fon | iy Mss q
Sepamtion Ll
SesherTrcker Guidanca Alrfrmme
&
Autopilt

Missike Body Angular Rate

hiissile Attitude

hissile Position

Double click here to go to a
demo on trimming and linearizing

Copynght 19902005 The Wiathitio e, Ine. airfframe models

Raady [100% | loceds o

Modeling Airframe Dynamics

The model of the missile airframe in this demo uses advanced control methods
applied to missile autopilot design [1], [2], [3]. The model represents a
tail-controlled missile traveling between Mach 2 and Mach 4, at altitudes
ranging between 3,050 meters (10,000 feet) and 18,290 meters (60,000 feet),
and with typical angles of attack in the range of +20 degrees.

3-34

Missile Guidance System

Body Rate

Center of
Gravity i
Incidence =

Fin Deflection =1

ZW
Normal Acceleration =a,

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body
dynamics of the airframe. The aerodynamic forces and moments acting on the
missile body are generated from coefficients that are nonlinear functions of
both incidence and Mach number. You can model these dynamics easily with
the Aerospace Blockset.

The model of the missile airframe consists of two main components:

® “ISA Atmosphere Model Block” on page 3-36 calculates the change in
atmospheric conditions with changing altitude.

¢ “Aerodynamics & Equations of Motion Subsystem” on page 3-39 calculates
the magnitude of the forces and moments acting on the missile body and
integrates the equations of motion.

3-35

3 Case Studies

3-36

To view the missile airframe model, enter aeroblk guidance airframe at the
MATLAB command line.

E!aernblk_guidance_airframe - EI|£|
File Edit View Simulation Format Toaols Help
DEEE sEeo =y s juoml | BB Es BE
Model used in airframe trim and linearization demo
=m e
Attituds =
. imis) » a (1)
= 9
i e S S RaEl
Heighi _,. 7w =
eight on F (Fa) (1 Fin Py ! 5
Fin Deflection =
 thgi) gl
=]
Atmosphere Model Asmdynamios &
Equations of hiatian
Genemte Lineartzations using Generte Linearzations using
Simulink Gontm| Design Gonm| System Toolbox
Gopyright 1990-2005 The MathWorks, Inc

Ready [to0% lodeds Y

ISA Atmosphere Model Block

The ISA Atmosphere Model block is an approximation of the International
Standard Atmosphere (ISA). This block implements two sets of equations. The
troposphere requires one set of equations, and the lower stratosphere requires
the other set. The troposphere lies between sea level and 11,000 meters (36,089
feet). The ISA model assumes a linear temperature drop with increasing
altitude in the troposphere. The lower stratosphere ranges between 11,000
meters (36,089 feet) and 20,000 meters (65,617 feet). The ISA models the lower
stratosphere by assuming that the temperature remains constant.

Missile Guidance System

<) Figure No. 1 : 10l =|

File Edit WYiew Insert Tools Window Help

Insda/ "a /| ®p0

Speed of Sound

350 T T T T T T T T T
40
0
= 320
300
280 I I I I I I I I I
4] 2 4 4] 8 10 12 14 168 18 20
Altitude [Km)
Air Density
1.8 T T T T

4] 2 4 4] 8 10 12 14 168 18 20
Altitude [Km)

Variation of Sound Speed and Air Density with Altitude

The following equations define the troposphere.

T =T, Lh

T l%-l
oo (D)
P=PO~(%)LR
a = JYRT

3-37

3 Case Studies

The following equations define the lower stratosphere.

T=T,-L hts
p p (T)l% %(hts—h)
= LA e
o TO
T\ial phis—h)
p = PO'(TT) e

a = JYRT

The symbols are defined as follows:

T, Absolute temperature at mean sea level in kelvin (°K)
Po Air density at mean sea level in kg/m3

P, Static pressure at mean sea level in N/m?

h Altitude in m

hts Height of the troposphere in m

T Absolute temperature at altitude 4 in kelvin (°K)

p Air density at altitude 4 in kg/m3

P Static pressure at altitude 4 in N/m?

Speed of sound at altitude A in m/s?
Temperature lapse rate in °K/m
Characteristic gas constant J/kg-°K
Ratio of specific heats

W = Ny N~

Acceleration due to gravity in m/s?

You can look under the mask of the ISA Atmosphere Model block to see how
these equations are implemented.

3-38

Missile Guidance System

Aerodynamics & Equations of Motion Subsystem

The Aerodynamics & Equations of Motion subsystem generates the forces and
moments applied to the missile in the body axes and integrates the equations
of motion that define the linear and angular motion of the airframe. The
aerodynamic coefficients are stored in data sets. During the simulation, the
value at the current operating condition is determined by interpolation using
the Interpolation (n-D) using PreLook-Up blocks.

E!aerohlk_guidance,.-"Airframe & Autopilot/Aerodynamics & Equa - |EI|1|
File Edit WYiew Simulation Format Tools Help
DSE&| BR[| r = Nom ey pEE T
(7 -
™
Alpha ¥ U
Incidence
& Airspeed
Lq Mach
Mooh
v Thrust{ 3)
8 fmet) (2)
Fe o F,) Aftitude
- Alpha @, (mdis) » =)
q
a Fz I {F, (M} qdot
%, 7, (T
(1 —————MmRho XeZe
Rho Uw (=)
(&0 »|Fin M o1 Il (1d-rii)
Fin A A Iy (5)
- B Az
Aeradynamics 20oF (Body Axes)
Ready [1o02 [[|odets v

These are the three-degrees-of-freedom body axis equations of motion, which
are defined in the Equations of Motion (Body Axes) block.

U= (T+F,)/m-qW-gsin6
W =F,/m+qU +gcos6

g =M/,

0=gq

3-39

3 Case Studies

These are the aerodynamic forces and moments equations, which are defined

in the Aerodynamics subsystem.

F,.= (erefo(Mach,OL)

F, = §S,,/C,(Mach,o,n)

These are the stability axes variables, which are calculated in the Incidence &

M = 8, d, o CofMach, o, 1, q)
q = %pVZ

Airspeed block.
V= JU + W
o = atan(W/U)

The symbols are defined as follows:

0

NS SNl R

n ©

3-40

Attitude in radians

Body rotation rate in rad/s

Missile mass in kg

Acceleration due to gravity in m/s?

Moment of inertia about the y-axis in kg-m?
Acceleration in the Z body axis in m/s®
Change in body rotation rate in rad/s?
Thrust in the X body axis in N

Air density in kg/m3

Reference area in m?

Coefficient of aerodynamic force in the X body axis

Coefficient of aerodynamic force in the Z body axis

Coefficient of aerodynamic moment about the Y body axis

Missile Guidance System

d, of Reference length in m

Fin angle in rad

Aerodynamic force in the X body axis in N
Aerodynamic force in the Z body axis in N
Aerodynamic moment along the Y body axis
Dynamic pressure in Pa

Airspeed in m/s

Incidence in rad

Velocity in the X body axis in m/s

Velocity in the Z body axis in m/s

gq@<©|§§j;jj

Modeling a Classical Three-Loop Autopilot

The missile autopilot controls the acceleration normal to the missile body. The
autopilot structure of this case study is a three-loop design using
measurements from an accelerometer located ahead of the missile’s center of
gravity and from a rate gyro to provide additional damping. The controller
gains are scheduled on incidence and Mach number and tuned for robust
performance at an altitude of 3,050 meters (10,000 feet).

Actuators | Airframe

Rate Body Rate g

Gyro

g \ dg/dt
_‘ Normal Acceleration

Accelerator (o (G a

Classical Autopilot

3-41

3 Case Studies

Designing an autopilot requires the following:

* “Trimming and Linearizing an Airframe Model” on page 3-42 explains how
to model the airframe pitch dynamics for several trimmed flight conditions.

® “Autopilot Design” on page 3-43 summarizes the autopilot design process.

Trimming and Linearizing an Airframe Model

Designing the autopilot with classical design techniques requires linear models
of the airframe pitch dynamics for several trimmed flight conditions. MATLAB
can determine the trim conditions and derive linear state-space models directly
from the nonlinear Simulink model. This step saves time and helps to validate
the model. The functions provided by Simulink Control Design or the Control
System Toolbox allow you to visualize the behavior of the airframe in terms of
open-loop frequency or time response.

The airframe trim demos show how to trim and linearize an airframe model.

® To run the demo based on the Control System Toolbox, enter
asbguidance_trimlinearize cst. The results of this demo are displayed as
a Bode diagram in the LTI Viewer.

® The alternative demo, asbguidance_trimlinearize, uses Simulink Control
Design instead and produces identical results.

15/
File Edit window Help
loa|l®se
Bode Diagram
From: Elwator
= ==
y T
P2 R N H
2 T
40
A6

Magnitude (dB) ; Phaze (deg)

o h i
5 180 e T .

10! 10 10! 10 10
Frequency (radisec)

Change the line styles shown i this LTI Viewer

3-42

http://www.mathworks.com/products/simcontrol/
http://www.mathworks.com/products/control/
http://www.mathworks.com/products/control/

Missile Guidance System

Autopilot Design

Autopilot design can begin after the missile airframe has been linearized at a
number of flight conditions. Autopilot designs are typically carried out on a
number of linear airframe models derived at varying flight conditions across
the expected flight envelope. Implementing the autopilot in the nonlinear
model involves storing the autopilot gains in two-dimensional lookup tables
and incorporating an antiwindup gain to prevent integrator windup when the
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear
model is the best way to demonstrate satisfactory performance in the presence
of nonlinearities, such as actuator fin and rate limits and dynamically
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop
autopilot design.

E’aeroblk_guidance,‘-"nirframe & Autopilot/Autopilot - |EI il
File Edit “iew Simulation Format Toals Help

0@ & =i r = Nom llEEE REE T ®

Alpra

Gain
Seheduled
Coefficiants

Ready [100% |odeds v

Modeling the Homing Guidance Loop

The complete homing guidance loop consists of these two subsystems:

® The “Guidance Subsystem” on page 3-44 generates the normal acceleration
demands that are passed to the autopilot and uses Stateflow.

¢ The “Seeker/Tracker Subsystem” on page 3-47 returns measurements of the
relative motion between the missile and the target.

3-43

3 Case Studies

3-44

The autopilot is part of an inner loop within the overall homing guidance
system. Consult reference [4] for information on different types of guidance
systems and on the analysis techniques that are used to quantify guidance loop

performance.

%] aeroblk_guidance

File Edit “iew Sirmulation Format Tools Help

DEEE 2R et oy s |iom - BeBey RBES

Three Degrees of Freedom Guided Missile

Target +

Tamet Y
Fasition

Demanded ook angk dufing tamet s=amh
Sigma_d
e 7o iz,

.

hfissile = Tamet
Sepamtion

Sgrmmdt [Sigmadat Sgma_d
P Fare
o |l Ve Az dl—jelAzd Atitude »
Logk Ande
3D0F Animation
B Fin (| i Mss q
SeekedTacker Gadanos

Alirframe
&

Autopilot

Missike Body Angular Rate

Mliszile Attitude

Ready

Copynight 1990 £005 The MathWorks, Inc

Guidance Subsystem
Initially, the Guidance subsystem searches to locate the target’s position and
then generates demands during closed-loop tracking. A Stateflow chart
controls the transfer between the different modes of these operations.
Stateflow is the ideal tool for rapidly defining all the operational modes, both
during normal operation and during unusual situations.

hilis=ile Positon

Double dlick here to go to a
demo on timming and line arizing
airframe models

|100% [|odeds 4

Missile Guidance System

E!aernhlk_guidante,«"l}uidante & - |E| ll
File Edit ‘“iew Simulation Format Tools Help

O SEES| ¢ =R b =|bmd s REE T ®

Sigma_d

Hold Guidance Proeessor el
{Updated &100Hz)

Ve * 25 >
o
Sigmadot »

Proportional *
Havigation
Gain

Limit
Mormal Acceleration
Demand

Ready |100% | | |odeas v

Guidance Processor State Chart. Mode switching is triggered by events generated
in Simulink or in the Stateflow chart. The variable Mode is passed to Simulink
and is used to control the Simulink model’s behavior and response. For
example, the Guidance Processor state chart, which is part of the Guidance
subsystem, shows how the system reacts in response to either losing the target
lock or failing to acquire the target’s position during the target search.

During the target search, this Stateflow state chart controls the tracker
directly by sending demands to the seeker gimbals (Sigma_d). Target
acquisition is flagged by the tracker once the target lies within the beam width
of the seeker (Acquire) and, after a short delay, closed-loop guidance begins.

3-45

3 Case Studies

3-46

R
s Guidanoe £{az_nx:g_a1 3 3

Tamget_Search
an: Mocka=1;Sigma_c=0;incr=100; Acquire_timest:
du: Sigma_ck=Siama_d+0.01 %incr;

[Sigma_dl=2011Sigma_d=-20] Jincr=incr; E 3
[Acquire=—] E E

Target_Leck
an: Mede=2; Acquire_times=t;

% [tAnquire_time=7] / Timesut]

[t-Acquire_time=0.2]

¥
bt Rackar_Guided
len: Detenate=1; an:hode=2;
e ar_fie=ar_dem 7

2 [Range=200]
T

Proportional Navigation Guidance. Once the seeker has acquired the target, a
proportional navigation guidance (PNG) law guides the missile until impact.
This form of guidance law is the most basic, used in guided missiles since the
1940s, and can be applied to radar-, infrared-, or television-guided missiles.
The navigation law requires measurements of the closing velocity between the
missile and target, which for a radar-guided missile can be obtained with a
Doppler tracking device, and an estimate for the rate of change of the inertial

sight line angle.

Target

Missile @

»x, Inertial Reference

7

Proportional Navigation Guidance Measurements

Missile Guidance System

The diagram symbols are defined as follows:

Gq

Az _dem = AV,

Navigation gain (> 2)

Closing velocity
Body attitude

Sight line rate

Gimbal angle

Look angle

Dish angle

6, Demanded normal acceleration

Seeker/Tracker Subsystem

The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker
dish aligned with the target and provides the guidance law with an estimate of

the sight line rate.

E!aernhlk_guidante,«"Seeker,«"Tratker & - E||£|
File Edit ‘“iew Simulation Format Tools Help
Dl@uélé@ElDQl} llemaI '|@@|H?®

I Lok fngle

-
Look Angle

q

Sigma_d

Look #agle
Gimbal Angle

sightline Rate
Sigma_d

#onuire Flag

|| Gimbal #ngle

- Aoquire

Target
Acquisition

r

RO

Sigmadot

Ready

Tracker and Sightline Rate
Estimator

e

FRange

Closing Wlocity

Range

Range and

Closing Yelocity Estimates

|100%

lodeds

Tracker and Sightline Rate Estimator. The Tracker and Sightline Rate Estimator is
the most elaborate subsystem of the Seeker/Tracker subsystem because of its

complex error

modeling.

3-47

3 Case Studies

3-48

The subsystem contains a number of feedback loops, estimated parameters,
and parasitic effects for the homing guidance.

® The tracker loop time constant tors is set to 0.05 second, a compromise

between maximizing speed of response and keeping the noise transmission
within acceptable levels.

¢ The stabilization loop compensates for body rotation rates. The gain Ks,

which is the loop crossover frequency, is set as high as possible subject to the
limitations of the stabilizing rate gyro’s bandwidth.

® The sight line rate estimate is a filtered value of the sum of the rate of change
of the dish angle measured by the stabilizing rate gyro and an estimated
value for the rate of change of the angular tracking error (e) measured by the
receiver. In this model, the bandwidth of the estimator filter is set to half
that of the bandwidth of the autopilot.

E!aerDbIk_guidance,;"Seeker,.\"Tracker,‘-"Tracker and Sightline Rate Estimator *

g =1 3|
File Edit View Simulation Format Tools Help
DEESES BB D2y = |Nom Clgs s REB D ®
Angular Noiss
[oce>
Lish Error Mode Guided Flight
Look Angle
Sigre_d Dish Emor | Dish =mor
Sightline Rate
Sightline
bl Bl Fatz
Gimbal Treking Estimator Filter
Angle

Switch 1o Glosed Gain

Loop Trcking

Stabilzation

Gimbal
Giain

wgym2
2420 TUGYDSHRGYDE

h i

Stabllizing Rate Gym

Ready

[100% [[jodeds 7

Radome Aberration. The Tracker and Sightline Rate Estimator subsystem also
models the radome aberration.

Missile Guidance System

Radome aberration is a parasitic feedback effect commonly modeled in
radar-guided missile designs and occurs because the shape of the protective
covering over the seeker distorts the returning signal and gives a false reading
of the look angle to the target. The distortion is, in general, a nonlinear function
of the current gimbal angle. A common approximation is to assume a linear
relationship between the gimbal angle and the magnitude of the distortion. The
approximation is valid for a limited range of angle. Other parasitic effects, such
as sensitivity to normal acceleration in the rate gyros, are often modeled as
well to test the robustness of the target tracker and estimator filters.

Radome Error 6,=K,0, P, Appeertilangel

P

Gimbal Angle o,

Seeker Axis

Radome

Simulating the Missile Guidance System

Running the guidance simulation demonstrates the performance of the overall
system. The target is defined to be traveling at a constant speed of 328 m/s on
a reciprocal course to the initial missile heading and 500 meters above the
initial missile position. The data, shown in the following figure, can be used to
determine if the missile can withstand the flight demands and complete the
mission to target.

3-49

3 Case Studies

<) Figure No. 2 10l =|

File Edit WYiew Insert Tools Window Help

I

L=l
=]
L=l

— %

— - Prgemand]

=]
L=l

I
=)

Mermal Acceleration [g]
<

-0 o
Time [Sec] Time [Sec]
a3 T 10
: =
[L
L) =l
E Y
2 5
E =
£
2.95 - - -
4] 1 2 3
Time [Sec] Time [Sec]

Target acquisition occurs 0.69 second after search initiation, with closed-loop
guidance starting after 0.89 second. Impact with the target occurs at 3.46
seconds, with the range to target at the point of closest approach calculated to
be 0.26 meter.

<) Figure No. 3 10l =|

File Edit WYiew Insert Tools Window Help

Deda "A A/ | @20

30 T T T I I I
: : i | — TrueLook Angle
E e WU S I Gimbal Angle 1
= Meode Changes

L=l

Gimbal & Look Angles [deg]
3 o

I
=)

05 1 1.5 2 2.8 3
Tirme [Secl

o
=)

3-50

Missile Guidance System

Extending the Model

Modeling the airframe and guidance loop in a single plane is only the start of
the design process. Extending the model to a full six-degrees-of-freedom
representation requires the implementation of the full equations of motion for
a rigid body.

Six degrees of freedom can be represented using a quaternion or Euler angles.

¢ The first implementation uses a quaternion to represent the angular
orientation of the body in space. The quaternion is appropriate when the
standard Euler angle definitions become singular as the pitch attitude tends
to £90 degrees.

¢ The second implementation uses the standard Euler angle equations of
motion. Euler angles are appropriate when obtaining trim conditions and
modeling linear airframes. This model contains one of the
six-degrees-of-freedom equations of motion blocks.

E!aeroblk_six_dof ;IEIEI

File Edit Wiew Simulation Format Tools Help

DE2E&| &L Ei =] r = [Nom -] g B

[=m + ®

Six Degrees of Freedom Motion Simulation

iz s

VelceTty I el s > |:|
e iy

Fores 37 T (1) Foaitior in Tnarial fxes
Fleried —Wb Frge
Radians to p—
Euler nerial
Angles oM degmees
Vb frns)

WeloeTy i Bedy Ares > I:I
MM o i) > > oy Foratoral P ™

Fadians 1o

kot qdot, ot {radizag) degres Body
Equations of hiotion
wam moment Wz Slider “
ok
Ready 100% |ode4s y

3-51

3 Case Studies

References

[1] Bennani, S., D. M. C. Willemsen, and C. W. Scherer, “Robust LPV control
with bounded parameter rates,” AIAA-97-3641, August 1997.

[2] Mracek, C. P. and J. R. Cloutier, “Full Envelope Missile Longitudinal
Autopilot Design Using the State-Dependent Riccati Equation Method,”
ATAA-97-3767, August 1997.

[3] Shamma, J. S. and J. R. Cloutier, “Gain-Scheduled Missile Autopilot Design
Using Linear Parameter Varying Transformations,” Journal of Guidance,
Control and Dynamics, Vol. 16, No. 2, March-April 1993.

[4] Lin, Ching-Fang, Modern Navigation, Guidance, and Control Processing,
Vol. 2, Prentice Hall, 1991.

3-52

Block Reference

Blocks — Categorical List (p. 4-2) Aerospace Blockset blocks by category
Blocks — Alphabetical List (p. 4-11) Aerospace Blockset blocks by name

4 Block Reference

Blocks — Categorical List

The Aerospace Blockset’s block library, aerolib, is organized into libraries
according to their behavior. The aerolib window displays the block library
icons and names.

Actuators Library Actuator models

Aerodynamics Library Aerodynamics models

Animation Library 3-D animation during simulation

Environment Library Environmental models

Flight Parameters Library Flight parameter models

Equations of Motion Library Equation of motion models

GNC Library Gain scheduling models

Mass Properties Library Center of gravity and tensor models

Propulsion Library Simple propulsion system models

Utilities Library Common mathematical operations and
conversions

Blocks — Categorical List

Actuators Library

Second Order Linear Implement a second-order linear actuator
Actuator

Second Order Nonlinear Implement a second-order nonlinear actuator
Actuator with rate and deflection limits

Aerodynamics Library

Aerodynamic Forces and Compute the aerodynamic forces and moments

Moments using the aerodynamic coefficients, dynamic
pressure, center of gravity, and center of
pressure

Animation Library

3DoF Animation Create a 3-D Handle Graphics® animation of a
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a
six-degrees-of-freedom object

Environment Library
The Environment Library contains the following sublibraries:

4 Block Reference

Atmosphere Sublibrary
COESA Atmosphere Model

ISA Atmosphere Model

Lapse Rate Model
Non-Standard Day 210C
Non-Standard Day 310

Pressure Altitude

Gravity Sublibrary
WGS84 Gravity Model

World Magnetic Model 2000

Wind Sublibrary
Discrete Wind Gust Model

Dryden Wind Turbulence
Model (Continuous)

Dryden Wind Turbulence
Model (Discrete)

Horizontal Wind Model

Von Karman Wind
Turbulence Model
(Continuous)

Wind Shear Model

Implement the 1976 Committee on Extension
to the Standard Atmosphere (COESA) lower
atmosphere

Implement the International Standard
Atmosphere (ISA)

Implement Lapse Rate Model for atmosphere
Implement the MIL-STD-210C climatic data
Implement the MIL-HDBK-310 climatic data

Calculate pressure altitude based on ambient
pressure

Implement the 1984 World Geodetic System
representation of Earth’s gravity

Calculate the Earth's magnetic field at a
specific location and time using the World
Magnetic Model 2000 (WMM2000)

Generate discrete wind gust

Generate wind turbulence with the Dryden
velocity spectra

Generate wind turbulence with the Dryden
velocity spectra

Transform horizontal wind into body-axes
coordinates

Generate atmospheric turbulence

Calculate wind shear conditions

Blocks — Categorical List

Flight Parameters Library

Dynamic Pressure

Ideal Airspeed Correction

Incidence & Airspeed

Incidence, Sideslip &
Airspeed

Mach Number

Relative Ratio

Compute dynamic pressure using velocity and
air density

Calculate equivalent airspeed (EAS), calibrated
airspeed (CAS), or true airspeed (TAS) from
each other

Calculate incidence and air speed

Calculate incidence, sideslip and air speed

Compute Mach number using velocity and
speed of sound

Calculate relative atmospheric ratios

Equations of Motion Library
The Equations of Motion library contains the following sublibraries:

4 Block Reference

3DoF Sublibrary

3DoF (Body Axes) Implement three-degrees-of-freedom equations
of motion

Custom Variable Mass Implement three-degrees-of-freedom equations

3DoF (Body Axes) of motion

Simple Variable Mass 3DoF Implement three-degrees-of-freedom equations

(Body Axes) of motion

6DoF Sublibrary

6DoF (Euler Angles) Implement an Euler angle representation of

six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of
six-degrees-of-freedom equations of motion
Custom Variable Mass Implement an Euler angle representation of
6DoF (Euler Angles) six-degrees-of-freedom equations of motion
Custom Variable Mass Implement a quaternion representation of
6DoF (Quaternion) six-degrees-of-freedom equations of motion
Simple Variable Mass 6DoF Implement an Euler angle representation of
(Euler Angles) six-degrees-of-freedom equations of motion
Custom Variable Mass Implement a quaternion representation of
6DoF (Quaternion) six-degrees-of-freedom equations of motion

GNC Library
The GNC library contains the following sublibraries:

Blocks — Categorical List

Controls Sublibrary

1D Controller
[A(v),B(v),C(v),D(v)]

1D Controller Blend
u=(1-L).K1l.y+L.K2.y

1D Observer Form
[A(V),B(v),C(v),F(v),H(v)]

1D Self-Conditioned
[A(v),B(v),C(v),D(v)]

2D Controller
[A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned
[A(v),B(v),C(v),D(v)]

3D Controller
[A(¥),B(v),C(v),D(v)]

3D Observer Form
[AV),B(v),C(v),F(v),H(v)]

3D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on one scheduling
parameter

Implement a 1-D vector of state-space
controllers by linear interpolation of their
outputs

Implement a gain-scheduled state-space
controller in an observer form depending on
one scheduling parameter

Implement a gain-scheduled state-space
controller in a self-conditioned form

Implement a gain-scheduled state-space
controller depending on two scheduling
parameters

Implement a 2-D vector of state-space
controllers by linear interpolation of their
outputs

Implement a gain-scheduled state-space
controller in an observer form depending on
two scheduling parameters

Implement a gain-scheduled state-space
controller in a self-conditioned form

Implement a gain-scheduled state-space
controller depending on three scheduling
parameters

Implement a gain-scheduled state-space
controller in an observer form depending on
three scheduling parameters

Implement a gain-scheduled state-space
controller in a self-conditioned form

4 Block Reference

Gain Scheduled Lead-Lag Implement a first-order lead-lag with
gain-scheduled coefficients

Interpolate Matrix(x) Return an interpolated matrix for given input x

Interpolate Matrix(x,y) Return an interpolated matrix for given inputs
x and y

Interpolate Matrix(x,y,z) Return an interpolated matrix for given inputs
x,y, and z

Self-Conditioned [A,B,C,D] Implement a state-space controller in a
self-conditioned form

Guidance Sublibrary

Calculate Range Calculate the range between two crafts given
their respective positions

Mass Properties Library
Estimate Center of Gravity Calculate the center of gravity location
Estimate Inertia Tensor Calculate the inertia tensor

Moments About CG Due to Compute moments about center of gravity due
Forces to forces that are applied at point CP, not the
center of gravity

Symmetric Inertia Tensor Create an inertia tensor from moments and
products of inertia

Propulsion Library

Turbofan Engine System Implement a first-order representation of a
turbofan engine with controller

Utilities Library

The Utilities library contains the following sublibraries:

Blocks — Categorical List

Axes Transformations Sublibrary

Direction Cosine Matrix to
Euler Angles

Direction Cosine Matrix to
Quaternions

Euler Angles to Direction
Cosine Matrix

Euler Angles to
Quaternions

Quaternions to Direction
Cosine Matrix

Quaternions to Euler
Angles

Convert direction cosine matrix to Euler angles

Convert direction cosine matrix to quaternion
vector

Convert Euler angles to direction cosine matrix
Convert Euler angles to quaternion vector
Convert quaternion vector to direction cosine

matrix

Convert quaternion vector to Euler angles

Math Operations Sublibrary

3x3 Cross Product

Adjoint of 3x3 Matrix

Create 3x3 Matrix
Determinant of 3x3 Matrix

Invert 3x3 Matrix

SinCos

Calculate the cross product of two 3-by-1
vectors

Compute the adjoint matrix for the input
matrix

Create a 3-by-3 matrix from nine input values
Compute the determinant for the input matrix

Compute the inverse of 3-by-3 matrix using
determinant formula

Compute the sine and cosine of input angle

Unit Conversions Sublibrary

Acceleration Conversion

Angle Conversion

Convert from acceleration units to desired
acceleration units

Convert from angle units to desired angle units

4-9

4 Block Reference

4-10

Angular Acceleration
Conversion

Angular Velocity
Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Convert from angular acceleration units to
desired angular acceleration units

Convert from angular velocity units to desired
angular velocity units

Convert from density units to desired density
units

Convert from force units to desired force units

Convert from length units to desired length
units

Convert from mass units to desired mass units

Convert from pressure units to desired
pressure units

Convert from temperature units to desired
temperature units

Convert from velocity units to desired velocity
units

Blocks — Alphabetical List

Blocks — Alphabetical List

This section contains the Aerospace Blockset block reference pages listed
alphabetically.

4-11

1D Controller [A(v),B(v),C(v),D(v)]

Purpose

Library

Description

w
W

Dialog Box

4-12

Implement a gain-scheduled state-space controller depending on one
scheduling parameter

GNC/Controls

The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A(v)x+B(v)y
u= C(v)x+D(v)y

where v is a parameter over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

Block Parameters: 1D Controller [A{¥),B(¥),C |
— StateSpacetBCD-10 [mazk] (link)

Implement a state-space controller [4,B,C.0) where &, B, C, and D
depend on one scheduling parameter, .

— Parameters
A-mnatriz(v]:
fa

B-rnatris(]:
E

C-rnatris]:
fC

Dr-ratrisf]:
o1

Scheduling variable breakpaints:

Iv_vec
Iritial state, #_initial:
o

Qk. I Cancel Help Apply

1D Controller [A(v),B(v),C(v),D(v)]

A-matrix(v)

A-matrix of the state-space implementation. In the case of 1-D scheduling,
the A-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix
corresponding to the first entry of v is the identity matrix, then

A1) =[10;0 1];.

B-matrix(v)

B-matrix of the state-space implementation. In the case of 1-D scheduling,
the B-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then

B(:,:,1) = [1 0;0 1];.

C-matrix(v)

C-matrix of the state-space implementation. In the case of 1-D scheduling,
the C-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(,:,1)=10;0 11;.

D-matrix(v)

D-matrix of the state-space implementation. In the case of 1-D scheduling,
the D-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the D-matrix
corresponding to the first entry of v is the identity matrix, then

D(,:,1) = [1 0;0 1.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

4-13

1D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

4-14

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk 1lib HL20 demo library for an example of this block.
1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

Purpose

Library

Description

¥
)

Implement a 1-D vector of state-space controllers by linear interpolation of
their outputs

GNC/Controls

The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of
state-space controller designs. The controllers are run in parallel, and their
outputs interpolated according to the current flight condition or operating
point. The advantage of this implementation approach is that the state-space
matrices A, B, C, and D for the individual controller designs do not need to vary
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points
U=U,,ip, and v=v,,,,. The 1D Controller Blend block implements

x'1 = Ax;+By

uy = Cixy+Dyy
Ug = C2x2 +Dyy

u = (1-Nuq+2Auy

min
v—-0U_ -
A= . Umin svs Umax
v -0
max min
1 V>V,

For longer arrays of design points, the blocks only implement nearest neighbor
designs. For the 1D Controller Blend block, at any given instant in time, three
controller designs are being updated. This reduces computational
requirements.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

4-15

1D Controller Blend u=(1-L).K1.y+L.K2.y

Dialog Box

4-16

Block Parameters: 1D Controller Blend: u={1-1 |
— Blend-10 [maszk] [link]

Blend between outputs of a 1-D' vector of state-space controllers. All
controllers must have the same state dimension.

— Parameters
A-matris(v]:
1

B-matrisf]:
B

C-matrisf]:
jci

D1-ratriss):
|0

Scheduling wariable breakpoints:

|[1 152]

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel | Help | Apply |

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D blending,
the A-matrix should have three dimensions, the last one corresponding to
scheduling variable v. Hence, for example, if the A-matrix corresponding to
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.
B-matrix(v)
B-matrix of the state-space implementation.

C-matrix(v)

C-matrix of the state-space implementation.
D-matrix(v)

D-matrix of the state-space implementation.

1D Controller Blend u=(1-L).K1.y+L.K2.y

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

This block requires the Control System Toolbox.

Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

1D Controller [A(v),B(v),C(v),D(¥)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller Blend

4-17

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem
W

U_meas

u_dem

Dialog Box

4-18

GNC/Controls

Implement a gain-scheduled state-space controller in an observer form
depending on one scheduling parameter

The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

= (A() +H@)C(v)x +B)u,, 0 T HO)Y =Y gom)

Ugem= F(v)x

Block Parameters: 1D Observer Form [A{v),E

— StateSpacedBCFH-10 [maszk] (link)

Implement a state-zpace controller [&,B C.F H] in obzerver form where &,
B.C.F. and H depend on one scheduling parameater.

The main application of this blocks is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the
U -Analysis and Synthesis Toolbox.

— Parameters
A-matris(v]:

A

B-matrisf]:

E

C-matrisf]:

Ic

F-matrix[+]:

|F

H-matriss]):

|

Scheduling wariable breakpoints:

Iv_vec

Initial ztate, =_initial:

o

[u]4 I Cancel

Help

Apply

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Inputs and
Outputs

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.

Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 11;.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.

Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 11;.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for example, if
the F-matrix corresponding to the first entry of v is the identity matrix,
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. Hence,
for example, if the H-matrix corresponding to the first entry of v is the
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the set-point error.

4-19

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

The second input is the scheduling variable.
The third input is measured actuator position.
The output is the actuator demands.

Assumptions If the scheduling parameter inputs to the block go out of range, then they are
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk 1lib HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
1D Controller Blend u=(1-L).K1.y+L.K2.y
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-20

1D Self-Conditioned [A(v),B(v),C(v),D(v)]
|

Purpose Implement a gain-scheduled state-space controller in a self-conditioned form
Library GNC/Controls
Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a

" gain-scheduled state-space controller as defined by the equations

w u_dem [

u_meas

x= A(w)x+B(v)y
u= C(v)x+D(v)y

in the self-conditioned form

2= (A(v)-H(w)C(v))z + (B(v)-H(v)D(v))e+ H(v)u

meas

Ugem= C(v)z+D(v)e

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
parameter over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a
function of v, which is often the case in aerospace applications.

4-21

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog Box

4-22

Block Parameters: 1D Self-Conditioned [A(\E |
— StateSpaceSelfiCond-10 [mask] [link]

Implement a state-space controller [4[w) B[], Cl+].D[+]] in a
zelf-conditioned form. |f u_meaz = u_dem, then the implemented controller
iz [8.B.C.0] If u_meas is limited, 2.g.. rate limiting. then the pales of the
controller become thoze defined in the mask dialog box, Uzes call to
Cantral Spstems Taoolbax function place. m when intializing. & B. C. and D
should be 3-D matrices, the last dimension coresponding to the
zcheduling parameter, and the first bwo comezponding to the matrix for a
given zet of scheduling parameter values.

— Parameters
A-matris(v]:

A

B-matrisf]:

E

C-matrisf]:

Ic

D1-ratriss):

D

Scheduling wariable breakpoints:

Iv_vec:

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel Help Apply

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 11;.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 11;.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the D-matrix corresponding to the first entry of v is
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The third input is the measured actuator position.

The output is the actuator demands.

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

4-23

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

References

See Also

4-24

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Controller [A(v),B(v),C(v),D(¥)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

Purpose

Library

Description

W
il

w2

Dialog Box

|

Implement a gain-scheduled state-space controller depending on two
scheduling parameters

GNC/Controls

The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A(w)x+B(v)y
u= C(v)x+D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

Block Parameters: ZD Controller [A{y),B{y),C{ |
— StateSpacetBCO-20 [mask] (link]

Implement a state-space controller [4,B . C.0] where &, B, C, and D
depend on two scheduling parameters, »1 and w2

— Parameters
A-matrigv1 v 2]
A

B-matriz[+1,%2):
I
C-matris{+1,%2)
Ic
D -matria(1 2]
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second scheduling waniable [+2) breakpoints:

|v2_vec

Initial state, &_initial:

|0

(] 4 I Cancel Help Aol

4-25

2D Controller [A(v),B(v),C(v),D(v)]

4-26

A-matrix(vl,v2)

A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then A(:,:;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)

B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then B(:,:;,1,1) = [1 0;0 1];.

C-matrix(vl,v2)

C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

D-matrix(vl,v2)

D-matrix of the state-space implementation. In the case of 2-D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

2D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

The first input is the measurements.

The second and third block inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk 1lib HL20 demo library for an example of this block.

1D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Controller [A(v),B(v),C(v),D(v)]

4-27

2D Controller Blend

Purpose

Library

Description

W
wi

w2

4-28

Implement a 2-D vector of state-space controllers by linear interpolation of
their outputs

GNC/Controls

The 2D Controller Blend block implements an array of state-space controller
designs. The controllers are run in parallel, and their outputs interpolated
according to the current flight condition or operating point. The advantage of
this implementation approach is that the state-space matrices A, B, C, and D
for the individual controller designs do not need to vary smoothly from one
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

2D Controller Blend

Dialog Box

Block Parameters: 2D Controller Blend #
— Blend-20 [maszk] [link]

Blend between outputs of a 2-D vector of state-space controllers. All
controllers must have the same state dimension.

— Parameters
A-matrigv1 v 2]
A

B-matriz[+1,%2):
B
C-matrisfv],w2)
Ic
Dr-matris(1, w2):
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel | Help | Apply |

A-matrix(vl,v2)
A-matrix of the state-space implementation. In the case of 2-D blending,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)
B-matrix of the state-space implementation.

C-matrix(vl,v2)
C-matrix of the state-space implementation.

|

4-29

2D Controller Blend

Inputs and
Outputs

Assumptions
and Limitations

References

4-30

D-matrix(vl,v2)
D-matrix of the state-space implementation.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The output is the actuator demands.
This block requires the Control System Toolbox.
Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight

Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

2D Controller Blend

See Also

1D Controller Blend u=(1-L).K1.y+L.K2.y
2D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-31

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem

wi
w2 u_dem

U_meas

4-32

Implement a gain-scheduled state-space controller in an observer form
depending on two scheduling parameters

GNC/Controls

The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

= (A()+H@)C()x+BW)u,,,0s * HO)Y =Y gom)
Ugem= F(v)x

The main application of these blocks is to implement a controller designed
using H-infinity loop-shaping, one of the design methods supported by the
W -Analysis and Synthesis Toolbox.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

Block Parameters: 2D Obseryer Form [A(y¥),

— StateSpacetBCFH-20D [mask] (link)

Implement a state-space controller [4,B C.F H] in obzerver form where &,
B.C.F. and H depend on bwo zcheduling parameters.

— Parameters
A-matrigv1 v 2]

A

B-matriz[+1,%2):

B

C-matrisfv],w2)

Ic

F-mnatrix(«1 %2

|F

H-matris(1,w2):

|

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Initial ztate, =_initial:

o

Ok, I Cancel | Help Apply

A-matrix(vl,v2)

A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity

matrix, then A(:,:;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)

B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity

matrix, then B(:,;,1,1) = [1 0;0 1];.

|

4-33

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

C-matrix(vl,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

F-matrix(vl,v2)
State-feedback matrix. In the case of 2-D scheduling, the F-matrix should
have four dimensions, the last two corresponding to scheduling variables
v1 and v2. Hence, for example, if the F-matrix corresponding to the first
entry of vl and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1
0;0 1];.

H-matrix(vl,v2)
Observer (output injection) matrix. In the case of 2-D scheduling, the
H-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the H-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then H(:,;,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and The first input is the set-point error.

Outputs L . . .
The second and third inputs are the scheduling variables ordered conforming

to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

4-34

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
|

Assumptions If the scheduling parameter inputs to the block go out of range, then they are
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk_lib HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(V)]
2D Controller [A(v),B(v),C(v),D(v)]
2D Controller Blend
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-35

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose
Library

Description

¥

:; u_dem

u_meas

4-36

Implement a gain-scheduled state-space controller in a self-conditioned form
GNC/Controls

The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

x= A(v)x +B(v)y
u= C(v)x+D(v)y

in the self-conditioned form

2= (A(v)-HWw)C(v))z+ (B(w)-H(w)D(v))e+H()u
Ugem= C(v)z+D(v)e

meas

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

2D Self-Conditioned [A(v),B(v),C(v),D(v)]
|

Dialog Box
Block Parameters: 2D Self-Conditioned [Al(y |

— StateSpaceSelfCond-20 [mask] [link]

Implement a state-space controller [A0w1 %2],Blv1 42, Clw1,v2)0 (1 %2]]
in a zelf-conditioned form. |f u_meaz = u_dem, then the implemented
contraller is [4.8.C.0] If u_meas iz imited. ... rate limiting, then the poles
of the controller become thoze defined in the mazk dialog box. Uses call
ta Contral Systems Toalbax funchion place. m when initializing. A, B C. and
[should be 4-D matrices, the last byo dimensions corresponding to the
zcheduling parameters, and the firgt bwo comezponding to the matrix for a
given zet of scheduling parameter values.

— Parameters
A-matrigv v 2]

A

B-matrisfv1,w2):
E
C-matrisfv],w2)
Ic
Dr-matris(1, w2):
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel | Help Apply

A-matrix(vl,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,;,1,1) = [1 0;0 1];.

4-37

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-38

B-matrix(vl,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then B(:,:;,1,1) = [1 0;0 1];.

C-matrix(vl,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

D-matrix(vl,v2)
D-matrix of the state-space implementation. In the case of 2-D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter, v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-39

3D Controller [A(v),B(v),C(v),D(v)]

Purpose

Library

Description

W
wl

w2
w3

4-40

Implement a gain-scheduled state-space controller depending on three
scheduling parameters

GNC/Controls

The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A(v)x+B(v)y
u= C(v)x+D(v)y

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

3D Controller [A(v),B(v),C(v),D(v)]

Dialog Box

|

Block Parameters: 3D Controller [A{y),B{x),C(#

— StateSpacetBCD-30 [mask] (link]

Implement a state-space controller [4,B C.0] where &, B, C, and D
depend on three scheduling parameters, «1, w2, and 3.

— Parameters
A-matriglv1 v 2 4+ 3):

A
B-matris[+] v2 »3):
B
C-matrisfv] w2 w3
Ic
Dr-matris(s 1, w2 43):
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Third zcheduling wariable (3] breakpoints:

|v3_vec

Initial ztate, =_initial:

o

Ok, I Cancel | Help Apply

A-matrix(vl,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,;,1,1,1)=[100;010; 0 0 1];.

B-matrix(vl,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,

the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix

4-41

3D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

4-42

corresponding to the first entry of v1, the first entry of v2, and the first

entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.
C-matrix(vl,v2,v3)

C-matrix of the state-space implementation. In the case of 3-D scheduling,

the C-matrix should have five dimensions, the last three corresponding to

scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix

corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.
D-matrix(vl,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,;,1,1,1) = [1 0;0 1];.
First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the measurements.

The second, third and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

3D Controller [A(v),B(v),C(v),D(v)]
|

Assumptions If the scheduling parameter input to the block go out of range, then they are
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.
See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-43

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem

wl

w2 u_dem
w3

U_meas

4-44

Implement a gain-scheduled state-space controller in an observer form
depending on three scheduling parameters

GNC/Controls

The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

= (A()+H@)C()x+BW)u,,,0s * HO)Y =Y gom)
Ugem= F(v)x
The main application of this block is to implement a controller designed using

H-infinity loop-shaping, one of the design methods supported by the
W -Analysis and Synthesis Toolbox.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

Block Parameters: 3D Observer Form [A{v¥), .: |

— StateSpacetBCFH-3D [mask] (link)

Implement a state-space controller [4,B C.F H] in obzerver form where &,
B.C.F. and H depend on three scheduling parameters.

— Parameters
A-matriglv1 v 2 4+ 3):

A
B-matris[+] v2 »3):
B
C-matrisfv] w2 w3
Ic
F-mnatris{«1 %2 +3]:
|F
H-matris(1 w2 43):
|

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Third zcheduling wariable (3] breakpoints:

|v3_vec

Initial ztate, =_initial:

o

Ok, I Cancel | Help Apply

A-matrix(vl,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(vl,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to

|

4-45

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-46

scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(vl,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(vl,v2,v3)
State-feedback matrix. In the case of 3-D scheduling, the F-matrix should
have five dimensions, the last three corresponding to scheduling variables
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the
first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(vl,v2,v3)
observer (output injection) matrix. In the case of 3-D scheduling, the
H-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

The first input is the set-point error.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is measured actuator position.
The output is the actuator demands.

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

1D Controller [A(v),B(v),C(v),D(¥)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-47

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose
Library

Description

v
wi

wi u_dem
w3
u_meas

4-48

Implement a gain-scheduled state-space controller in a self-conditioned form
GNC/Controls

The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

x= A(v)x +B(v)y
u= C(v)x+D(v)y

in the self-conditioned form

2= (A(v)-Hw)C(v))z+ (B(v)-H((w)D(v))e+H((v)u

meas

Ugem= C(v)z+D(v)e

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. These blocks implement a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog Box

|

Block Parameters: 3D Self-Conditioned [A{¥), |
— StateSpaceSelfCond-30 [mask] [link]

Implement a state-space controller

Al w2 w3) Bl w2 w3 Ol w2 w3). 001w 2,03]] i a zelf-conditioned
form. If u_meas = u_dem, then the implemented contraller is [&.8.C.07. IF
u_meas iz limited, &.g., rate limiting, then the poles of the controller
become those defined in the mask dialog box. Uses call to Control
Systems Toolbox function place.m when initializing. &, B, C, and D should
be 5-D matrices, the last three dimenzions corezponding to the
scheduling parameters, and the first bwo comesponding to the matrix for &
given zet of scheduling parameter values.,

— Parameters
A-mnatrial w2 3]

A
B-matrix[v1 w2 3):
|B
C-matriz(v1 w2 3):
IC
Dr-rnatris(v1 w2 v 3]
D

First zcheduling wariable [+1] breakpaints:

Iv'l_vec

Second scheduling wariable (2] breakpaints:

|v2_vec

Third zcheduling wariable [+3) breakpaints:

|v3_vec

Initial state, »_initial:

|0

Pales of Alv]-H[%)Clv] = [wl ... wnl
[15-2]

Ok, I Cancel | Help Apply

A-matrix(vl,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:;,1,1,1) = [1 0;0 1];.

4-49

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-50

B-matrix(vl,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.
C-matrix(vl,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.
D-matrix(vl,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.
First scheduling variable (vl) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.
The first input is the measurements.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.

The output is the actuator demands.

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-51

3DoF Animation

Purpose
Library

Description

Dialog Box

4-52

Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object
Animation

The 3DoF Animation block displays a 3-D animated view of a
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Block Parameters: 3DoF Animation #
— D aF_Animation [mazk)] (link)

Create a 3-0' animated view of a three-degrees-of-freedom craft and its
target, where ¥ and £ target position [T argetPos). # and £ craft position
[<eZe), and craft attitude are inputs.

Dizplay parameters are in the zame units of lehath az the input parameters.

— Parameters
Aues limits [Krnin xmas ymin ymax 2min zmas:

|[D 5000 -2000 2000 -5050 -3050]

Tire interval between updates:
|05

Size of craft dizplayed:
j1.0

Enter view: IFiHBd position j
Fozition of camera [«c yo zc]:

|[2EIDD 500 -3150]

Yiew angle:

|1n

¥ Enable animation

Ok, I Cancel Help Apply

3DoF Animation

Inputs

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are
=Fixed position
=Cockpit
=Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

The first input is a vector containing the altitude and the downrange position
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange
position of the craft in Earth coordinates.

The third input is the attitude of the craft.

4-53

3DoF Animation

Examples See the aero_guidance demo for an example of this block.

See Also 6DoF Animation
FlightGear Preconfigured 6DoF Animation

4-54

3DoF (Body Axes)

Purpose
Library
Description
A (md)
F, i}
® @, (rdis)
dea, dt irmdlis]
F_ M) T—e
%02, m)
U, w (=)
Il (Ml-r)
A, 4 (mis)

Implement three-degrees-of-freedom equations of motion with respect to body
axes

Equations of Motion/3DoF
The 3DoF (Body Axes) block considers the rotation in the vertical plane of a

body-fixed coordinate frame about an Earth-fixed reference frame.

.,

xb,U\q

X
Incidence = &
X

Body fixed
coordinate
frame

Earth fived
reference frame’

The equations of motion are

u=-—=<—qw-gsin®
F

w = —<+qu+gcosd
m

g M
I,

6 =gq

where the applied forces are assumed to act at the center of gravity of the body.

4-55

3DoF (Body Axes)

Dialog Box

4-56

—3DoF Eokd [mask] [link]

lock Parameters: 3DoF {Body Axes)

2|

Integrate the three-degrees-of-freedom equations of motion to determine body position,
velocity, attitude, and related values.

el

Units: [Metric (MKS) =
Mazs type: |Fixed LI
Initial welocity:

J100

Initial body attitude:
Jo

Initial incidence:

Jo

Initial body ratation rate:

Jo

Initial position [« 2]:

[T

Initial mass:
1.0

Inertia:
1.0

Gravity source: | Extemnal LI

Ok Lancel Help | Apply

3DoF (Body Axes)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton- Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot- Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot- Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Fixed selection conforms to the previously described equations of
motion.

Initial velocity

A scalar value for the initial velocity of the body, (V).
Initial body attitude

A scalar value for the initial pitch attitude of the body, (6,) .
Initial incidence

A scalar value for the initial angle between the velocity vector and the body,
(o) -

4-57

3DoF (Body Axes)

Inputs and
Outputs

4-58

Initial body rotation rate
A scalar value for the initial body rotation rate, (gy).

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:
External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the body x-axis, (F).
The second input to the block is the force acting along the body z-axis, (F),).
The third input to the block is the applied pitch moment, (M).
The fourth optional input to the block is gravity in the selected units.
The first output from the block is the pitch attitude, in radians (0).
The second output is the pitch angular rate, in radians per second (g).

The third output is the pitch angular acceleration, in radians per second
squared (g).

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

3DoF (Body Axes)
|

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

Examples See the aero_guidance demo for an example of this block.

See Also 3DoF (Wind Axes)
4th Order Point Mass (Longitudinal)
Custom Variable Mass 3DoF (Body Axes)
Custom Variable Mass 3DoF (Wind Axes)
Simple Variable Mass 3DoF (Body Axes)
Simple Variable Mass 3DoF (Wind Axes)

4-59

3DoF (Wind Axes)

Purpose Implement three-degrees-of-freedom equations of motion with respect to wind
axes
Library Equations of Motion/3DoF
Description The 3DoF (Wind Axes) block considers the rotation in the vertical plane of a
= Wwind-fixed coordinate frame about an Earth-fixed reference frame.
- Wiind 2y fee)
FL M) Fired o fle Wind-Fixed
ot iztr:,m: Reference Frame q
a i)

Earth-Fixed e ,
Reference Frame -~

The equations of motion are

V = wind —gSln’Y
m

o= ¥ ns +q + =5—cosy
mVcosf3 VeosP
g = 9 — _ Ybody
I,
Y=gq-o

where the applied forces are assumed to act at the center of gravity of the body.

4-60

3DoF (Wind Axes)

Dialog Box

E! Function Block Parameters: 3DoF (Wind Axes)

—30oF “Wind Eakd [magk] [link]

X

pozition, velocity, attitude, and related walues.

Integrate the three-degrees-of-freedom equations of mation in wind axes to determine

—Parameters

Urits: | Metric MKS]

Mass t_l,lpe:l Fined

Initial airspeed:

=
=

J100
Initial flight path angle:

Jo

Initial incidence:

jo

Initial body rotation rate:

jo

Initial pozition [2):

jio o

Initial mazz:

j1.0

Inertia body axes:

1o

Gravity source: | External

Ok, Cancel

Apply

|

4-61

3DoF (Wind Axes)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Fixed selection conforms to the previously described equations of
motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V).

Initial flight path angle
A scalar value for the initial flight path angle of the body, (7).
Initial incidence

A scalar value for the initial angle between the velocity vector and the body,
(o) -

4-62

3DoF (Wind Axes)

Inputs and
Outputs

Initial body rotation rate
A scalar value for the initial body rotation rate, (gy).

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia body axes
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:
External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the wind x-axis, (F).
The second input to the block is the force acting along the wind z-axis, (F,).
The third input to the block is the applied pitch moment in body axes, (M).
The fourth optional input to the block is gravity in the selected units.
The first output from the block is the flight path angle, in radians (y).
The second output is the pitch angular rate, in radians per second (u)y) .

The third output is the pitch angular acceleration, in radians per second
squared (dwy/dt) .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

4-63

3DoF (Wind Axes)

Assumptions
and Limitations

References

See Also

4-64

The fifth output is a two-element vector containing the velocity of the body
resolved into the wind-fixed coordinate frame, (V,0).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, (o).

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

3DoF (Body Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

3x3 Cross Product

Purpose
Library

Description

A SmEs

Fodust
B C=AxE

T

Dialog Box

Inputs and
Outputs

|

Calculate the cross product of two 3-by-1 vectors
Utilities/Math Operations

The 3x3 Cross Product block computes cross (or vector) product of two vectors,
A and B, by generating a third vector, C, in a direction normal to the plane
containing A and B, and with magnitude equal to the product of the lengths of
A and B multiplied by the sine of the angle between them. The direction of C is
that in which a right-handed screw would move in turning from A to B.

A = aji+agj+agk
B = bi+bgj+b3k

i j k
C=AxB=|ajagag

= (agbg—agbgy)i+(agb;—a bg)j+(abg—aysb)k

«): Block Parameters: 3x3 Cross Product 2=l

Calculate the crozz product of bwo 3-by-1 vectors.

"CIDSSPIDduCl [mazk] [link]

LCancel Help Apply

The inputs are two 3-by-1 vectors.

The output is a 3-by-1 vector.

4-65

4th Order Point Mass (Longitudinal)

Purpose Calculate fourth order point mass
Library Equations of Motion/Point Mass
Description The 4th Order Point Mass (Longitudinal) block performs the calculations for
the translational motion of a single point mass or multiple point masses.
¥ (=d)
F M Pajnt Mass _—
Longitudi et
£ gitudinal
Hyp il

4-66

Fast

The translational motions of the point mass [Xg,¢; XUp]T are functions of
airspeed (V) and flight path angle (y),
F_=mV

X

F

V4

mVy

XEgast = Vcosy

Xyp = Vsiny

4th Order Point Mass (Longitudinal)

|

where the applied forces [F, FZ]T are in a system defined as follows: x-axis is in
the direction of vehicle velocity relative to air, z-axis is upwards and y-axis
completes the right hand frame. The mass of the body m is assumed constant.

Dialog Box
[EJFunction Block Parameters: 4th Order Point Mass x|

—dth Order Paint M azs [Longitudinal] [mask)] [link]

Calculate fourth-order point mass.

—Parameters
Urits: | Metric MKS] =]

Initial flight path angle:
jo

Initial airzpeed:

J100
Initial downrange [E ast]:
jo
Initial altitude [Up]:
jo
Initial mazs:
1o
0K, | Cancel | Apply |
Units
Specifies the input and output units:
Units Forces Velocity Position
Metric (MKS) Newton Meters per second Meters
English (Velocity in ft/s) Pound Feet per second Feet
English (Velocity in kts) Pound Knots Feet

Initial flight path angle

The scalar or vector containing the initial flight path angle of the point
mass(es).

4-67

4th Order Point Mass (Longitudinal)

Inputs and
Outputs

Assumptions
and Limitations

See Also

4-68

Initial airspeed
The scalar or vector containing the initial airspeed of the point mass(es).

Initial downrange
The scalar or vector containing the initial downrange of the point mass(es).

Initial altitude
The scalar or vector containing the initial altitude of the point mass(es).

Initial mass
The scalar or vector containing the mass of the point mass(es).

The first input is force in x-axis in selected units.

The second input is force in z-axis in selected units.

The first output is flight path angle in radians.

The second output is airspeed in selected units.

The third output is the downrange or amount traveled East in selected units.
The fourth output is the altitude or amount traveled Up in selected units.
The flat Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

4th Order Point Mass Forces (Longitudinal)

3DoF (Body Axes)

3DoF (Wind Axes)

6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 3DoF (Wind Axes)

4th Order Point Mass Forces (Longitudinal)

Purpose
Library

Description

Calculate forces used by fourth order point mass
Equations of Motion/Point Mass

The 4th Order Point Mass Forces (Longitudinal) block calculates the applied
forces for a single point mass or multiple point masses.

Fast

The applied forces [F, FZ]T are in a system defined as follows: x-axis is in the

direction of vehicle velocity relative to air, z-axis is upwards and y-axis

completes the right hand frame. They are functions of lift (L), drag (D), thrust

(T), weight (W, flight path angle (y), angle of attack (a), and bank angle (u).
F = Tcoso—D - Wsiny

X

F

z

(L + Tsino)cospu — Weosy

4-69

4th Order Point Mass Forces (Longitudinal)

Dialog Box
=JFunction Block Parameters: 4th Order Point Mas x|

’ﬂﬂh Order Point b azs Forces [Longitudinal] [maszk] (link)

Calculate forces uzed by fourth-order paint mass.,

Cancel | Help Apply

Inputs and The first input is lift in units of force.

Outputs The second input is drag in units of force.

The third input is weight in units of force.

The fourth input is thrust in units of force.

The fifth input is flight path angle in radians.

The sixth input is bank angle in radians.

The seventh input is angle of attack in radians.

The first output is force in x-axis in units of force.

The second output is force in z-axis in units of force.

Assumptions The flat Earth-fixed reference frame is considered inertial, a simplification

and Limitations that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

See Also 4th Order Point Mass (Longitudinal)
6th Order Point Mass (Coordinated Flight)

6th Order Point Mass Forces (Coordinated Flight)

4-70

6DoF Animation

Purpose
Library

Description

R

By

Dialog Box

|

Create a 3-D Handle Graphics® animation of a six-degrees-of-freedom object
Animation

The 6DoF Animation block displays a 3-D animated view of a
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Block Parameters: 6DoF Animation |
— EDaF_Animation [mazk) (link)

Create a 3-D animated view of a six-degrees-of-freedom craft, where .,
and Z craft position [Pozition] and craft Euler angles [E uler] are inputs.

Digplay parameters are in the same unitz of length az the input parameters.

— Parameters
Ases limits [krnin xmax ymin ymasx zmin zmasx]:

|[D 4000 -2000 2000 -5000 -3000]

Time interval between updates:

|0.1

Size of craft dizplayed:
j1.0

Static object position [p yp zp]:
J[4000 0 -5000]

Enter view: IFi:-ted position j
Fosition of camera [#c yo zcl:

|[EDDD 500-3150]

View angle:

|‘IIJ

v Enable animation

(] 4 I Cancel Help Apply

4-71

6DoF Animation

Inputs

Examples

4-72

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Static object position

Specifies the altitude, the cross-range position, and the downrange position
of the target.

Enter view

Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

=Fixed position
=Cockpit
=Fly alongside
Position of camera [xc yc zc]

Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle

Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

The first input is a vector containing the altitude, the cross-range position, and
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

See the aeroblk vmm demo for an example of this block.

6DoF Animation

See Also 3DoF Animation

FlightGear Preconfigured 6DoF Animation

4-73

6DoF (Euler Angles)

Purpose
.
Library
o e
Description
v, imwés)
Fope * tmh
Eukrangks oo
DChl
v, mis)
Fn::; & (rdis)
Mgz -} daldt
Ay i)

4-74

Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Equations of Motion/6DoF

The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate
frame (X b Yo Zp) about an Earth-fixed reference frame (X o Yo Zy) - The
origin of the body-fixed coordinate frame is the center of gravity of the body,
and the body is assumed to be rigid, an assumption that eliminates the need to
consider the forces acting between individual elements of mass. The
Earth-fixed reference frame is considered inertial, a simplification that allows
the forces due to the Earth’s motion relative to a star-fixed reference system to
be neglected.

Center of
gravity Yb
0 ub
/
/
/
/
e
» Yb Ib
vb wh

Ye
Le

Earth-fixed reference frame

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [F, F, Fz]T are in the body-fixed frame, and the mass
of the body m is assumed constant.

F

X
Ey= |F | = m(Vy+0xV,)
FZ

6DoF (Euler Angles)

Yb: Up 2 ® = |q

wy, r
The rotational dynamics of the body-fixed frame are given below, where the

applied moments are [L M NIT, and the inertia tensor I is with respect to the
origin O.

L
Mp= M| = Io+ox)
N
Ixx _Ixy _Ixz
I=1\-1,1, -,
_sz _Izy Izz

The relationship between the body-fixed angular velocity vector, [p q 1T, and
the rate of change of the Euler angles, [¢ 6y 1T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

p o |10 0 0 |10 0 cos® 0 —sin@||0) 0
q| =10/ % |0 cosd¢ sin¢||[6] T |0 cos¢ sino[|0 10 0/=J |
r 0 0 —sin¢ cos¢| [0 0 —sin¢ cos¢| [sin® 0 cos6 ||y v

Inverting J then gives the required relationship to determine the Euler rate
vector.

1 (sin¢tan®) (cosdptan0)

ol =d Iq) _ |0 cosd —sind 2
] - 0 sin ¢ cosd ,
\d cos9 cos9

4-75

6DoF (Euler Angles)

Dialog Box

4-76

Block Parameters: 6DoF (Euler Angles) |

— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters
U rits: | etric MES]

Mass type: | Fixed

Fepresentation: I Euler Angles

Iritial positian in inertial axes [$e e el

Lef Le] Le

[mom

Iritial velocity in bady ases [v w]:

[mom

Iritial Euler orientation [rall, pitch, waw]:

[mom

Initial body ratation rates [p.a.r:

[mom

Initial mass:

1.0

Inertia:

|eye[3]

o]

Cancel | Help | Apply

Units
Specifies the input and output units:

Units

Metric
(MKS)

English
(Velocity
in ft/s)

English
(Velocity
in kts)

Forces

Newton

Pound

Pound

Moment Acceleration Velocity Position

Newton Meters per Meters Meters

meter second per
squared second
Foot Feet per Feet per Feet
pound second second
squared

Foot Feet per Knots Feet
pound second
squared

Mass

Kilogram

Slug

Slug

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

6DoF (Euler Angles)

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations
of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial Mass
The mass of the rigid body.

4-77

6DoF (Euler Angles)

Inputs and
Outputs

Assumptions
and Limitations
Examples

References

See Also

4-78

Inertia
The 3-by-3 inertia tensor matrix I.

The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in

body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

See the aeroblk_six_dof demo, Airframe in the aeroblk_HL20 demo and
asbh120 demo for examples of this block.

Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

6DoF (Quaternion)
6DoF ECEF (Quaternion)

6DoF (Euler Angles)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-79

6DoF (Quaternion)

Purpose
o
Library
o a0
Description
v mis)
Foe M) cuse oo
e 0w ted)
(o]
v, mis)
Fn::; & (rdis)
M M0 dealdlt
Ay i)

4-80

Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to body axes

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain K drives the norm of the quaternion state vector to 1.0 should €
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

do 43 499 41 I
a1|_ 1[92 93 90| |’| , g |01
do| %1 90 as||| |22
ds ~q0 ~91 92 d3

2 2 2 2
e=1-(q0 +q; +95 +q4)

6DoF (Quaternion)
|

Dialog Box
Block Parameters: 6DoF (Quaternion) |
— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters
U rits: | etric MES]

Mass type: | Fixed

Lef Le] Le

Fiepresentation: I Fuaternion

Iritial positian in inertial axes [$e Yele]
[mom

Iritial velocity in bady ases [v w]:
[mom

Iritial Euler orientation [rall, pitch, waw]:
[mom

Initial body ratation rates [p.a.r:
[mom

Initial mass:
1.0

Inertia:

|eye[3]

Gain for guaternion normalization:
1.0

ak. I Cancel Help Apply

4-81

6DoF (Quaternion)

4-82

Units

Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of

motion.

Representation

Select the representation to use:

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations

of motion.

6DoF (Quaternion)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial Mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I.

Gain for quaternion normalization

The gain to maintain the norm of the quaternion vector equal to 1.0.
The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yawl], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

4-83

6DoF (Quaternion)

Assumptions
and Limitations

References

See Also

4-84

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in

body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

6DoF (Euler Angles)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

6DoF ECEF (Quaternion)

Purpose
.
Library
_—
Description
o 5]
Hignge 11
Jh|
Rt oS wevid
oo,
LGN,
DOM,, |
Fired Y, =)
{rRd'=)
Moy (P i “': (:w;
bttt
Ay, i)

Implement a quaternion representation of six-degrees-of-freedom equations of
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Equations of Motion/6DoF

The 6DoF ECEF (Quaternion) block considers the rotation of a Earth-Centered
Earth-Fixed (ECEF) coordinate frame (Xgopm Yrcrr ZEcgr) @bout an
Earth-Centered Inertial (ECI) reference frame (Xzcp Ypop Zgcp)- The origin
of the ECEF coordinate frame is the center of the Earth, additionally the body
of interest is assumed to be rigid, an assumption that eliminates the need to
consider the forces acting between individual elements of mass. The
representation of the rotation of ECEF frame from ECI frame is simplified to
consider only the constant rotation of the ellipsoid Earth (®,) including an
initial celestial longitude (L;(0)). This simplification that allows the forces
due to the Earth’s complex motion relative to a star-fixed reference system to
be neglected.

ZECEE ZECI

Horth

Vemnal
0T
XBQJ*"J

4-85

6DoF ECEF (Quaternion)

The translational motion of the ECEF coordinate frame is given below, where

the applied forces [F, F, F,]T are in the body frame, and the mass of the body
m is assumed constant.

F

X

Ey= |F,| = m(Vy+ 0, xV, + (DCMy;0,x V) + DCMy (0, % (0, Xx,)))

F

¥4

where the change of position in ECI (%;) is calculated by

XgcI
% = |yger| = DCMpVy + 0, xx;

2ECI

and the velocity in body-axis (V,), angular rates in body-axis (®,). Earth
rotation rate (®,), and relative angular rates in body-axis (®,,,) are defined as

u D 0
Vi = lu|- 9= |q|- 9, = | 0| Wy = @, ~DCMy;0,
” o

The rotational dynamics of the body defined in body-fixed frame are given

below, where the applied moments are [L M NIT, and the inertia tensor I is
with respect to the origin O.

L

M= M| = [0, +®, x (o)
N
Ixx _J&y _Ixz

4-86

6DoF ECEF (Quaternion)

|

The integration of the rate of change of the quaternion vector is given below.

7o 0 p g ri||?
q1|_ 1/-p 0 -r ¢ ||%1
Gy 2|-a v 0 -p|lgy
a LT aP Ollgy

o
Dialog Box
E! Function Block Parameters: 6DoF ECEF {Quaternion) il

EDoF EoM [ECEF] [mask] [link]

Integrate the six-degrees-of-freedom equations of motion using a quaternion
reprezentation for the arientation of the body in space.

Main IPIanet I

Units: | Metric: MKS)

Led Lo

Mass type:l Fixed

Iritial pogitian in geodatic latitude, longitude, altitude [, h]:
oo

Iritial velocity in bady axes [v w]:

oo o]

Initial Euler orientation [roll, pitch, paw]:

oo

Initial Body ratation rates [p.g.r):

oo

Initial mass:
j1.0

Inertia:
Jevel3)

ak Cancel

Ay |

4-87

6DoF ECEF (Quaternion)

E! Function Block Parameters: 6DoF ECEF {Quaternio| |

’—BD ofF Ect [ECEF] [mask] [link]

Integrate the six-degrees-of-freedom equations of motion using a quaternion
reprezentation for the arientation of the body in space.

Main | Flanet |

Planet model: | E anth (wWG504] =]

Celestial longitude of Graswich source:l Intermnal |

Celestial longitude of Greewich [deqg]:
i

ak | Cancel |

Ay |

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric Newton Newton Meters per Meters Meters Kilogram Kilogram
(MKS) meter second per meter
squared second squared
English Pound Foot Feet per Feet per Feet Slug Slug foot
(velocity pound second second squared
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug Slug foot
(velocity pound second squared
in kts) squared

4-88

6DoF ECEF (Quaternion)

Mass type
Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of
motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic
reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity in the body-fixed
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll,
pitch, yawl], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

Planet model
Specifies the planet model to use:

Custom
Earth (WGS84)

4-89

6DoF ECEF (Quaternion)

Inputs and
Outputs

4-90

Flattening

Specifies the flattening of the planet. This option is only available when
Planet model is set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for ECEF position. This
option is only available when Planet model is set to Custom.

Rotational rate

Specifies the scalar rotational rate of the planet in rad/sec. This option is
only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude:

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.

Celestial longitude of Greenwich

The initial angle between Greenwich meridian and the x-axis of the ECI
frame.

The first input to the block is a vector containing the three applied forces in
body-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The first output is a three-element vector containing the velocity in the ECEF
reference frame.

The second output is a three-element vector containing the position in the
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic
latitude, longitude and altitude, in degrees, degrees and selected units of
length respectively.

The fourth output is a three-element vector containing the body rotation angles
[roll, pitch, yaw], in radians.

6DoF ECEF (Quaternion)

Assumptions
and Limitations

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the
body-fixed frame.

The ninth output is a three-element vector containing the relative angular
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in
body-fixed axes.

This implementation assumes that the applied forces are acting at the center
of gravity of the body, and that the mass and inertia are constant.

This implementation generates a geodetic latitude that lies between +90
degrees, and longitude that lies between +180 degrees. Additionally, the MSL
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical
planet can be achieved. The Earth’s precession, nutation, and polar motion are
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at
the center of the planet, the x-axis is the continuation of the line from the

4-91

6DoF ECEF (Quaternion)

center of the Earth through the center of the Sun toward the vernal equinox,
the z-axis points in the direction of the mean equatorial plane’s north pole,
positive to the north, and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.
See Also 6DoF (Euler Angles)
6DoF (Quaternion)
6DoF Wind (Quaternion)
6DoF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)
Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-92

6DoF Wind (Quaternion)

Purpose
Library
Description
W)
%, m
Fope M QmTenm ryy (R
My
v, i)
«f (=d)
. it it
N
PN

Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to wind axes

Equations of Motion/6DoF

The 6DoF Wind (Quaternion) block considers the rotation of a wind-fixed
coordinate frame (X,, Y, , Z,) about an Earth-fixed reference frame
(X,,Y,,Z,). The origin of the wind-fixed coordinate frame is the center of
gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

Center of Grawity

X, V

Wind-Fized
Eeference Frame

Earth-Fized
Feference Frame

ZE

The translational motion of the wind-fixed coordinate frame is given below,
where the applied forces [F, F, F,|T are in the wind-fixed frame, and the mass
of the body m is assumed constant.

F

X

E,= |F)| =m{,+0 XV,)

4-93

6DoF Wind (Quaternion)

% Pu Py — Bsina Py
YLU = O ’(i)w = qw = DMCLUb Qb_a ,Libz qb
0 "w ry + Peosa "y

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor I is with respect to the
origin O. Inertia tensor I is much easier to define in body-fixed frame.

L

M= M :I‘i’b“i’bx([(i)b)
N
Ixx _Ixy _Ixz

I= _Iyx Iyy _Iyz

I, 1,1

x “zy “zz

The integration of the rate of change of the quaternion vector is given below.

To 0 p g r|9
91| _1|-p 0 —r q ||?1
gy 2|-a v 0 -p||gy
dy T-q¢p 0l|g,

4-94

6DoF Wind (Quaternion)

Dialog Box

ZJFunction Block Parameters: 6DoF Wind {(Quaternion) x|

—EBDoF Eobd [wind Axig) [mazk] [link]

Integrate the six-degrees-of-freedom equations of motion using a wind angle
reprezentation for the onentation of the body in zpace.

—Parameters

Urits: | Metric MKS]

Mass t_l,lpe:l Fined

Lel Le] Lo

Heplesentation:l (Quatemion

Initial pozition ininertial akes [<e,veLe]

jiooo

Initial airspeed, sideslip angle, and angle of attack [V beta,alphal:
jlooo

Initial wind orientation [bank angle.fight path angle heading angle]:
jinoo

Initial body ratation rates [p.a.rl
Jioo o

Initial mazs:
f1.0

Inertia in body awis:
Jewel)

0K Cancel Apply

|

4-95

6DoF Wind (Quaternion)

4-96

Units

Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of

motion.

Representation

Select the representation to use:

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations

of motion.

6DoF Wind (Quaternion)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, angle of attack, and sideslip angle

The three-element vector containing the initial airspeed, initial angle of
attack and initial sideslip angle.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

4-97

6DoF Wind (Quaternion)

Assumptions
and Limitations

References

See Also

4-98

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-99

6DoF Wind (Wind Angles)

Purpose
Library
Description
W, s}
%
Foe M mmmnr.fgs M’D'-é EE:J
¥, imis)
wf (Rd)
. ettt it
MmO
A, i)

4-100

Implement a wind angle representation of six-degrees-of-freedom equations of
motion

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF Wind (Quaternion) block.

The relationship between the wind angles, [pyy 1T, can be determined by
resolving the wind rates into the wind-fixed coordinate frame.

Py i (1o 0 0 (10 0 cosy 0 —siny| |0 LB
9| = |0| |0 cosp sinp||y|* [0 cosp sinp[|0 10 o|=J ¥
'y 0 0 —sinpu cosy| |0 0 —sinp cosy||siny O cosy ||y

Inverting J then gives the required relationship to determine the wind rate
vector.

Puw 1 (sinptany) (cosptany) Py
oo _ |0 cos —sin
V. J Ayl = . H H qy
o Sing cosp
"w cosy cosy "w

The body-fixed angular rates are related to the wind-fixed angular rate by the
following equation.

Py, pp - Bsino
9, = DMCwb qb_d
"w ry + Beosa

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular rates.

6DoF Wind (Wind Angles)

Dialog Box

i Py 1 (sinptany) (cosptany) pp - Bsina
il = JI|q,| = 0 c?su —sinp pMcC,, g,
o Sin cos L
"w cosy cosy ry + Beosa

[ZJFunction Block Parameters: 6DoF Wind (Wind &ngles) x|

—EDaoF Eokd [wind Axiz) [mazk)] (link)]

Integrate the sis-degrees-of-freedom equations of motion using a wind angle
representation for the orientation of the body in space.

—Parameters

Units: | Metric MKS)

Maszs t_l,lpe:l Fixed

Lef Led Lol

Reprezentation: | “Wind Angles

Initial position in inertial axes [Ke.v'eZe]:
Jioo o

Initial airspeed, angle of attack, and sideslip angla [V.alpha betal:
jinoo

Initial wind orientation [bank angle flight path angle heading angle]:
jiooo

Initial body rotation rates [p.g.r]:

jlooo

Initial mass:

j1.0

Inertia in body awis:
|eye[3]

Ok Cancel

Apply |

|

4-101

6DoF Wind (Wind Angles)

4-102

Units

Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(velocity pound second
in kts) squared
Mass type
Select the type of mass to use:
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of

motion.

Representation

Select the representation to use:

Wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Wind Angles selection conforms to the previously described equations

of motion.

6DoF Wind (Wind Angles)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, angle of attack, and sideslip angle

The three-element vector containing the initial airspeed, initial angle of
attack and initial sideslip angle.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I, in body-fixed axes.

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

4-103

6DoF Wind (Wind Angles)

Assumptions
and Limitations

References

See Also

4-104

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-105

6th Order Point Mass (Coordinated Flight)

Purpose

Library

Description

F Gth Onder
Fojnt Mass

F,)

F, ()

1 (r=d)
3 (=)
W (s)

4-106

Calculate sixth order point mass in coordinated flight
Equations of Motion/Point Mass

The 6th Order Point Mass (Coordinated Flight) block performs the calculations
for the translational motion of a single point mass or multiple point masses.

The translational motion of the point mass [Xg,o Xnoreh XUp]T are functions of
airspeed (V), flight path angle (y), and heading angle (y),

F_=mV

X

F, = (mVcosy)y

F, = mVy

V4
XEqst = Veosycosy
XNoreh = Vsinycosy

Xyp = Vsiny

6th Order Point Mass (Coordinated Flight)

Dialog Box

where the applied forces [F, F, Fh]T are in a system is defined by x-axis in the
direction of vehicle velocity relative to air, z-axis is upwards and y-axis
completes the right hand frame, and the mass of the body m is assumed
constant

[Z]Function Block Parameters: 6th Order Point Mass (& x|

— Eth Order Paint Mazs [Coordinated Flight] [maszk) (link)

Calculate sisth-order point mazs in coordinated flight.

—Parameters
Units: | Metric MKS) |
Initial flight path angle:
jo
Initial heading angle:
jo
Initial airspeed:
J100
Initial downrange [E ast]:
Jo
Initial crozsrange [Marth]:
jo
Initial altitude [Up]:
jo
Initial mazs:
f1.0

0K Cancel Apply

4-107

6th Order Point Mass (Coordinated Flight)

Inputs and
Outputs

4-108

Units
Specifies the input and output units:
Units Forces Velocity Position
Metric (MKS) Newton Meters per second Meters
English (Velocity in ft/s) Pound Feet per second Feet
English (Velocity in kts) Pound Knots Feet

Initial flight path angle

The scalar or vector containing initial flight path angle of the point
mass(es).

Initial heading angle
The scalar or vector containing initial heading angle of the point mass(es).

Initial airspeed
The scalar or vector containing initial airspeed of the point mass(es).

Initial downrange [East]
The scalar or vector containing initial downrange of the point mass(es).

Initial crossrange [North]
The scalar or vector containing initial crossrange of the point mass(es).

Initial altitude [Up]
The scalar or vector containing initial altitude of the point mass(es).

Initial mass
The scalar or vector containing mass of the point mass(es).
The first input is force in x-axis in selected units.
The second input is force in y-axis in selected units.
The third input is force in z-axis in selected units.
The first output is flight path angle in radians.
The second output is heading angle in radians.

The third output is airspeed in selected units.

6th Order Point Mass (Coordinated Flight)

Assumptions
and Limitations

See Also

The fourth output is the downrange or amount traveled East in selected units.
The fifth output is the crossrange or amount traveled North in selected units.
The sixth output is the altitude or amount traveled Up in selected units.

The block assumes that there is fully coordinated flight, i.e. there is no side
force (wind axes) and sideslip is always zero.

The flat Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

4th Order Point Mass (Longitudinal)

4th Order Point Mass Forces (Longitudinal)
6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass Forces (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-109

6th Order Point Mass Forces (Coordinated Flight)

Purpose
Library

Description

4-110

Calculate forces used by sixth order point mass in coordinated flight
Equations of Motion/Point Mass

The 6th Order Point Mass Forces (Coordinated Flight) block calculates the
applied forces for a single point mass or multiple point masses.

W

v

The applied forces [F, F, F,IT are in a system is defined by x-axis in the

direction of vehicle velocity relative to air, z-axis is upwards and y-axis

completes the right hand frame and are functions of lift (L), drag (D', thrust

(T), weight (W, flight path angle (y), angle of attack (a), and bank angle (p).
F_ = Tcoso—D - Wsiny

X

F

¥ (L + Tsina)sinp

F, = (L + Tsina)cosu — Weosy

6th Order Point Mass Forces (Coordinated Flight)

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

See Also

[ZJFunction Block Parameters: 6th Order Poink Ma x|

’78th Order Point b azs Forces [Coordinated Flight] [maszk) [link)

Calculate forces uzed by sisth-order point mags in coordinated flight.

Cancel | Help Apply

The first input is lift in units of force.

The second input is drag in units of force.

The third input is weight in units of force.

The fourth input is thrust in units of force.

The fifth input is flight path angle in radians.

The sixth input is bank angle in radians.

The seventh input is angle of attack in radians.

The first output is force in x-axis in units of force.
The second output is force in y-axis in units of force.
The third output is force in z-axis in units of force.
The block assumes that there is fully coordinated flight, i.e. there is no side
force (wind axes) and sideslip is always zero.

The flat Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

4th Order Point Mass (Longitudinal)
4th Order Point Mass Forces (Longitudinal)
6th Order Point Mass (Coordinated Flight)

4-111

Acceleration Conversion

Purpose
Library

Description

e

it

Dialog Box

4-112

Convert from acceleration units to desired acceleration units
Utilities/Unit Conversions

The Acceleration Conversion block computes the conversion factor from
specified input acceleration units to specified output acceleration units and
applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units
selected from the Initial units and Final units lists.

Block Parameters: Acceleration Conversion #

r—Acceleration Conversion [mask) [link]

Convert units of input signal to desired output units.

— Parameters

Initial nits: | frig™2

=
Final units: I mis”" 2 j
(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s? Meters per second squared
ft/s? Feet per second squared

km/s2 Kilometers per second squared
in/s? Inches per second squared
km/h-s Kilometers per hour per second
mph-s Miles per hour per second

G's g-units

Acceleration Conversion

Inputs and
Outputs

See Also

The input is acceleration in initial acceleration units.

The output is acceleration in final acceleration units.

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

4-113

Adjoint of 3x3 Matrix

Purpose Compute the adjoint matrix for the input matrix
Library Utilities/Math Operations
Description The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input
_ matrix.
adjia) L
Eae) The input matrix has the form of
All A12 A13
A=Ay Agy Agg
A31 A32 A33

The adjoint of the matrix has the form of
My My Myg
adj(A) = Mgy Myy Moy
Mgy Mgy Mg

where

i+j
M;; = (-1)

Dialog Box
Block Parameters: Adjoint of 3x3 Matrix |

".t’-‘«dioint of 33 matrix [mazk] [link)]

Compute the adjoint matrix for the input matris,

Ok I Cancel | Help | Apply

Inputs and The input is a 3-by-3 matrix.

Outputs The output of the block is 3-by-3 adjoint matrix of input matrix.

4-114

Adjoint of 3x3 Matrix
|

See Also Create 3x3 Matrix
Determinant of 3x3 Matrix

Invert 3x3 Matrix

4-115

Aerodynamic Forces and Moments

Purpose Compute the aerodynamic forces and moments using the aerodynamic
coefficients, dynamic pressure, center of gravity, and center of pressure

Library Aerodynamics

Description The Aerodynamic Forces and Moments block computes the aerodynamic forces
and moments about the center of gravity.

Coefficients

=)
Tear
Ce
CP Maero

Dialog Box

-«): Block Parameters: Aerodynamic Forces and Mol x|

—&erodynamic Forces and Moments [mask) (link)

Compute the aerodynamic forees and moments applied at the center of gravity using the
aerodynamic coefficients, dynamic pressure, center of gravity and center of pressure.

P
F

Fieference arsa
|1
Reference span;
1

Reference length:

1

oK Cancel Help Apply

Reference area
Specifies the reference area for calculating aerodynamic forces and
moments.

Reference span
Specifies the reference span for calculating aerodynamic moments in
x-axes and z-axes.

Reference length

Specifies the reference length for calculating aerodynamic moment in the
y-axes.

4-116

Aerodynamic Forces and Moments

Inputs and
Outputs

Examples

See Also

The first input consists of aerodynamic coefficients (in body axes) for forces and
moments. These coefficients are ordered into a vector as follows:

(axial force C,, side force C,, normal force C,, rolling moment C,
pitching moment C,,,, yawing moment C,,)

The second input is the dynamic pressure.
The third input is the center of gravity.
The fourth input is the center of pressure.

The first output consists of the aerodynamic forces at the center of gravity in
x-, y-, and z-axes.

The second output consists of the aerodynamic moments at the center of
gravity in x-, y-, and z-axes.

See Airframe in the aeroblk_HL20 demo for an example of this block.

Dynamic Pressure
Estimate Center of Gravity
Moments About CG Due to Forces

4-117

Angle Conversion

Purpose
Library

Description

dig —* =d

Dialog Box

Inputs and
Outputs

4-118

Convert from angle units to desired angle units

Utilities/Unit Conversions

The Angle Conversion block computes the conversion factor from specified
input angle units to specified output angle units and applies the conversion

factor to the input signal.

The Angle Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Block Parameters: Angle Conv¥ersion

—&ngle Conversion [mask] [link]

Convert units of input signal to desired output units.

— Parameters

Iritial units: Ideg

=
Final units: I[ad j

(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg Degrees
rad Radians
rev Revolutions

The input is angle in initial angle units.

The output is angle in final angle units.

Angle Conversion

See Also Acceleration Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

Velocity Conversion

4-119

Angular Acceleration Conversion

Purpose
Library

Description

T

degis® —* mdis”

Dialog Box

Inputs and
Outputs

4-120

Convert from angular acceleration units to desired angular acceleration units

Utilities/Unit Conversions

The Angular Acceleration Conversion block computes the conversion factor
from specified input angular acceleration units to specified output angular
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output

units selected from the Initial units and the

Final units lists.

Block Parameters: Angular Acceleration Cor E|
—Angular Acceleration Conversion [mask] [link]
Convert units of input signal to desired output units.
r— Parameters
Initial units: [deq/s"2 |
Final units: Irada’s'\2 j
(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:
deg/s? Degrees per second squared
rad/s? Radians per second squared
rpm/s Revolutions per minute per second

The input is angular acceleration in initial angular acceleration units.

The output is angular acceleration in final angular acceleration units.

Angular Acceleration Conversion

See Also Acceleration Conversion
Angle Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

Velocity Conversion

4-121

Angular Velocity Conversion

Purpose
Library

Description

deglz —* @disp

Dialog Box

Inputs and
Outputs

4-122

Convert from angular velocity units to desired angular velocity units
Utilities/Unit Conversions

The Angular Velocity Conversion block computes the conversion factor from
specified input angular velocity units to specified output angular velocity units
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output
units selected from the Initial units and the Final units lists.

Block Parameters: Angular ¥elocity Eunvé: |

r—&ngular Velocity Conversion [mask] [link]

Convert units of input signal to desired output units.

— Parameters

Initial nits: Ideg.-"s

Lef Lo

Final units: I radds

(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg/s Degrees per second
rad/s Radians per second
rpm Revolutions per minute

The input is angular velocity in initial angular velocity units.

The output is angular velocity in final angular velocity units.

Angular Velocity Conversion

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

Velocity Conversion

4-123

Besselian Epoch to Julian Epoch

Purpose

Library

Description

im0 Ceom P

Yermn Mmoo

4-124

Transform position and velocity components from the discontinued Standard
Besselian Epoch (B1950) to the Standard Julian Epoch (J2000)

Utilities/Axes Transformations

The Besselian Epoch to Julian Epoch block transforms two 3-by-1 vectors of
Besselian Epoch position (rp;95,) ; and Besselian Epoch velocity (vg95,) into
Julian Epoch position (7 ;94,) ;and Julian Epoch velocity (v j9400) - The
transformation is calculated using:

ry2000| _ |Mrr M,yr||TB1950

V72000 M,, M, |vp1950
where (]l_/.frr,]l_/.fw,]l_/.frv, Mvv) are defined as:
_0.9999256782 -0.0111820611 -0.0048579477
M,,.=10.0111820610 0.9999374784 -0.0000271765
0.0048579479 -0.0000271474 0.9999881997

0.00000242395018 -0.00000002710663 -0.00000001177656
M,, =] 0.00000002710663 0.00000242397878 -0.00000000006587
0.00000001177656 -0.00000000006582 0.00000242410173

-0.000551 —0.238565 0.435739
M,, =]0.238514 -0.002667 —0.008541
1—0.435623 0.012254 0.002117

0.99994704 ~0.01118251 —0.00485767
M,, =10.01118251 0.99995883 —0.00002718
10.00485767 —-0.00002714 1.00000956

Besselian Epoch to Julian Epoch

Dialog Box

Inputs and
Outputs

References

See Also

=JFunction Block Parameters: Besselian Epoch to 3 x|

’78 ezzelian to Julian [mask)] [link]

Tranzform position and velocity components from the dizcontinued Standard Bezselian
Epoch [B1950] to the Standard Julian Epoch [J2000).

Cancel | Help | Apply |

The first input is a 3-by-1 vector containing the position in Standard Besselian
Epoch (B1950).

The second input is a 3-by-1 vector containing the velocity in Standard
Besselian Epoch (B1950).

The first output is a 3-by-1 vector containing the position in Standard Julian
Epoch (J2000).

The second output is a 3-by-1 vector containing the velocity in Standard Julian
Epoch (J2000).

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

Julian Epoch to Besselian Epoch

|

4-125

Calculate Range

Purpose
Library

Description

Fatp

Dialog Box

Inputs and
Outputs

Limitation

4-126

Calculate the range between two crafts given their respective positions.

GNC/Guidance

The Calculate Range block computes the range between two crafts. The

equation used for the range calculation is

2 2 2
Range = J(xl—xz) +(V1-y9) *+(21-29)

Block Parameters: Calculate Range

Calculate range between craft 2 and craft 1 given their respective
positions. Range iz always positive.

" Calculate Fange [mask] [link]

o]

Cancel | Help | Apply

The first input is the (x, y and z) position of craft 1.

The second input is the (%, y and z) position of craft 2.

The output is the range from craft 2 and craft 1.

The calculated range is give the magnitude of the distance but not the direction

therefore it is always positive.

Craft positions are real values.

COESA Atmosphere Model

Purpose

Library

Description

b ()

Tk
a [mis)

Ed—

coEsa T IFE
p thairy

Dialog Box

Implement the 1976 COESA lower atmosphere
Environment/Atmosphere

The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) United States standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for the input
geopotential altitude.

Below 32,000 meters (approximately 104,987 feet), the U.S. Standard
Atmosphere is identical with the Standard Atmosphere of the International
Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units
selected from the Units list.

Block Parameters: COESA Atmosphere Mo #

—Atmosphere Model [mazk) (link]

Calculate various atmosphere models including 1976 COESA-extended
.5, Standard Atmosphere, MIL-HDEK-310, and MIL-STD-210C. Given
geopotential altitude, calculate absolute temperature, pressure and density
uzing standard interpolation formulas.

The COESA model extrapolates temperature linearly and pressure/density
logarithmic:ally beyond the range

0 <= altitude <= 84852 meters [geopatential]

The MIL specifications are not extrapolated beyond their defined altitudes
which are typically

0 <= altitude <= 80000 meters [geometric]

Depending on the given information either density or pressure is
calculated using a perfect gas relationship.

The unit spstem zelected applies to both input and outputs.

.
F

Uriits: | Metric (MKS) j

Specification: |1976 COESA-sstended LS. Standard Atmosphere 7 |

Action for out of range input: I\.\.-'aming j

QK | Cancel | Help I Apply |

4-127

COESA Atmosphere Model

Inputs and
Outputs

Assumptions
and Limitations

4-128

Units
Specifies the input and output units:
Units Height Temperature Speed of
Sound
Metric Meters Kelvin Meters per
(MKS) second

English Feet Degrees

(Velocity Rankine
in ft/s)

English Feet Degrees
(Velocity Rankine
in kts)

Specification

Feet per
second

Knots

Air Pressure

Pascal

Pound-force
per square
inch

Pound-force
per square
inch

Air Density

Kilograms
per cubic
meter

Slug per
cubic foot

Slug per
cubic foot

Specify the atmosphere model type from one of the following atmosphere
models. The default is 1976 COESA-extended U.S. Standard Atmosphere.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See the
block reference for more information.

MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block. See the
block reference for more information.

Action for out of range input

Specify if out of range input invokes a warning, error, or no action.

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air

density.

Below the geopotential altitude of 0 m (0 feet) and above the geopotential
altitude of 84,852 m (approximately 278,386 feet), temperature values are

COESA Atmosphere Model

extrapolated linearly and pressure values are extrapolated logarithmically.
Density and speed of sound are calculated using a perfect gas relationship.

Examples See the aeroblk_calibrated model, the aeroblk_indicated model, and
Airframe in the aeroblk_HL20 demo for examples of this block.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also ISA Atmosphere Model
Non-Standard Day 210C
Non-Standard Day 310

4-129

Create 3x3 Matrix

Purpose
Library

Description

o
BREEREasZ

Dialog Box

Inputs and
Outputs

4-130

Create a 3-by-3 matrix from nine input values.
Utilities/Math Operations

The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values
where each input corresponds to an element of the matrix.

The output matrix has the form of

All A12 A13

A=Ay Agy Agg

A31 A32 A33
Im:k Parameters: Create 343 Matrix k|

Create 33 Matrix [mazk] [link)

Create a 3-by-3 matrix from nine input walues. Each input cormesponds to
ah element of the matrix.

For example, the input labeled 427 is the entry in the second rovw and first
columnn of the matris.

Cancel | Help | Apply |

The first input is the entry of the first row and first column of the matrix.

The second input is the entry of the first row and second column of the matrix.
The third input is the entry of the first row and third column of the matrix.
The fourth input is the entry of the second row and first column of the matrix.
The fifth input is the entry of the second row and second column of the matrix.
The sixth input is the entry of the second row and third column of the matrix.
The seventh input is the entry of the third row and first column of the matrix.
The eighth input is the entry of the third row and second column of the matrix.
The ninth input is the entry of the third row and third column of the matrix.
The output of the block is a 3-by-3 matrix.

Create 3x3 Matrix

See Also Adjoint of 3x3 Matrix
Determinant of 3x3 Matrix
Invert 3x3 Matrix

Symmetric Inertia Tensor

4-131

Custom Variable Mass 3DoF (Body Axes)

Purpose

Library

Description

F,)
F_

dmvidt (kats)

8 (=)

o (rd/s]
M (M-} Gustom Warable }'t !

den_Jdt
¥

m) X Z_(m
dlictt ug-reis)

oy Mass U w (i)
5 ey a8 i)

4-132

Implement three-degrees-of-freedom equations of motion with respect to body
axes

Equations of Motion/3DoF

The Custom Variable Mass 3DoF (Body Axes) block considers the rotation in
the vertical plane of a body-fixed coordinate frame about an Earth-fixed
reference frame.

Body fixed
coordinate

X
Incidence =&
frame ‘

Earth fived
reference frame’

Xe

The equations of motion are

F. .
g=—x_mU_ qw-gsin®
m m
F .
w = —=2-"% 4 qu+gcosd
m
J - M-I q
I,
6=gq

Custom Variable Mass 3DoF (Body Axes)

|

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

«): Block Parameters: Custom Yariable Mass 3DoF (Bod e

—30oF Eok [mask] [link]

Integrate the three-dearees-of-freedom equations of motion to determing body paosition,
velocity, attitude, and related values.

—Parameter
Urnits: [Metric (MKS) ||
tazs type: I Cuztom % ariable ﬂ
Imitial welocity:
j100

Iritial body attibude:
jo

Initial incidence:
jo

Iritial body ratation rate:

jo

Iritial position [x 2):
[T

Gravity zource: I Extemal ﬂ

kK LCancel Help | Apply |

4-133

Custom Variable Mass 3DoF (Body Axes)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described
equations of motion.

Initial velocity

A scalar value for the initial velocity of the body, (V).
Initial body attitude

A scalar value for the initial pitch attitude of the body, (8,) .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,
(o) -

Initial body rotation rate
A scalar value for the initial body rotation rate, (gy).

4-134

Custom Variable Mass 3DoF (Body Axes)

Inputs and
Outputs

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the body x-axis, (F,).
The second input to the block is the force acting along the body z-axis, (F,).
The third input to the block is the applied pitch moment, (M).
The fourth input to the block is the rate of change of mass, (m).
The fifth input to the block is the mass, (m).
The sixth input to the block is the rate of change of inertia tensor matrix, (I y'y) .
The seventh input to the block is the inertia tensor matrix, (Iyy).
The eighth optional input to the block is gravity in the selected units.
The first output from the block is the pitch attitude, in radians (0).

The second output is the pitch angular rate, in radians per second (g).

The third output is the pitch angular acceleration, in radians per second
squared (g) .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

4-135

Custom Variable Mass 3DoF (Body Axes)

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

See Also 3DoF (Body Axes)
Incidence & Airspeed
Simple Variable Mass 3DoF (Body Axes)

4-136

Custom Variable Mass 3DoF (Wind Axes)

Purpose Implement three-degrees-of-freedom equations of motion with respect to wind
axes

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Wind Axes) block considers the rotation in

=+ thevertical plane of a wind-fixed coordinate frame about an Earth-fixed
s, =a=: reference frame.

F)
i))
= wind
M N-M) Cuztom Wanisble dea, it

dmvdt fogss) Xz
m kg <% . .

it gy | ¥ v, i) Wind-Fixed

I fka-re) A imis?)

5 i) ' Reference Frame | q

Earth-Fixed ,
Reference Fran}@__

Z

3

The equations of motion are

. F :
V = —xw"”d—m—v—gsiny
m m

. F
6 = —2wnd 4 g+ Ecogy

mV |4
Gg=6= Mybod,_lyyq
L,
Y=g-a

4-137

Custom Variable Mass 3DoF (Wind Axes)

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box
ZJFunction Block Parameters: Custom Yariable Mass 3D x|
—30oF “Wind Eakd [magk] [link]

Integrate the three-degrees-of-freedom equations of mation in wind axes to determine
pozition, velocity, attitude, and related walues.

—Parameters

Urits: | Metric MKS] =]

Mass t_l,lpe:l Cusztorn W ariable j
Initial airspeed:

J1o0

Initial fight path angle:

jo

Initial incidence:

Jo

Initial body rotation rate:
jo

Initial pozition [x 2):

ffoo]

Giravity source:l Euternal LI

0K Cancel Help Apply |

4-138

Custom Variable Mass 3DoF (Wind Axes)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Custom Variable selection conforms to the previously described
equations of motion.

Initial airspeed
A scalar value for the initial velocity of the body, (V).
Initial flight path angle
A scalar value for the initial pitch attitude of the body, (y,) .
Initial incidence
A scalar value for the initial angle between the velocity vector and the body,
(o) -
Initial body rotation rate
A scalar value for the initial body rotation rate, (gy).

4-139

Custom Variable Mass 3DoF (Wind Axes)

Inputs and
Outputs

4-140

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the wind x-axis, (F,).
The second input to the block is the force acting along the wind z-axis, (F,).
The third input to the block is the applied pitch moment in body axes, (M).
The fourth input to the block is the rate of change of mass, (m).
The fifth input to the block is the mass, (m).
The sixth input to the block is the rate of change of inertia tensor matrix, (I y y) .
The seventh input to the block is the inertia tensor matrix, (Iyy).
The eighth optional input to the block is gravity in the selected units.
The first output from the block is the flight path angle, in radians (y).

The second output is the pitch angular rate, in radians per second ().

The third output is the pitch angular acceleration, in radians per second
squared (d(oy/dt) .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the wind-fixed coordinate frame, (V,0).

Custom Variable Mass 3DoF (Wind Axes)
|

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, (o).

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

See Also 3DoF (Body Axes)
3DoF (Wind Axes)

4th Order Point Mass (Longitudinal)

Custom Variable Mass 3DoF (Body Axes)
Simple Variable Mass 3DoF (Body Axes)
Simple Variable Mass 3DoF (Wind Axes)

4-141

Custom Variable Mass 6DoF (Euler Angles)

Purpose

Library

Description

F e 0

M__ N-mh
ki EukrAngks

drmidt fhads)

o fhg)

di/dt (hg-miis)

1 gy

CustomVaiabk g radis)

u_(mis)
%, (m)

8 ()
]

, (mis)

dearidt
4,)

4-142

Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Equations of Motion/6DoF

The Custom Variable Mass 6DoF (Euler Angles) block considers the rotation of
a body-fixed coordinate frame (X, Y, Z,) about an Earth-fixed reference
frame (X,,Y,, Z,) . The origin of the body-fixed coordinate frame is the center
of gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

Center of
gravity Xb
0 ub
/
/
/
/
e
» Yb b
Vb Wb

Ye
Ie

Earth-fixed reference frame

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [F, F, FZ]T are in the body-fixed frame.

Fx
E,= |F, = m(V,+oxV,)+mV,

F

¥4

Custom Variable Mass 6DoF (Euler Angles)

p
Wy r

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor I is with respect to the
origin O.

L

Mp= M| = Io+ox(0)+]o
N
Ixx _Ixy _Ixz

I= _Iyx Iyy _Iyz
I -I_1I

zx zy Tzz |

Ia;x _Ia;y _fxz
Iyx Iyy Iyz

S S

zx " Tzy “zz |

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, [¢ 6y 1T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

) 10 0 0 10 0 cosO 0 —sin06||0

p ¢
1
q| =10/ % |0 cosd¢ sin¢||[6] T |0 cos¢ sino[|0 10 0/=J |
r 0 0 —sin¢ cosd| [0 0 —sin¢ cos¢||[sin6 0 cosO ||y v

Inverting J then gives the required relationship to determine the Euler rate
vector.

4-143

Custom Variable Mass 6DoF (Euler Angles)

1 (sin¢tan®) (cosdptan®)

=

p .
N _ |0 cos —sin
o| = J|q| = |0 <=0 ¢ q
i - o St) cos o -
\ cos0 cosO
Dialog Box
=

— EDoF Eotd [Body dwis] [mazk] [link]

Integrate the sis-degrees-of-freedom equations of mation wsing an Euler
angle representation for the orientation of the body in space.

— Par.
Urits: | Metric [MKS)

Mass type: IEustom Wariable

Lef Lel Lo

Representation: | Euler Aingles

Initial position in inertial axes [<eYeZe]:
finom

Initial velocity in bady axes [v w]:
finom

Initial Euler orientation [roll, pitch, paw]:
finom

Initial body ratation rates [pog.rf:
finom

kK I Cancel Help Anply

4-144

Custom Variable Mass 6DoF (Euler Angles)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:
Euler Angles Use Euler angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations
of motion.

4-145

Custom Variable Mass 6DoF (Euler Angles)

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Inputs and The first input to the block is a vector containing the three applied forces.
Outputs The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yawl], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

4-146

Custom Variable Mass 6DoF (Euler Angles)

Assumptions
and Limitations

References

See Also

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in

body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-147

Custom Variable Mass 6DoF (Quaternion)

Purpose

Library

Description

Fye 0
M i)
dmidt (gl
m {kg)

1/t (hg-mits)

I fleg-rey

Quatemion

hizss

LR
¥, tmh
8w i=d)
==

i, (wis)

Gustom Vaiable g oy

deaidt

A, i)

4-148

Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to body axes

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the Custom Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain K drives the norm of the quaternion state vector to 1.0 should €
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

qo 493 499 41 I
q1|_ 1|92 93 9o v +Ke |1
do| %1 20 as||| |22
d3 ~qp 91 42 qs

2 2 2 2
€ = 1—(QO +qq1 +q93 +q4)

Custom Variable Mass 6DoF (Quaternion)

Dialog Box

Block Parameters: Custom Yariable Mass 6D

— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters
U rits: | etric MES]

Mass type: IEustom Variable

Lef Le] Le

Fiepresentation: I RFuaternion

Iritial positian in inertial axes [$e e el
[mom

Iritial velocity in bady ases [v w]:
[mom

Iritial Euler orientation [rall, pitch, waw]:
[mom

Initial body ratation rates [p.a.r:
[mom

Gain for guaternion normalization:

1.0

ak. I Cancel Help Apply

Units

Units

Metric
(MKS)

Englis
(Veloc
in ft/

Englis
(Veloc
in kts

Specifies the input and output units:

Forces Moment Acceleration Velocity Position

Newton Newton Meters per Meters Meters
meter second per
squared second
h Pound Foot Feet per Feet per Feet
ity pound second second
s) squared
h Pound Foot Feet per Knots Feet
ity pound second
) squared

Mass Inertia

Kilogram Kilogram
meter
squared

Slug Slug foot
squared

Slug Slug foot
squared

4-149

Custom Variable Mass 6DoF (Quaternion)

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations
of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

4-150

Custom Variable Mass 6DoF (Quaternion)

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.
The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yawl], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

6DoF (Euler Angles)
6DoF (Quaternion)

4-151

Custom Variable Mass 6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-152

Custom Variable Mass 6DoF ECEF (Quaternion)

Purpose
.
Library
-
Description
E]
Fon T
Ih
M B sl
DG
et fegis) LoM,,,
DOM,,
™ cembaiane YoM
g (BS)
clléck fegnis) o (md's)
v ictt]
| gty A

Implement a quaternion representation of six-degrees-of-freedom equations of
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Equations of Motion/6DoF

The Custom Variable Mass 6DoF ECEF (Quaternion) block considers the
rotation of a Earth-Centered Earth-Fixed (ECEF) coordinate frame

Xgcer Yecer Zrcrr) about an Earth-Centered Inertial (ECI) reference
frame (Xg o1 Ypop Zgcp)- The origin of the ECEF coordinate frame is the
center of the Earth, additionally the body of interest is assumed to be rigid, an
assumption that eliminates the need to consider the forces acting between
individual elements of mass. The representation of the rotation of ECEF frame
from ECI frame is simplified to consider only the constant rotation of the
ellipsoid Earth (w,) including an initial celestial longitude (L;(0)) . This
simplification allows the forces due to the Earth’s complex motion relative to a
star-fixed reference system to be neglected.

ZECEE ZECI

HMorth
pole T

WVernal —
ecuinnx D MM e :

XEL_._,_..

L) + et

Greenwich
reridian

4-153

Custom Variable Mass 6DoF ECEF (Quaternion)

4-154

The translational motion of the ECEF coordinate frame is given below, where
the applied forces [F, F, F,]T are in the body frame.

0, X Vy+ (DCMbi‘Be XVy) +DCMbi(‘2e X (0, xx;))) + m(V, +DC

where the change of position in ECI (%) is calculated by

Xgcr
% = Ygc1| = DCMibe+(i)eX3—ci

Zgcr

and the velocity in body-axis (V;), angular rates in body-axis (@) Earth
rotation rate (®,), and relative angular rates in body-axis (®,,,) are defined as

p 0
V= lv|9=|g[®,=|0|w,, =0, -DCM;0,
r w,

The rotational dynamics of the body defined in body-fixed frame are given
below, where the applied moments are [L M NIT, and the inertia tensor I is
with respect to the origin O.

L

My= M| = 1o, + 0, x (o)
N
Ixx _Ixy Ixz

“yx fyy Tyz
-1, -1, 1

“tzy T2z

Custom Variable Mass 6DoF ECEF (Quaternion)

The rate of change of the inertia tensor is defined by the following equation.

Ixx _Ia;y _Ixz
=17 5
Iyx Iyy yz
I -1 1

The integration of the rate of change of the quaternion vector is given below.

do OpquO
q1|_ _1|-p 0 —r q||%1
Gy 2|-a v 0 -p|lgy
g 7P Ollg

.
Dialog Box
E! Function Block Parameters: Custom ¥ariable Mass

Integrate the six-degrees-of-freedom equations of motion using a quaternion

EDoF Eohd [ECEF] [mask] [link]
’7 reprezentation for the arientation of the body in space.

M ain IPIanet I

Units: | Metric [MK3)

Mass type: I Custom Yariable

Iritial pogition in geodetic latitude, longitude, altitude [mu,lh):

Ll Lo

oo

Iritial velocity in bady axes [v w]:

oo

Initial Euler orientation [roll. pitch, yaw]:

flooa

Initial body rotation rates [p.g.r):

oo

oK Cancel

Apply

|

4-155

Custom Variable Mass 6DoF ECEF (Quaternion)

E! Function Block Parameters: Custom ¥ariable Ma: |

’—BD ofF Ect [ECEF] [mask] [link]

Integrate the six-degrees-of-freedom equations of motion using a quaternion
reprezentation for the arientation of the body in space.

Main | Flanet |

Planet model: | E arth (wWG584]

Fef L]

Celestial longitude of Greewich source:l Internal

Celestial lohgitude of Greewich [deqg]:
i

ak Cancel Apply
Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position
Metric Newton Newton Meters per Meters Meters
(MKS) meter second per

squared second
English Pound Foot Feet per Feet per Feet
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet
(velocity pound second
in kts) squared

4-156

Mass

Kilogram

Slug

Slug

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Custom Variable Mass 6DoF ECEF (Quaternion)

Mass type
Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described
equations of motion.

Initial position in geodetic latitude, longitude and altitude

The three-element vector for the initial location of the body in the geodetic
reference frame.

Initial velocity in body-axis
The three-element vector containing the initial velocity in the body-fixed
coordinate frame.

Initial Euler orientation
The three-element vector containing the initial Euler rotation angles [roll,
pitch, yawl], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Planet model
Specifies the planet model to use:

Custom
Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available when
Planet model is set to Custom.

4-157

Custom Variable Mass 6DoF ECEF (Quaternion)

Inputs and
Outputs

4-158

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for ECEF position. This
option is only available when Planet model is set to Custom.

Rotational rate

Specifies the scalar rotational rate of the planet in rad/sec. This option is
only available when Planet model is set to Custom.

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude:

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.

Celestial longitude of Greenwich

The initial angle between Greenwich meridian and the x-axis of the ECI
frame.

The first input to the block is a vector containing the three applied forces in
body-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.
The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the ECEF
reference frame.

The second output is a three-element vector containing the position in the
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic
latitude, longitude and altitude, in degrees, degrees and selected units of
length respectively.

Custom Variable Mass 6DoF ECEF (Quaternion)

Assumptions
and Limitations

The fourth output is a three-element vector containing the body rotation angles
[roll, pitch, yawl], in radians.

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the
body-fixed frame.

The ninth output is a three-element vector containing the relative angular
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in
body-fixed axes.

This implementation assumes that the applied forces are acting at the center
of gravity of the body.

This implementation generates a geodetic latitude that lies between +90
degrees, and longitude that lies between +180 degrees. Additionally, the MSL
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical
planet can be achieved. The Earth’s precession, nutation, and polar motion are
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

4-159

Custom Variable Mass 6DoF ECEF (Quaternion)

References

See Also

4-160

The implementation of the ECI coordinate system assumes that the origin is at
the center of the planet, the x-axis is the continuation of the line from the
center of the Earth through the center of the Sun toward the vernal equinox,
the z-axis points in the direction of the mean equatorial plane’s north pole,
positive to the north, and the y-axis completes the right-hand system.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF Wind (Quaternion)

Purpose
o
Library
o e
Description
Fpe M W i)
A i
M femt Qm\.gfim M'.ieiﬁdJ
Do
dhvich fegis) v, e
wf (md
TRty arabie S et
Vs & ()
divdt fegrfiz) o it
oy
| fugrrfy "

Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to wind axes

Equations of Motion/6DoF

The Custom Variable Mass 6DoF Wind (Quaternion) block considers the
rotation of a wind-fixed coordinate frame (X,,,Y, , Z,) about an Earth-fixed
reference frame (X,,Y,, Z,) . The origin of the wind-fixed coordinate frame is
the center of gravity of the body, and the body is assumed to be rigid, an
assumption that eliminates the need to consider the forces acting between
individual elements of mass. The Earth-fixed reference frame is considered
inertial, a simplification that allows the forces due to the Earth’s motion
relative to a star-fixed reference system to be neglected.

Center of Grawity

X, V

Wind-Fized
Eeference Frame

Earth-Fized
Feference Frame

ZE
The translational motion of the wind-fixed coordinate frame is given below,
where the applied forces [F, F, Fz]T are in the wind-fixed frame.

F

X
Fy =m(V, + o, % V,) +mV,

F

z

F =

—w

4-161

Custom Variable Mass 6DoF Wind (Quaternion)

VI Py Py — Bsina Py
Yo = O ’(i)w = qw =DMCwb qb_(x ,wbz qb
0 "w ry + Peosa Ty

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M NIT, and the inertia tensor I is with respect to the
origin O. Inertia tensor I is much easier to define in body-fixed frame.

L

M= M =I‘i’b+9z,x(1(i)b)+j‘i)b
N
Ixx _Ixy _Ixz

I= _Iyx Iyy _Iyz

I, -1, 1

“tzy Tzz

The integration of the rate of change of the quaternion vector is given below.

qO Opqr q()
91| _1|-p 0 —r q||%1
go| 2|-a v 0 -p||gy
ds -r-qp 0 a3

4-162

Custom Variable Mass 6DoF Wind (Quaternion)

|

Dialog Box

=JFunction Block Parameters: Custom Yariable Mass x|
—EBDoF Eobd [wind Axig) [mazk] [link]
Integrate the siv-degrees-of-freedom equations of motion uzing a wind angle
reprezentation for the onentation of the body in zpace.
—Parameters
Urits: | Metric MKS] |
Mass t_l,lpe:l Custom Yariable LI
Heplesentation:l [uatemion LI
Initial pozition in inertial ases feve el
jinoo
Initial airzpeed, angle of attack, and sideslip angle [V,.alpha beta]:
jiooo
Initial wind orientation [bank angle flight path angle heading angle]:
jlooo
Initial body ratation rates [p.o.rl:
jinoo
0K | Cancel | Apply
Units
Specifies the input and output units:
Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric Newton Newton Meters per Meters Meters Kilogram Kilogram
(MKS) meter second per meter
squared second squared
English Pound Foot Feet per Feet per Feet Slug Slug foot
(velocity pound second second squared
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug Slug foot
(Velocity pound second squared
in kts) squared

4-163

Custom Variable Mass 6DoF Wind (Quaternion)

Mass Type
Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

wind Angles Use wind angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations
of motion.

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack
The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation
The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians

per second.
Inputs and The first input to the block is a vector containing the three applied forces in
Outputs wind-fixed axes.

4-164

Custom Variable Mass 6DoF Wind (Quaternion)

Assumptions

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.
The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix
in body-fixed axes.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix in body-fixed
axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of

and Limitations the body.

4-165

Custom Variable Mass 6DoF Wind (Quaternion)

References

See Also

4-166

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF Wind (Wind Angles)

Purpose
.
Library
o e
Description
Foz M W i)
(17 Wird x° i
My 4 wird Andes k¥R iR
e
it] W, s
wf)
MRt Varable Gtk it
s o (radis)
it egnfs) o ik
i)
1 g} %

Implement a wind angle representation of six-degrees-of-freedom equations of
motion

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the Custom Variable Mass 6DoF Wind
(Quaternion) block.

The relationship between the wind angles, [pyy 1T, can be determined by
resolving the wind rates into the wind-fixed coordinate frame.

Py i |10 0 0 |10 0 cosy 0 —siny| |0 . i
qy| = |0| |0 cosp sinp||y|* [0 cosp sinp[|0 10 ol=J ¥
'y 0 0 —sinp cosy| |0 0 —sinpu cosy||siny O cosy y

Inverting J then gives the required relationship to determine the wind rate
vector.

P 1 (sinptany) (cosptany) P

o= - |0 cos —sin
Y|~ J qu| = . H H qy
. sin cos L

"w cosy cosy "w

The body-fixed angular rates are related to the wind-fixed angular rate by the
following equation.

P, Py — Bsina
"w ry, + Peosa

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular rates.

4-167

Custom Variable Mass 6DoF Wind (Wind Angles)

Dialog Box

4-168

Py 1 (sinptany) (cosptany)

=Jlg | = 0 cospu —sinp
v v 0 sin cosl
"w cosy cosy

[Z)Function Block Parameters: Custom ¥ariable Mass B

—EDaoF Eokd [wind Axiz) [mazk)] (link)]

pMC,,

pp - Bsina

qb—d

ry + Beosa

representation for the orientation of the body in space.

Integrate the sis-degrees-of-freedom equations of motion using a wind angle

—Parameters

Units: | Metric MKS)

Maszs type: I Cuztom Yariable

Reprezentation: | “Wind Angles

Initial position in inertial axes [Ke.v'eZe]:

Lef Led Lol

Jioo o

Initial airspeed, angle of attack, and sideslip angla [V.alpha betal:

jinoo

Initial wind orientation [bank angle flight path angle heading angle]:

jiooo

Initial body rotation rates [p.g.r]:

jlooo

Ok Cancel

Apply

Custom Variable Mass 6DoF Wind (Wind Angles)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:
Wind Angles Use wind angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Wind Angles selection conforms to the previously described equations
of motion.

4-169

Custom Variable Mass 6DoF Wind (Wind Angles)

Inputs and
Outputs

4-170

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.
The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix
in body-fixed axes.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix in body-fixed
axes.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

Custom Variable Mass 6DoF Wind (Wind Angles)

Assumptions
and Limitations

References

See Also

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in

body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

4-171

Custom Variable Mass 6DoF Wind (Wind Angles)

Custom Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)
Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-172

Density Conversion

Purpose
Library

Description

lbrf —+ hgim

Dialog Box

Inputs and
Outputs

Convert from density units to desired density units

Utilities/Unit Conversions

The Density Conversion block computes the conversion factor from specified
input density units to specified output density units and applies the conversion

factor to the input signal.

The Density Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Block Parameters: Density Conversion

r— Density Conversion [mask] [link]

Convert units of input signal to desired output units.

— Parameters

Initial nits: ||bm;ft"3

Lef Lo

Final units: I kgdm™3

(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm/ft3 Pound mass per cubic foot
kg/m3 Kilograms per cubic meter
slug/ft3 Slugs per cubic foot

1bm/in3 Pound mass per cubic inch

The input is density in initial density units.

The output is density in final density units.

4-173

Density Conversion

See Also

4-174

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

Determinant of 3x3 Matrix

Purpose
Library

Description

detia)
(=3

T

Dialog Box

Inputs and
Outputs

See Also

|

Compute the determinant for the input matrix
Utilities/Math Operations

The Determinant of 3x3 Matrix block computes the determinant for the input
matrix.
The input matrix has the form of
A A Agg
A= 1Ay Agy Agg
A31 A32 A33
The determinant of the matrix has the form of

det(A) = Ay1(AggAgg —Ag3Agy) —Aqg(AgiAgs —AggAgy) +
Aq3(Ag1Agg—AgoAgy)

Block Parameters: Determinant of 3x3 Makr |

" Determinant of 3«3 katrix [mask] [link]

Compute the determinant of 33 matrix.

Ok, I Cancel | Help | Spply

The input is a 3-by-3 matrix.
The output of the block is the determinant of input matrix.

Adjoint of 3x3 Matrix
Create 3x3 Matrix
Invert 3x3 Matrix

4-175

Direction Cosine Matrix Body to Wind

Purpose Convert angle of attack and sideslip angle to direction cosine matrix
Library Utilities/Axes Transformations
Descripl'ion The Direction Cosine Matrix Body to Wind block converts angle of attack and

sideslip angle into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in body axes (ox, 0y, 0z)
into a vector in wind axes (0xg, 0y4, 025) . The order of the axis rotations
required to bring (0x4, 0y,, 02,) into coincidence with (ox, 0y, 0z) is first, a
rotation about 0z, through the sideslip angle () to axes (ox{,0y;,02z;),
second, a rotation about oy; through the angle of attack (o) to axes

(0xq, 0y, 02() -

o fi DGM“b}

0xg ox
0Yqo| = DCM,,,, 0y
0z, 0z
0%y cosp sinP 0||cosa 0 sinal|?%0
0yY9| = |-sinf cosP 0|0 10 0y
0zg 0 0 1| |-sina 0 coso 0z,

Combining the two axis transformation matrices defines the following DCM.
cosacosP sinf sinocosp

DCM,,, = |-cososinB cosP —sinosinp
—sino 0 coso

4-176

Direction Cosine Matrix Body to Wind

Dialog Box

Inputs and
Outputs

References

See Also

|

E! Function Block Parameters: Direction Cosine Ma ﬂ

DCh Body to 'wind [mazk]

Determite the 3-by-3 direction cozine matrix [DCH) from sidezlip angle and angle of
attack [beta and alpha). The output DCM transforms vectors from body axes to wind
aHes.

Cancel | Help | Apply |

The input is a 2-by-1 vector containing angle of attack and sideslip angle, in
radians.

The output is a 3-by-3 direction cosine matrix which transforms body-fixed

vectors to wind-fixed vectors.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Direction Cosine Matrix Body to Wind to Alpha and Beta

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

4-177

Direction Cosine Matrix Body to Wind to Alpha and Beta

Purpose Convert direction cosine matrix to angle of attack and sideslip angle
Library Utilities/Axes Transformations
Description The Direction Cosine Matrix Body to Wind to Alpha and Beta block converts a

3-by-3 direction cosine matrix (DCM) into angle of attack and sideslip angle.
The DCM matrix performs the coordinate transformation of a vector in body
DoMy whp axes (0x(, 0y, 0Z) into a vector in wind axes (0x4, 0y, 02,) . The order of the
axis rotations required to bring (ox,, 0y,, 0z,5) into coincidence with

(0x(, 0y, 02() is first, a rotation about 0z, through the sideslip angle (B) to
axes (0xy,0Y,02), second, a rotation about oy; through the angle of attack
(o) to axes (ox(, 0y, 02() .

0xg ox
0Yqo| = DCM,,,, 0y
0z, 0z
0%y cosp sinP 0||cosa 0 sinal|?%0
0yY9| = |-sinf cosP 0|0 10 0y
0zg 0 0 1| |-sina 0 coso 0z,

Combining the two axis transformation matrices defines the following DCM.

cosacosP sinf sinocosf
DCM,,, = |-cososinB cosp —sinasinp
—sino 0 coso

To determine angles from the DCM, the following equations are used:

o = asin(-DCM(3, 1))

B

asin(DCM(1, 2))

4-178

Direction Cosine Matrix Body to Wind to Alpha and Beta

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

E! Function Block Parameters: Direction Cosine ﬂ

DCM2AE (mask] (k]

Determine a sidezlip angle and an angle of attack [beta and alpha) fram the 3-by-3
direction cozine matrix [DCh). The input DCM transforms wectors from body axes to
wind ases.

Cancel Help | Apply |

The input is a 3-by-3 direction cosine matrix which transforms body-fixed
vectors to wind-fixed vectors.

The output is a 2-by-1 vector containing angle of attack and sideslip angle, in

radians.

This implementation generates angles that lies between 90 degrees.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

4-179

Direction Cosine Matrix ECEF to NED

Purpose

Library

Description

wl

D'Gh.ﬂmc

4-180

Convert geodetic latitude and longitude to direction cosine matrix
Utilities/Axes Transformations

The Direction Cosine Matrix ECEF to NED block converts geodetic latitude
and longitude into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in Earth-centered
Earth-fixed (ECEF) axes (ox(, 0y, 0z,) into a vector in north-east-down
(NED) axes (0x4, 0y9, 025) . The order of the axis rotations required to bring
(0x4, 0y, 02,) into coincidence with (ox, 0y, 0z() is first, a left-handed
rotation about oy, through the geodetic latitude (n) to axes (0xy,0y¢,02,),
second, a rotation about 0z; through the longitude (1) to axes (o0x, 0y, 0z) .

ox2 O.?CO

0yq| = DCMef 0¥

024 0z
0Xg —sinp 0 cosp |[cost sint 0] |%%0
0yo| = |0 10 —sint cost 0] |0y
0z, —cosp 0 —sinp| |0 0 1 0z,

Combining the two axis transformation matrices defines the following DCM.

—sinlcost —sinusint cosp
DCMef = |-sint cost 0
—COS|Lcost —cos|Lsint —sinL

Direction Cosine Matrix ECEF to NED

Dialog Box

Inputs and
Outputs

Assumptions

References

See Also

E! Function Block Parameters: Direction Cosine ﬂ

DCH ECEF to NED (miask] (link]

Determine the 3-bp-3 direction cozine matrix [DCH) from geodetic latiude and
longitude [mu and [). The output DCK transforms wectors from E arth Centered E arth
Fized [ECEF] axes to gendetic earth or north-east-dowvwn [NED] axes.

Cancel | Help | Apply |

The input is a 2-by-1 vector containing geodetic latitude and longitude, in
degrees.

The output is a 3-by-3 direction cosine matrix which transforms ECEF vectors
to NED vectors.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/ATIAA
R-004-1992.

Direction Cosine Matrix ECEF to NED to Latitude and Longitude
Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

ECEF Position to LLA

Euler Angles to Direction Cosine Matrix

LLA to ECEF Position

4-181

Direction Cosine Matrix ECEF to NED

Wind Angles to Direction Cosine Matrix

4-182

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

Purpose Convert direction cosine matrix to geodetic latitude and longitude
Library Utilities/Axes Transformations
Description The Direction Cosine Matrix ECEF to NED to Latitude and Longitude block

converts a 3-by-3 direction cosine matrix (DCM) into geodetic latitude and
longitude. The DCM matrix performs the coordinate transformation of a vector
in Earth-centered Earth-fixed (ECEF) axes (ox, 0y, 0z) into a vector in
north-east-down (NED) axes (0x,, 0y, 02z,) . The order of the axis rotations
required to bring (ox,, 0y,, 02z,5) into coincidence with (ox, 0y, 0z) is first, a
left-handed rotation about oy, through the geodetic latitude (i) to axes
(0x4,0y4,02), second, a rotation about 0z, through the longitude (1) to axes

(0xq, 0y, 02() .

D'Grl.ﬂef I_L|}

0xq 0x
0y2 = DCMef oyo
0z, 0z
0% —sinp 0 cosp ||cost sint 0] |%%0
0yq| = |0 10 —sint cost 0] |0y
0zy —cospl 0 —sinp| |0 0 1 0z,

Combining the two axis transformation matrices defines the following DCM.

—sinjlcost —sinusint cosp
DCMef = |-sint cost 0
—COS|Lcosl —cos|Lsint —sin L

To determine geodetic latitude and longitude from the DCM, the following
equations are used:
L = asin(-DCM(3, 3))

_ -DCM(2,1)
1= atan(DCM(Z,Z)j

4-183

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

Dialog Box
E! Function Block Parameters: Direction Cosine il
DCM to LATLOM [mask] [link]

Determine a geadetic latitude and lanagitude [mu and [] from the 3-by-3 direction cosine
matriz [DCM). The input DCM transforms vectors from E arth Centered E arth
Fired(ECEF) axes to geodetic earth ar narth-east-dovn [MED] axes.

Cancel Help | Apply |
Inputs and The input is a 3-by-3 direction cosine matrix which transforms ECEF vectors
Outputs to NED vectors.
The output is a 2-by-1 vector containing geodetic latitude and longitude, in
degrees.
Assumptions This implementation generates a geodetic latitude that lies between +90

and Limitations degrees, and longitude that lies between +180 degrees.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

References Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/ATAA
R-004-1992.
See Also Direction Cosine Matrix ECEF to NED
Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Wind Angles
ECEF Position to LLA
Euler Angles to Direction Cosine Matrix

4-184

Direction Cosine Matrix ECEF to NED to Latitude and
Longitude

LLA to ECEF Position
Wind Angles to Direction Cosine Matrix

4-185

Direction Cosine Matrix to Euler Angles

Purpose Convert direction cosine matrix to Euler angles
Library Utilities/Axes Transformations
Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction
cosine matrix (DCM) into three Euler rotation angles. The DCM matrix
— performs the coordinate transformation of a vector in inertial axes

(0x(, 0y, 02()) into a vector in body axes (oxg, 0y3, 0z3) . The order of the axis
rotations required to bring (ox3, 0y3, 0z5) into coincidence with (ox, 0y, 0z,)
is first, a rotation about ox5 through the roll angle (¢) to axes (oxq, 0y4, 025),
second, a rotation about oy, through the pitch angle (8) to axes (ox,, 0y, 0z4),
and finally a rotation about 0z; through the yaw angle (y) to axes

(oxo, 0Y ¢ ozo) .

O.’)C3 O.’)CO
o0yg| = DCM 0¥y

024 0z

0x3 10 0 cosO 0 —sin6||cosy siny 0| |°%0
0yg| = |0 cos¢ sino||0 10 —siny cosy 0f |0y
0z4 0 —sin¢ cos¢||sin6 0 cosO ||0 0 1 0z,

Combining the three axis transformation matrices defines the following DCM.

cosOcosy cosOsiny —-sin6
(sin¢sinBcosy — cosPpsiny) (sinhpsinOsiny + cosdcosy) sindcosO
(cossinBcosy + sin¢siny) (cos¢sinBsiny — sindcosy) cosdcosO

DCM =

To determine Euler angles from the DCM, the following equations are used:

6 = atan(REM(2.3)

DCM(3, 3)
0 = asin(-DCM(1, 3))
_ DCM(1,2)
V= atan(DCM(l, 1))

4-186

Direction Cosine Matrix to Euler Angles

Dialog Box

Block Parameters: Direction Cosine Matrix |
DCMZE uler [magk] [link]

Determing an euler orentation [roll, pitch, yaw] from the 3-by-3 direction
cozine matrix [DCk). The input DCR transforms vectors from inertial axes
to body axes.

0K I Cancel | Help Lpply

Inputs and The input is a 3-by-3 direction cosine matrix.

OU'PU'S The output is a 3-by-1 vector of Euler angles.

Assumptions This implementation generates a pitch angle that lies between £90 degrees,
and Limitations and roll and yaw angles that lie between +180 degrees.
See Also Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

4-187

Direction Cosine Matrix to Quaternions

Purpose
Library

Description

DeMZ2Quat

Dialog Box

Inputs and
Outputs

4-188

Convert direction cosine matrix to quaternion vector
Utilities/Axes Transformations

The Direction Cosine Matrix to Quaternions block transforms a 3-by-3
direction cosine matrix (DCM) into a four-element unit quaternion vector
(ap,a1,92,a3)- The DCM performs the coordinate transformation of a vector in
inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:

2 2 2 2
(99+91-92-93) 2(q199+9¢q3) 2(9195-9092)

— 2 2 2 2
DCM = 2(‘]1‘12“10‘13) (99—91+95—-93) 2(‘12‘13"“10‘11)

2 2 2 2
2(9195+9092) 2(9295-9091) (99—91-92+93)

Using this representation of the DCM, there is a number of calculations to
arrive at the correct quaternion. The first of these is to calculate the trace of
the DCM to determine which algorithms are used. If the trace is greater that
zero, the quaternion can be automatically calculated. When the trace is less
than or equal to zero, the major diagonal element of the DCM with the greatest
value must be identified to determine the final algorithm used to calculate the
quaternion. Once the major diagonal element is identified, the quaternion is
calculated. For a detailed view of these algorithms, look under the mask of this
block.

Block Parameters: Direction Cosine Makri |

DCM20uatermion [mazk) (link)

Determine the 41 gquatemion orentation vector from a 3-by-3 direction
cozine matrix [DCk). The input DCR transforms vectors from inertial axes
to body axes.

Ok, I Cancel | Help | Apply |

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

Direction Cosine Matrix to Quaternions

See Also

Direction Cosine Matrix to Euler Angles
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

4-189

Direction Cosine Matrix to Wind Angles

Purpose Convert direction cosine matrix to wind angles
Library Utilities/Axes Transformations
Description The Direction Cosine Matrix to Wind Angles block converts a 3-by-3 direction

cosine matrix (DCM) into three wind rotation angles. The DCM matrix
performs the coordinate transformation of a vector in earth axes (ox, 0y, 0z()
into a vector in wind axes (oxg, 0y3, 0z3) . The order of the axis rotations
required to bring (oxg, 0y, 0z3) into coincidence with (ox, 0y, 0z) is first, a
rotation about ox5 through the bank angle (1) to axes (0x4, 0y,, 025) , second,
a rotation about oy, through the flight path angle (y) to axes (0x;,0y;,0z;),
and finally, a rotation about 0z; through the heading angle () to axes

(oxo, 0Y ¢ ozo) .

DOM e Y3 P

O.’)C3 oxo

oyg| = DCMwe 0y

024 0z
0x3 10 0 cosy 0 —siny||cosy siny 0[|%%0
0ys| = |0 cosp sinp||0 10 —siny cosy 0| |0Yg
0zg 0 —sinp cosp||siny O cosy ||0 0 1oz,

Combining the three axis transformation matrices defines the following DCM.

cosycosy cosysiny —siny
DCM,, = (sinpsinycosy — cospusiny) (sinpusinysiny + cospcosy) sinucosy
(cosusinycosy + sinusiny) (cospusinysiny — sinfLcosy) COS[LCOS

To determine wind angles from the DCM, the following equations are used:
_ DCM(2,3)
H= atan(DCM(?), 3))
v = asin(-DCM(1, 3))

_ DCM(1,2)
X = atan(DCM(l, 1)j

4-190

Direction Cosine Matrix to Wind Angles

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

See Also

E! Function Block Parameters: Direction Cosine M il

DCM2%find [mask] (link)

Determine a wind orientation [muw, gamma, chi] from the 3-by-3 direction.cosine matrix
[DCH). The input DCK transfarms vectars from geadetic earth ar north*&ast-down
[MED] axes to wind axes.

Cancel Help | Apply |

The input is a 3-by-3 direction cosine matrix which transforms earth vectors to
wind vectors.

The output is a 3-by-1 vector of wind angles, in radians.

This implementation generates a flight path angle that lies between +90
degrees, and bank and heading angles that lie between +180 degrees.
Direction Cosine Matrix Body to Wind

Direction Cosine Matrix Body to Wind to Alpha and Beta

Direction Cosine Matrix to Euler Angles

Euler Angles to Direction Cosine Matrix

Wind Angles to Direction Cosine Matrix

4-191

Discrete Wind Gust Model

Purpose
Library
Description

¥ i) Vg]

Diiscrete Gust

4-192

Generate discrete wind gust
Environment/Wind

The Discrete Wind Gust Model block implements a wind gust of the standard
“1-cosine” shape. This block implements the mathematical representation in
the Military Specification MIL-F-8785C [1]. The gust is applied to each axis
individually, or to all three axes at once. The user specifies the gust amplitude
(the increase in wind speed generated by the gust), the gust length (length, in
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The
parameters that govern the gust shape are indicated on the diagram.

11 | 1 1 1

10
Gust Length
ok -
al -
T
r
E 5L Sust Amplitude _
-
n
n
o
- o -
=
£
4
sk -
2 - -
1
D 1 1 1 1
i) 1 2 3 4 Bl [7 8 4 10
Distanca (mi

The discrete gust can be used singly or in multiples to assess airplane response
to large wind disturbances.

Discrete Wind Gust Model

|

The mathematical representation of the discrete gust is

0
Vo = | S20-(2)
Vm

where V,, is the gust amplitude, d,, is the gust length, x is the distance
traveled, and V,;, 4 is the resultant wind velocity in the body axis frame.

o
Dialog Box
Block Parameters: Discrete Wind Gust Model™

r— Digcrete Wind Gust Madel [maszk] [link)]

Generate a discrete wind gust. The gust profile takes the 1-cozing' form.

— Parameters

Units: [Metric (MK5)
v Gust in u-axis
v Gustin w-axis
v Gust in w-axis

Gust start time [sec]:

—

|5
Gust length [dx dy dz] [m]:

|[1 20120 80]
Gust amplitude [ug wg wa] [m/z):

|[3.5 3530

0K Cancel | Help I

Apply

4-193

Discrete Wind Gust Model

Inputs and
Outputs

Examples
References

See Also

4-194

Units
Define the units of wind gust.
Units Wind Altitude
Metric (MKS) Meters/second Meters
English (Velocity Feet/second Feet
in ft/s)
English (Velocity Knots Feet
in kts)

Gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (sec)
The model time, in seconds, at which the gust begins.

Gust length [dx dy dz] (m or f)

The length, in meters or feet (depending on the choice of units), over which
the gust builds up in each axis. These values must be positive.

Gust amplitude [ug vg wg] (m/s, f/s, or knots)
The magnitude of the increase in wind speed caused by the gust in each
axis. These values may be positive or negative.

The input is airspeed in units selected.

The output is wind speed in units selected.
See Airframe in the aeroblk_HL20 demo for an example of this block.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Dryden Wind Turbulence Model (Continuous)

Discrete Wind Gust Model

Dryden Wind Turbulence Model (Discrete)
Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model

4-195

Dryden Wind Turbulence Model (Continuous)

Purpose Generate continuous wind turbulence with the Dryden velocity spectra
Library Environment/Wind
Description The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
oy spectral representation to add turbulence to the aerospace model by passing
P band-limited white noise through appropriate forming filters. This block
pom R a3 implements the mathematical representation in the Military Specification

MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Q radians per meter, the circular
frequency o is calculated by multiplying V by Q. The following table displays
the component spectra functions:

MIL-F-8785C MIL-HDBK-1797
Longitudinal
2 2
@, () 2% Ly 1 2uly 1
u v 02 % 02
1+ (L, 1+ (L,
1 1
nlL ~3 2nL ~3
9 —w 2 w
o o o .0.8(45) o? 0.8(4b)
P VL, 1+(4b_m)2 2VL,, 1+(4bw)2
4% nV

4-196

Dryden Wind Turbulence Model (Continuous)

MIL-HDBK-1797

MIL-F-8785C
Lateral
2 2
6 L, 1+3(L,2
Py (@) v E
1 +(va)] 9 0.2
20,L, 1+12(L,p)
nV 2 2
[1+4(L,D)"]
@, (o)
2 2
@ @
Ve i ®
1 (30 INETTRR
nV * nV
Vertical
2 2 2 2
o (0 GwLw‘ 1+3(L,D) 26w‘fw' 1+12(L,)
w 9 T 2.2
W@, [1+4(L,2)7
2
3
—_— s P, (0 —— D, (w)
@y (©) 1+(429)’ Wt 1o(229)
1% 1%

The variable b represents the aircraft wingspan. The variables L, L, L,
represent the turbulence scale lengths. The variables 6, 6,, 6,, represent the

turbulence intensities.

4-197

Dryden Wind Turbulence Model (Continuous)

4-198

The spectral density definitions of turbulence angular rates are defined in the
specifications as three variations, which are displayed in the following table:

ow ow v

= —£ = —£ = __&
Pg oy g ox Tg 0x
ow Py v

- 8 w - 8
Pe= %y =35 TeT
dw _ow _ v

Pg=-57 %~ o T8 o

The variations affect only the vertical (q) and lateral (ry) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, (ng(w) ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

® (o), multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

Vertical Lateral

<I>q((o) -® (o)

D (0) D (0)

—<Dq(o)) D (o)

To generate a signal with the correct characteristics, a unit variance,

band-limited white noise signal is passed through forming filters. The forming
filters are derived from the spectral square roots of the spectrum equations.

Dryden Wind Turbulence Model (Continuous)

The following table displays the transfer functions:

MIL-F-8785C
Longitudinal
H,(s)
oL 1
Gu '{17u Lu
1+"7S
H(s)
(o)1/6
s [0:8 (4b)
YNV o1/8 4b
Lw (1+(1W)S)
Lateral
HU(S) 1+ /\/éLUS
Sunzv L, 2
(1+78)
H,(s)
i
-H (s)

MIL-HDBK-1797

2Lu 1

unN v L

1/6
0.8 ((an-)—))

v (2Lw)1/3(1 + (ﬁ"—b)s)

w

2./3L,
921 1+ V S
1%
GUVTE_V 2L 2
(1+TUS)

4-199

Dryden Wind Turbulence Model (Continuous)

MIL-F-8785C MIL-HDBK-1797
Vertical
H (s) J3L, 2.38L,
! Lty s L PR TV
Oyun—v 7 5 wA v 2
wA v L 2 2L
(1++Ps) (1 + Tws)
H_(s)
q 43 +3
vV vV

-H,,(s)

(1+()) (1+(28)s)

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

H,(s)

Note The military specifications result in the same transfer function after
evaluating the turbulence scale lengths. The differences in turbulence scale
lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low
altitudes, where £ is the altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797
L,=h oL, = h
L,=L,= h — L,=2L, = h o
(0.177 + 0.000823 /)" (0.177 + 0.000823 /)"

The turbulence intensities are given below, where W, is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15

4-200

Dryden Wind Turbulence Model (Continuous)

knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

6, = 0.1Wy,

w

Oy Sy 1

Sw Ouw (0.177 +0.0008234)%*

The turbulence axes orientation in this region is defined as follows:

* Longitudinal turbulence velocity, u,, aligned along the horizontal relative
mean wind vector

* Vertical turbulence velocity, w,, aligned with vertical

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

MIL-F-8785C MIL-HDBK-1797

L,=L,=L,=1750ft L, = 2L, = 2L, = 1750 ft

u v

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

6, =60, =0,

4-201

Dryden Wind Turbulence Model (Continuous)

4-202

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

Medium/High Altitude Turbulence Intensities (Probability of Exceedance)
80 T T T T T

"Severe"
10°°

(53]
(=)
T

"Moderate"
102

w
o

Altitude, thousands of feet
.
(=]

N
(=)

10

| 1 1
10 15 20 25 30 35
RMS Turbulence Amplitude [ft/sec]

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean

horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Dryden Wind Turbulence Model (Continuous)

Dialog Box

Block Parameters: Dryden Wind Turbulence Model (Continuous (+q +r))

21X

—'wind Turbulence Model [mask] (link]

Generate atmosphenc burbulence. White noise it passed through 4 filter to give the turbulence the specified velacity spectra,

Mediumshigh altitude scale lengths from the specifications are 762 m (2500 ft) for Yon Karman turbulence and 533.4 m [1750 it] for Divden tubulence.

Units: [Metric (MKS)

Specification: I IL-F-B785C

Model type: | Continuous Dryden [+g +)

“Wind speed at B m defines the low-altitude intengity (més]:

|18

‘Wind direction at 6 m [degiees clockwise from naorth]:

Jo

Probability of exceedance of high-altituds intensity: I 102 - Light

Scale length at medium/high altitudes (m):

[5334

‘Wingzpan [m]:

[10

Band limited noise sample time (sec):

Jo1

Noise seeds [ug vg wa paf

|[233=11 23342 23343 23344]

¥ Tubulence on

oK Cancel

Help

Apply

|

4-203

Dryden Wind Turbulence Model (Continuous)

Units

Define the units of wind speed due to the turbulence.
Units Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English Feet/second Feet Feet/second
(Velocity in
ft/s)
English Knots Feet Knots
(Velocity in
kts)
Specification

Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions.

Model type
Select the wind turbulence model to use.

Continuous Von Karman (+q -r) Use continuous representation of Von
Karman velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kdrmén (+q +r) Use continuous representation of Von
Karman velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Karman (-q +r) Use continuous representation of Von
Karman velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

4-204

Dryden Wind Turbulence Model (Continuous)

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +1) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

The Continuous Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

4-205

Dryden Wind Turbulence Model (Continuous)

Inputs and
Outputs

4-206

Scale length at medium/high altitudes (m)
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (sec)
The sample time at which the unit variance white noise signal is generated.

Noise seeds

There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

The first input is altitude, in units selected.
The second input is aircraft speed, in units selected.
The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Continuous)

Assumptions
and Limitations

Examples

References

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

® Terrain roughness

® Lapse rate

¢ Wind shears

® Mean wind magnitude

¢ Other meteorological factions (except altitude)

See the Airframe subsystem in the aeroblk HL20 demo for an example of this
block.

U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education
Series, 1988.

Ly, U,, Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at

NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

4-207

Dryden Wind Turbulence Model (Continuous)

See Also

4-208

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARYV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

Von Karman Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Purpose
Library

Description

Diszrte

h im) Yiing IS
V (mis) ?

Dryden o . (m=dis)
oGm 40 s (23451

Generate continuous wind turbulence with the Dryden velocity spectra

Environment/Wind

The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral
representation to add turbulence to the aerospace model by using band-limited
white noise with appropriate digital filter finite difference equations. This

block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined

by velocity spectra. For an aircraft flying at a speed V through a “frozen”

turbulence field with a spatial frequency of Q radians per meter, the circular
frequency o is calculated by multiplying V by Q. The following table displays

the component spectra functions:

Longitudinal

@, ()

()

MIL-F-8785C
265Lu 1
nv 1+ (Lm—"j)2
1
L N3
2 _w
o 08(4b)
VL 4bw\ 2
1 +(W)

MIL-HDBK-1797

20,L, 1
v 1+(Lu$)2
1
2L 3

92 w
o os(
2VL 2
T

4-209

Dryden Wind Turbulence Model (Discrete)

Lateral

@, (w)

()

Vertical

@, (o)

y(0)

4-210

MIL-F-8785C

2
6’L, 1+3(L,2)
v

2
[1+(L,2)"]

2 2
GwLw . 1+ 3(Lw%,’)
1%

2
[1+(L,2°]

MIL-HDBK-1797

2
26°L, 1+12(L,2)
v o

[1+4(L,7)]

2
26, L, 1+12(L,%)

o ear,®’”

Dryden Wind Turbulence Model (Discrete)

The variable b represents the aircraft wingspan. The variables L, L, L,
represent the turbulence scale lengths. The variables 6, 6,, 6,, represent the
turbulence intensities.

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

p = a_wg q = a—wg r = —a—vg
8 ay g 8x g ax
Jw Py Jv
= —£ w - 8
Pg dy dg = Ecg g T ox
ow _ awg _ ‘?_Bg
pgz_—a;,g 9 = Tox g T ox

The variations affect only the vertical (q,) and lateral (ry) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, @, (0),
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,
@, (o), multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

Vertical Lateral
o, (0) -P.(0)
D (0) D (o)
~0 (0) D ()

4-211

Dryden Wind Turbulence Model (Discrete)

4-212

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is used in the digital filter finite difference

equations.

The following table displays the digital filter finite difference equations:

Longitudinal

Lateral

Vertical

MIL-F-8785C
\%4 V Ou
1-—Tlu,+ [2—T—n
(Lu)g N L, O'nl
2.6
_=2_T|p
g
12
0.95
26 3/2L b2
2—=—=—T . Ny
L,b Sy

(1 g}:) g 3b(v Vg paar)

\% V .Ouw
1-—Tw, + [2—T—n
(L,) gL, oy 3

(TEV

4b)qg 4b(w D)

MIL-HDBK-1797

1.9
Lb"
26 N
2L b oy

(1 T:;Z) g 3b(v Vg et
(I—I%T)wg+ /21%’1‘%113

(1 ZZ >qg 4b(w Dot

Dryden Wind Turbulence Model (Discrete)

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low
altitudes, where A is the altitude in feet, are represented in the following table:

MIL-F-8785¢ MIL-HDBK-1797

L,=h oL, = h

L,=1L,= h — L,=2L,= h -
(0.177 + 0.000823h) ™ (0.177 + 0.000823h) "

The turbulence intensities are given below, where Wy, is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

Ou _ S _ 1
(¢}

w Sw (0.177 +0.000823h)%*

The turbulence axes orientation in this region is defined as follows:

* Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

® Vertical turbulence velocity, w,, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

4-213

Dryden Wind Turbulence Model (Discrete)

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

MIL-F-8785C MIL-HDBK-1797

L,=L,=L, =1750ft L,=2L,6 =2L, = 1750ft

u v u v

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

GM=GU=GLU

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

Medium/High Altitude Turbulence Intensities (Probability of Exceedance)

80

70

\Q
"Severe"
108

ig4
"Moderate" 7
3

SLight'
1 -2
20

2% -1 //

—

0 5 10 15 20 25 30 35
RMS Turbulence Amplitude [ft/sec]

@
=]
T

o
=]

Altitude, thousands of feet
w B
o o
=

-

4-214

Dryden Wind Turbulence Model (Discrete)

Dialog Box

|

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000

feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

=): Block Parameters: Dryden Wind Turbulence Model (Discrete {+q +r))

2lx|

—Ywind Turbulence Model [mask] [link]

Generate atmospheric turbulence. White noise iz passed through a filter ta give the turbulence the specified velocity spectra.

Medium/high altitude gcale lengths from the specifications are 762 m (2500 f] for Von Karman turbulence and 533.4 m [1750 i) for Dipden tuibulence.

P
F

Urits: | Metric [MKS)

Specification: | MIL-F-8785C

M odel type: | Discrete Dryden [+q +]

Wind speed at B m defines the low-altitude intensity (m/z]:

|15

“Wind direction at 6 m [degrees clockwise fram narth]:

Jo

Probability of exceedance of high-altitude intensity: I 102 - Light

Scale length at medium/high altitudes [m):

[533.4

“Wingspan [m]:

[10

Band limited noize and discrete filter sample time [sec)

Jo1

Noise seeds [ug va wa pal:

|[23341 23342 23343 23344]

™ Tubulence on

ok LCancel Help Apply

4-215

Dryden Wind Turbulence Model (Discrete)

4-216

Units

Define the units of wind speed due to the turbulence.
Units Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English Feet/second Feet Feet/second
(Velocity in
ft/s)
English Knots Feet Knots
(Velocity in
kts)
Specification

Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Continuous Von Karméan (+q -r) Use continuous representation of Von
Karman velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kdrmén (+q +r) Use continuous representation of Von
Karmaén velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Kdrman (-q +r) Use continuous representation of Von
Karman velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Dryden Wind Turbulence Model (Discrete)

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +1) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

The Discrete Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

4-217

Dryden Wind Turbulence Model (Discrete)

Inputs and
Outputs

4-218

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise and discrete filter sample time (sec)

The sample time at which the unit variance white noise signal is generated
and at which the discrete filters are updated.

Noise seeds

There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

The first input is altitude, in units selected.
The second input is aircraft speed, in units selected.
The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Discrete)

Assumptions
and Limitations

References

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

® Terrain roughness

® Lapse rate

¢ Wind shears

® Mean wind magnitude

¢ Other meteorological factions (except altitude)

U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education
Series, 1988.

Ly, U,, Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at

NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

4-219

Dryden Wind Turbulence Model (Discrete)

See Also

4-220

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARYV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

Dryden Wind Turbulence Model (Continuous)

Von Karman Wind Turbulence Model (Continuous)

Discrete Wind Gust Model

Wind Shear Model

Dynamic Pressure

Purpose
Library

Description

W
1 2
by qk

3

Dialog Box

Inputs and

Outputs

Examples

See Also

Compute dynamic pressure using velocity and air density
Flight Parameters

The Dynamic Pressure block computes dynamic pressure.
Dynamic pressure is defined as

1 .2
q_2pV

where p is air density and V is velocity.

Block Parameters: Dynamic Pressure #

" Dwnamic Pressure [mask)] [link]

Compute dynamic pressure uzing velocity and air density.

QK I Cancel | Help | Apply |

The first input is velocity vector.
The second input is air density.

The output of the block is dynamic pressure.

See the Airframe subsystem in the aeroblk_HL20 demo for an example of this

block.

Aerodynamic Forces and Moments

Mach Number

4-221

ECEF Position to LLA

Purpose Calculate geodetic latitude, longitude, and altitude above mean sea-level
(MSL) from Earth-centered Earth-fixed (ECEF) position

Library Utilities/Axes Transformations
Description The ECEF Position to LLA block converts a 3-by-1 vector of ECEF position (p)
into geodetic latitude (u), longitude (1), and MSL altitude (k).
13
X, " The ECEF position is defined as
h
Py
b=p,
L,

Longitude is calculated from the ECEF position by

14
1= atan(—x)

X

Geodetic latitude (u) is calculated from the ECEF position using Bowring’s
method, which typically converges after two or three iterations. The method
begins with an initial guess for geodetic latitude (u) and reduced latitude () .
An initial guess takes the form:

-)

2
p,+ € 2R(sinB)3
(1-e?)

s— ezR(cos |3)3

| = atan

where R is the equatorial radius, f the flattening of the planet,
e” = 1-(1-/)" the square of first eccentricity, and

4-222

ECEF Position to LLA

’
Jﬁ
s = Py +D,

After the initial guesses are calculated, the reduced latitude (B) is
recalculated using

B = atan((L=Asine)

CoSL

and geodetic latitude (W) is reevaluated. This last step is repeated until p
converges.

The MSL altitude (&) is calculated with
h = scosu+[p,+ e2Nsinu] sinu - N
where the radius of curvature in the vertical prime (IN) is given by

R

Na —e2(sinu)2

N =

4-223

ECEF Position to LLA

Dialog Box

4-224

[=JFunction Block Parameters: ECEF Position to LLA x|

—ECEF to LLA (mask] [link]

Calculate geodetic latitude, longitude, atd sltitude [MSL) from E arth Centered E arth
Fixed [ECEF] pozition.

—Parameters
Units: | Metric MKS) =]
Planet modet: | Earth [wG584) =]
0K | Cancel | Apply |
x|

—ECEF ta LLA [mask] [link)

Calculate geodetic latitude, longitude, and altitude [MSL) from E arth Centered E arth
Fixed [ECEF] position.

—Parameters

Planet model: | Custam |

Flattening:
|1 /298 257223563

E quatarial radiuz of planet:
|[GEEEEY

Ok | Cancel

Apply

Units

Specifies the parameter and output units:

Units Position Equatorial Radius
Metric (MKS) Meters Meters

English Feet Feet

Altitude
Meters
Feet

This option is only available when Planet model is set to Earth (WGS84).

ECEF Position to LLA

Inputs and
Outputs

Assumptions
and Limitations

References

Planet model
Specifies the planet model to use Custom or Earth (WGS84).

Flattening
Specifies the flattening of the planet.

This option is available only with Planet model set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The equatorial radius units
should be the same as the desired units for ECEF position.

This option is available only with Planet model set to Custom.

The input is a 3-by-1 vector containing the position in ECEF frame.

The first output is a 2-by-1 vector containing geodetic latitude and longitude,
in degrees.

The second output is a scalar value of altitude above mean sea-level (MSL), in
the same units as the ECEF position.

This implementation generates a geodetic latitude that lies between £90
degrees, and longitude that lies between +180 degrees. The planet is assumed
to be ellipsoidal. By setting the flattening to 0, you model a spherical planet.
Additionally, the calculated MSL altitude is approximate.

The implementation of the ECEF coordinate system assumes that its origin
lies at the center of the planet, the x-axis intersects the prime (Greenwich)
meridian and the equator, the z-axis is the mean spin axis of the planet
(positive to the north), and the y-axis completes the right-handed system.

See “About Aerospace Coordinate Systems” on page 2-20.
Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/ATAA
R-004-1992.

4-225

ECEF Position to LLA

See Also Direction Cosine Matrix ECEF to NED
Direction Cosine Matrix ECEF to NED to Latitude and Longitude
Geocentric to Geodetic Latitude
LLA to ECEF Position

Radius at Geocentric Latitude

4-226

Estimate Center of Gravity

Purpose
Library

Description

mass S

dmidt dGGdt

T

Dialog Box

|

Calculate the center of gravity location
Mass Properties
The Estimate Center of Gravity block calculates the center of gravity location

and the rate of change of the center of gravity.

Linear interpolation is used to estimate the location of center of gravity as a
function of mass. The rate of change of center of gravity is a linear function of
rate of change of mass.

«): Block Parameters: Estimate Center of Gravity ﬂﬂ

—Estimate CG [mazk] [link]

Calculate the center of gravity location. Linear interpolation is uged to determine center
of gravity az a function of mazs.

=
F

Full mass:
|2

Emply mazs:

Jh

Full center of gravity:
o1y

Empty center of gravity:
Jinsas08;

Qg Lancel Help Apply

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full center of gravity
Specifies the center of gravity at gross mass of the craft.

4-227

Estimate Center of Gravity

Inputs and
Outputs

Examples

See Also

4-228

Empty center of gravity
Specifies the center of gravity at empty mass of the craft.
The first input is the mass.
The second input is the rate of change of mass.
The first output is the center of gravity location.

The second output is the rate of change of center of gravity location.
See the aeroblk vmm demo for an example of this block.

Aerodynamic Forces and Moments
Estimate Inertia Tensor

Moments About CG Due to Forces

Estimate Inertia Tensor

Purpose
Library

Description

MASS =— =

dmidt dlfdt

T

Dialog Box

|

Calculate the inertia tensor
Mass Properties

The Estimate Inertia Tensor block calculates the inertia tensor and the rate of
change of the inertia tensor.

Linear interpolation is used to estimate the inertia tensor as a function of
mass. The rate of change of the inertia tensor is a linear function of rate of
change of mass.

«): Block Parameters: Estimate Inertia Tensor ﬂﬂ

—E stimate Inertia [mazk] [link]

Calculate the inertia tenzor. Linear interpolation is used to determine inertia tensor
as a function of mass.

Full mass:

|2

Emply mazs:
Jh
Full inertia ratrix:

|ey8[3]

Empty inertia matrix:

Jepeianz

Qg Lancel Help Apply

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full inertia matrix
Specifies the inertia tensor at gross mass of the craft.

4-229

Estimate Inertia Tensor

Inputs and
Outputs

See Also

4-230

Empty inertia matrix
Specifies the inertia tensor at empty mass of the craft.
The first input is mass.
The second input is rate of change of mass.
The first output is inertia tensor.

The second output is rate of change of inertia tensor.

Estimate Center of Gravity

Symmetric Inertia Tensor

Euler Angles to Direction Cosine Matrix

Purpose Convert Euler angles to direction cosine matrix
Library Utilities/Axes Transformations
Description The Euler Angles to Direction Cosine Matrix block converts the three Euler

rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in inertial axes

(0x(, 0y, 02()) into a vector in body axes (oxg, 0y3, 0z3) . The order of the axis
rotations required to bring (ox3, 0y, 0z5) into coincidence with (ox, 0y, 0z,)
is first a rotation about ox4 through the roll angle (¢) to axes (oxq, 0y4, 025) .
Second a rotation about 0y, through the pitch angle (8) to axes (ox;,0y4,024),
and finally a rotation about 0z; through the yaw angle (y) to

axes(0xg, 0y, 02) -

EulzDCh |

_ox:; ox
oy3 = DCM oyO
0zg 0z
0x3 10 0 cosO 0 —sin6||cosy siny 0| |°%0
0yg| = |0 cos¢ sino||0 10 —siny cosy 0 |0y
0z4 0 —sin¢ cos¢||sin® 0 cosO ||0 0 1 0z,

Combining the three axis transformation matrices defines the following DCM.

cosOcosy cosOsiny —sin®
DCM = |(sin¢sinBcosy — cosdsiny) (sindsin@siny + cosdcosy) sindcos 6
(cosdsinBcosy + sindsiny) (cosPsinOsiny — sindcosy) cosdcosO

4-231

Euler Angles to Direction Cosine Matrix

Dialog Box

Inputs and
Outputs

See Also

4-232

Block Parameters: Euler Angles ko Direct" |

Euler2DCM [mask] [link]

Determing the 3-by-3 direction cosine matrix (DCM] from an Euler
orientation [roll, pitch, paw). The output DM transforms vectors fram
inertial axes to body axes.

k. I Cancel | Help | Apply |

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

Euler Angles to Quaternions

Purpose
Library

Description

EulZQuat [

Convert Euler angles to a quaternion vector
Utilities/Axes Transformations

The Euler Angles to Quaternions block converts the rotation described by the
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector

(q0,91,92,93)-

A quaternion vector represents a rotation about a unit vector (p, Hy M,)
through an angle 6. A unit quaternion itself has unit magnitude, and can be
written in the following vector format.

99 cos(0/2)

qq sin(0/2)u,

7= a9 - sin(6/2)uy

qs sin(0/2)u,
An alternative representation of a quaternion is as a complex number,
q = qo+iqy+jqg+kqg

where, for the purposes of multiplication,

22 _R2- 4
ij = ji=kFk
jk = -kj = i,
ki = ik = j

The benefit of representing the quaternion in this way is the ease with which
the quaternion product can represent the resulting transformation after two or
more rotations. The quaternion to represent the rotation through the three
Euler angles is given below.

q = qydedy = (cos@ - isin(g)) (COS@ -J Sin(g))(cos(g) _kSin@D

Expanding the preceding representation gives the four quaternion elements
following.

4-233

Euler Angles to Quaternions

_cos(g)
q
q(z _ sin@)
Zz cos(g)
ol

Dialog Box

SN 7 N /N TN
Gie Rio R

NS

Block Parameters: Euler Angles to Quaternic

" Euler2Quaternion [mask] [link)
©

alculate quaternion [q0,q1.02

Z.
=)

NI

n
-
=}

—

NID

o
=]
7]

TN TN TN TN
QICD

NID

w
-
=]

03] fran Euler angles [rall, pitch, yaw)

o]

Cancel |

Help | Apply |

Inputs and
Outputs

See Also

The output is a 4-by-1 quaternion vector.

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

4-234

The input is a 3-by-1 vector of Euler angles.

Z. Z.
B =

[}
-
=}

[«
o
7]

D N D

NS

G R S

Flat Earth to LLA

Purpose
Library

Description

= Ml

=

|-lrn:'f hF

Estimate geodetic latitude, longitude, and altitude from flat Earth position
Utilities/Axes Transformations

The Flat Earth to LLA block converts a 3-by-1 vector of Flat Earth position (p)
into geodetic latitude (W), longitude (1) , and altitude (%) . The flat Earth
coordinate system assumes the z-axis is downwards positive. The estimation
begins by transforming the flat Earth x and y coordinates to North and East
coordinates. The transformation has the form of

N| _ |cosy —siny| |Px
E siny cosy p,

where (y) is the angle in degrees clockwise between the x-axis and north.

To convert the North and East coordinates to geodetic latitude and longitude,
the radius of curvature in the prime vertical (Rj;) and the radius of curvature
in the meridian (R,;) are used. (Ry;) and (R,,) are defined by the following
relationships:

) R
J1-@f-Asin?

1-2f—f)
R,, =R
M@ Pysin®y

Ry

where (R) is the equatorial radius of the planet and (f) is the flattening of the
planet.

Small changes in the in latitude and longitude are approximated from small
changes in the North and East positions by

du = atan(l%M)dN
dv = atan(R iosp)dE
N

4-235

Flat Earth to LLA

The output latitude and longitude are simply the initial latitude and longitude
plus the small changes in latitude and longitude.

n=p,+dp

L=1,+dl

The altitude is the negative flat Earth z-axis value minus the reference height
(hr ef) .

h = _pz_href

4-236

Flat Earth to LLA

Dialog Box

[=JFunction Block Parameters: Flat Earth to LLA

—Flat Earth to LLA [magk] [link]

Estimate geodetic latitude, longitude, and altitude from flat Earth pozition. The flat
Earth coordinate spstem azsumes the z-awis iz positive downwards.

—Parameters

Urits: | Metric MKS]

El
Plariet model: | Earth wG584) =]
Initial geodetic latitude and longitude [deg]:
T[T
Drirection of flat E arth #-aris [degrees clockwize fram north]:
Jo

0K | Cancel | Apply

[EJFunction Block Parameters: Flat Earth ko LLA

—Flat Earth to LLA [mask] [link]

Estimate geodetic latitude, longitude, and altitude from flat Earth position. The fat
Earth coordinate system assumes the z-axis iz positive dowrwards.

—Parameters
Planet model: | Custom LI
Flattening:
|1 F298.257 223563
E quatarial radius of planet:
|GEEEIEY
Initial geodetic |atiude and longitude [deg]:
Jio

Drirection of Hat Earth #-axis [degrees clockwize from north):

jo

0K Cancel Apply

|

4-237

Flat Earth to LLA

Inputs and
Outputs

4-238

Units
Specifies the parameter and output units:
Units Position Equatorial Radius Altitude
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

This option is only available when Planet model is set to Earth (WGS84).

Planet model
Specifies the planet model to use:

Custom
Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available with
Planet model Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for flat Earth position.
This option is only available with Planet model Custom.

Initial geodetic latitude and longitude

Specifies the reference location, in degrees of latitude and longitude, for the
origin of the estimation and the origin of the flat Earth coordinate system.

Direction of flat Earth x-axis (degrees clockwise from north)
Specifies angle used for converting flat Earth x and y coordinates to North

and East coordinates.
The first input is a 3-by-1 vector containing the position in flat Earth frame.

The second input is a scalar value of reference altitude in the same units for
flat Earth position.

The first output is a 2-by-1 vector containing geodetic latitude and longitude,
in degrees.

Flat Earth to LLA

Assumptions
and Limitations

Example

References

See Also

The second output is a scalar value of altitude above the input reference
altitude, in same units as flat Earth position.
This estimation method assumes the flight path and bank angle are zero.

This estimation method assumes the flat Earth z-axis is normal to the Earth
at the initial geodetic latitude and longitude only. This method has higher
accuracy over small distances from the initial geodetic latitude and longitude,
and nearer to the equator. The longitude will have higher accuracy the smaller
the variations in latitude. Additionally, longitude is singular at the poles.

See the asbh120 demo for an example of this block.

Etkin, B., Dynamics of Atmospheric Flight, John Wiley & Sons, New York, NY,
1972.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, Second
Edition, John Wiley & Sons, New York, NY, 2003.

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

ECEF Position to LLA

Geocentric to Geodetic Latitude

LLA to ECEF Position

Radius at Geocentric Latitude

4-239

FlightGear Preconfigured 6DoF Animation

Purpose Connect your model to FlightGear Flight Simulator
Library Animation/Flight Simulator Interfaces
Description The FlightGear Preconfigured 6DoF Animation block lets you drive position
and attitude values to a FlightGear Flight Simulator vehicle given double
* precision values for longitude (1), latitude (L), altitude (h), roll (¢), pitch (9),
L8y and yaw () respectively.
The block is a masked subsystem containing principally a Pack net_fdm Packet

for FlightGear block set for 6DoF inputs, a Send net_fdm Packet to FlightGear
block, and a Simulation Pace block. To access the full capabilities of these
blocks, use the individual corresponding blocks from the Aerospace Blockset
library.

The block is additionally configured as a SimViewingDevice, so that if you
generate code for your model using Real-Time Workshop and connect to the
running target code using the Real-Time Workshop External Mode available
from the model's toolbar, then Simulink can obtain the data from the target on
the fly and transmit position and attitude data to FlightGear. The
SimViewingDevice facility is described in the Simulink documentation.

4-240

FlightGear Preconfigured 6DoF Animation

Dialog Box

Inputs and
Outputs

E! sink Block Parameters: FlightGear Preconfigure x|

— FlightGearBuickED oFAnimation [mazk] (link)

Drive pogition and attitude walues to a FlightGear Flight Simulatar wehicle given double
precizion values for longitude, latitude, altitude, roll, pitch, and yaw respectively. Unitz
are degrees westnorth for longitude and latitude, meters above mean sea level for
altitude, atd radians for attitude values.

Thiz block iz a mazked subsystem containing principally a FlightGear Pack Met FDM
block set for BDoF inputs, a FlightGear Send Met FOM block, and a Simulation Pace
block. To access the full capabilities of these blocks, use the individual coresponding
blocks from the Aerospace Blockzet librany.

Uze "Look under mazk" from this block's contest menu to zee the blocks under the
maszk.

—Parameters

FlightGear wersion: | +0.9.3 LI

Destination |P address:
127001

Diestination port:

|5502

Sample time [-1 for inherited):

{1430

Apply

FlightGear version
Select your FlightGear software version: v0.9.3, v0.9.8, or v0.9.9.

Destination IP address
Specify your destination IP address.

Destination port
Specify your destination port.

Sample time
Specify the sample time (-1 for inherited).

The input is a vector containing longitude, latitude, altitude, roll, pitch, and
yaw, in double precision. Units are degrees west/north for longitude and
latitude, meters above mean sea level for altitude, and radians for attitude
values.

4-241

FlightGear Preconfigured 6DoF Animation

References Dr. Nathaniel Bowditch, American Practical Navigator, An Epitome of
Navigation, US Navy Hydrographic Office, 1802.

See Also Generate Run Script
Pack net_fdm Packet for FlightGear
Send net_fdm Packet to FlightGear

Simulation Pace

4-242

Force Conversion

Purpose
Library

Description

Ibf —* g

Dialog Box

Inputs and
Outputs

Convert from force units to desired force units
Utilities/Axes Transformations

The Force Conversion block computes the conversion factor from specified
input force units to specified output force units and applies the conversion
factor to the input signal.

The Force Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Block Parameters: Force Conversion k|

— Force Correersion [magk) [link]

Conwert units of input signal to dezired output units.

r— Parameters

Iritial units: ||bf

Led el

Final urits: I M

Ok | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

1bf Pound force

N Newtons

The input is force in initial force units.

The output is force in final force units.

4-243

Force Conversion

See Also

4-244

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

Gain Scheduled Lead-Lag

Purpose
Library

Description

: 1+a.s¥1+b.=)
b

u

Dialog Box

Inputs and
Outputs

Implement a first-order lead-lag with gain-scheduled coefficients
GNC/Controls

The Gain Scheduled Lead-Lag block implements a first-order lag of the form

U = 1+ase
T 1+bs

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made
dependent on flight condition or operating point. For example, they could be
produced from the Look-Up Table (n-D) Simulink block.

Block Parameters: Gain Scheduled Lead-La |
— Gain Scheduled Lead-Lag [mask] (link)]
Implement gain-scheduled first-order lead-lag of the form [1+a.5]/[1+b.3].
Iritial output iz given by [x_intial+a.e)/b where »_initial is the initial state

defined in the mask dialog box. Mote that b should never be allowed to be
zeno.

r— Parameters
Initial state, «_initial:

o

Ok I Cancel | Help Apply

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state,
the initial output is given by

” _ xinitial + ae

|t =0 b

The first input is the filter input.

The second input is the numerator coefficient.
The third input is the denominator coefficient.

The output is the filter output

4-245

Generate Run Script

Purpose
Library
Description

GERN
FG
RN

4-246

Generate FlightGear run script on current platform
Animation/Flight Simulator Interfaces

The Generate Run Script block generates a customized FlightGear run script
on the current platform.

To generate the run script, fill the required information into the dialog’s fields,
then click Generate Script.

Fields in the dialog marked with an asterisk (*) are evaluated as MATLAB
expressions. The other fields are treated as literal text.

For More Information About FlightGear

See “Creating a FlightGear Run Script” on page 2-43 for more about
FlightGear.

Generate Run Script

Dialog Box

CiBlock Parameters: Generate Run S x|

—Generate FlightGear Run Script

Generate a custom FlightGear run zcript file on the current platfarm.

Ta generate the rin script, fill in the information then press Generate Script. Items
marked with an asterigk [*] are exaluated az MATLAB expreszions, the rest of the fields
are literal text.

—Parameters

G enerate 5 crip:

Cutput file name:

Irunfg. bat

FlightGear base directon:

|D SAapplicationssFlightGear
FlightGear geometry model name:
JHL20

Destination port:

|5502

Airport |02

JKSFO

Rurway [D:

oL

Imitial altitude [f]*

[7z24

Initial heading [deqg]™

IE

Offzet diztance [miles)™:
J472

Offzet azimuth [deg]™:
jo

0K Cancel | Help | Apply

Generate Script

Click to generate a run script for FlightGear. Do not click this button until
you have entered the correct information in the dialog fields.

|

4-247

Generate Run Script

Examples

See Also

4-248

Output file name

Specify the name of the output file. The file name is the name of the
command you will use to start FlightGear with these initial parameters.
The file must have the .bat extension.

FlightGear base directory
Specify the name of your FlightGear installation directory.

FlightGear geometry model name

Specify the name of the folder containing the desired model geometry in the
FlightGear\data\Aircraft directory.

Destination port

Specify your network flight dynamics model (fdm) port. For more
information, see the Send net_fdm Packet to FlightGear block reference.

Airport ID

Specify the airport ID. The list of supported airports is available in the
FlightGear interface, under Location.

Runway ID
Specify the runway ID.

Initial altitude
Specify the initial altitude of the aircraft, in feet.

Initial heading
Specify the initial heading of the aircraft, in degrees.

Offset distance
Specify the offset distance of the aircraft from the airport, in miles.

Offset azimuth
Specify the offset azimuth of the aircraft, in degrees.

See the asbh120 demo for an example of this block.

FlightGear Preconfigured 6DoF Animation
Pack net_fdm Packet for FlightGear
Send net_fdm Packet to FlightGear

Geocentric to Geodetic Latitude

Purpose
Library

Description

K

r

Convert geocentric latitude to geodetic latitude
Utilities/Axes Transformations

The Geocentric to Geodetic Latitude block converts a geocentric latitude ()
into geodetic latitude (i) . There are a number of geometric relationships that
are used to calculate the geodetic latitude in this non-iterative method. There
are a number angles and points involved in the calculation which are shown in
following figure.

Given geocentric latitude (A) and the radius (r) from the center of the planet
(O) to the center of gravity (P), this non-iterative method starts by computing
values for the point of r that intercepts the surface of the planet (S). By
rearranging the equation for an ellipse, the horizontal coordinate, (x,) is

4-249

Geocentric to Geodetic Latitude

4-250

determined. When equatorial radius (R), polar radius ((1-/)R) and x tanAi,
are substituted for semi-major axis, semi-minor axis and vertical coordinate
(y,), the resulting equation for x, has the following form:

. - __ _(1-pR

a
A/tan27»+ (1—}‘)2

To determine the geodetic latitude at S L, the equation for an ellipse with
equatorial radius (R), polar radius ((1 - f)R) is used again. This time it is used
to define y, in terms of x,,.

2 2
Yo = JR —x,(1-f)

Additionally, the relationship between geocentric latitude at the planet’s
surface and geodetic latitude is used.

tani
-

b, = atan(

Using the relationship tan)A = y, /x, and the two equations above, the
resulting equation for p, is obtained.

Rz—xa2
u, = atan m

The correct sign of 11, is determined by testing A and if A is less than zero p,,
changes sign accordingly.

In order to calculate the geodetic latitude of P, a number of geometric
relationships are required to be calculated. These calculations follow.

The radius (r,) from the center of the planet (O) to the surface of the planet (S)
is calculated by using trigonometric relationship.

@ cosh

Geocentric to Geodetic Latitude

The distance from S to P is defined by:

l=r-r,

The angular difference between geocentric latitude and geodetic latitude at S
(6A) is defined by:

A =p —A

a

Using [and dA, the mean sea-level altitude () is estimated.

h = lcosdA

The equation for the radius of curvature in the Meridian (p,) at p, is
RA-f’
.2 3/2
(1-(2f-f")sin’p,)

Using [, 8\, h, and p,, the angular difference between geodetic latitude at S
(1) and geodetic latitude at P (u,) is defined as:

du = atan(l;i%b)
a

pa=

Subtracting du from p, then gives u.

U= p,-0ou

4-251

Geocentric to Geodetic Latitude

Dialog Box
[E]Function Block Parameters: Geocentric ko Geodetic x|

—Geocentric to Geodetic Latitude [mazk] [link]

Convert geocentnic latitude to geodetic latitude. Geodetic latitude iz computed using
gencentric latitude and the radiuz from the center of the planet ta the center of gravity.

—Parameters
Units: | Metric MKS) =
Planet model: | Earth [wWE584] =]

Ok | Cancel

Z]Function Block Parameters: Geocentric ko Geodetic x|

—Geocentric to Geodetic Latitude [masgk] [link]

Comvert geocentric |atitude to geodetic latitude, Geodetic latitude is computed uzing
geocentnic latitude and the radius from the center of the planet to the center of grawity.

—Parameters
Planet model; | Custom LI
Flattening:
[1/298 267223563
E quatarial radiuz of planet:
|[GEEEEY
0K, Cancel Apply |
Units
Specifies the parameter and output units:
Units Radius from CG to Equatorial Radius
Center of Planet
Metric (MKS) Meters Meters
English Feet Feet

This option is only available when Planet model is set to Earth

4-252

(WGS84).

Geocentric to Geodetic Latitude

Inputs and
Outputs

Assumptions
and Limitations

References

Planet model
Specifies the planet model to use:
Custom
Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for radius. This option is
only available with Planet model set to Custom.

The first input is a scalar value of geocentric latitude, in degrees.

The second input is a scalar value of radius from center of the planet to the
center of gravity.

The output is a scalar value of geodetic latitude, in degrees.

This implementation generates a geodetic latitude that lies between
+90 degrees.

Jackson, E. B., Manual for a Workstation-based Generic Flight Simulation
Program (LaRCsim) Version 1.4, NASA TM 110164, April, 1995.

Hedgley, D. R., Jr., “An Exact Transformation from Geocentric to Geodetic
Coordinates for Nonzero Altitudes,” NASA TR R-458, March, 1976.

Clynch, J. R., “Radius of the Earth - Radii Used in Geodesy,” Naval
Postgraduate School, 2002,
http://www.oc.nps.navy.mil/oc2902w/geodesy/radiigeo.pdf.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry 2nd
Edition, Prentice-Hall, Englewood Cliffs, NdJ, 1986.

4-253

Geocentric to Geodetic Latitude

See Also

4-254

ECEF Position to LLA
Flat Earth to LLA
Geodetic to Geocentric Latitude

LLA to ECEF Position

Geodetic to Geocentric Latitude

Purpose
Library

Description

L

h

Convert geodetic latitude to geocentric latitude
Utilities/Axes Transformations

The Geodetic to Geocentric Latitude block converts a geodetic latitude () into
geocentric latitude (1) . Geocentric latitude at the planet surface (1,) is defined
by flattening (f) , and geodetic latitude in the following relationship.

2
A, = atan((1-/)"tanp)
Geocentric latitude is defined by mean sea-level altitude (%), geodetic latitude,
radius of the planet (r,) and geocentric latitude at the planet surface in the
following relationship.

hsinu +r_sinA
A= atan(" s)

hcospu +r cosh,

4-255

Geodetic to Geocentric Latitude

Dialog Box
=JFunction Block Parameters: Geodetic to Geocentric L x|

—Geodetic to Geocentric Latitude [masgk] [link]

Comvert geodetic latitude to geocentric latitude. Setting mean sea-level altitude to zero
will give the geocentric latitude at the surface of the planet.

—Parameters
Units: | Metric MKS) =]
Planet modet: | Earth [wG584) =]

0K | Cancel Apply |

E! Function Block Parameters: Geodetic ko Geocenkric L |

—Geodetic to Geocentric Latitude [mask] [link]

Convert geodetic latitude to geocentric latitude. Setting mean sea-level altitude to zero
will give the geocentric latitude at the surface of the planet.

—Parameters

Planet model: | Custonn |

Flattening:

|1/238 257 223563

E quatarial radiuz of planet:

|[GEEEEY

0K Cancel Apply
Units
Specifies the parameter and output units:

Units Altitude Equatorial Radius
Metric (MKS) Meters Meters
English Feet Feet

This option is only available when Planet model is set to Earth

4-256

(WGS84).

Geodetic to Geocentric Latitude

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Planet model
Specifies the planet model to use:

Custom
Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for altitude. This option
is only available with Planet model set to Custom.

The first input is a scalar value of geodetic latitude, in degrees.

The second input is a scalar value of mean sea-level altitude (MSL).

The output is a scalar value of geocentric latitude, in degrees.

This implementation generates a geocentric latitude that lies between
+90 degrees.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

ECEF Position to LLA

Flat Earth to LLA

Geocentric to Geodetic Latitude
LLA to ECEF Position

Radius at Geocentric Latitude

4-257

Horizontal Wind Model

Purpose
Library
Description

DM ; Vo (TS

Harizantal

Dialog Box

4-258

Transform horizontal wind into body-axes coordinates
Environment/Wind

The Horizontal Wind Model block computes the wind velocity in body-axes
coordinates.

The wind is specified by wind speed and wind direction in Earth axes. The
speed and direction can be constant or variable over time. The direction of the
wind is in degrees clockwise from the direction of the Earth x-axis (north). The
wind direction is defined as the direction from which the wind is coming. Using
the direction cosine matrix (DCM), the wind velocities are transformed into
body-axes coordinates.

Block Parameters: Horizontal Wind Model]
— Horizontal “wind kModel [mazk] (link]

Tranzform horizontal wind [north and east components] into body
coordinates given wind speed, wind direction and direction cosine matris
[DCH).

=

Urits: | Metric (MKS)

‘Wwind speed source: IIntemaI j
‘Wwind speed at altitude [m/z):

i

‘wind direction source: IIntemaI j

‘Wwind direction at altitude [degrees clockwize from north]:
Jo

QK I Cancel Help Apply

Units
Specifies the input and output units:

Units Wind Speed Wind Velocity
Metric (MKS) Meters per second Meters per second
English (Velocity in ft/s) Feet per second Feet per second
English (Velocity in kts) Knots Knots

Horizontal Wind Model

Inputs and
Outputs

See Also

Wind speed source
Specify source of wind speed:

External Variable wind speed input to block

Internal Constant wind speed specified in mask

Wind speed at altitude (m/s)
Constant wind speed used if internal wind speed source is selected.

Wind direction source
Specify source of wind direction:

External Variable wind direction input to block

Internal Constant wind direction specified in mask

Wind direction at altitude (degrees clockwise from north)
Constant wind direction used if internal wind direction source is selected.

The direction of the wind is in degrees clockwise from the direction of the
Earth x-axis (north). The wind direction is defined as the direction from
which the wind is coming.

The first input is direction cosine matrix.

The second optional input is the wind speed in selected units.

The third optional input is the wind direction in degrees.

The output of the block is the wind velocity in body-axes, in selected units.

Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)
Discrete Wind Gust Model

Von Karman Wind Turbulence Model (Continuous)

Wind Shear Model

4-259

Ideal Airspeed Correction

Purpose

Library

Description

TAS (mis)
almis) GAS (mis)
P, P2

T

4-260

Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from each other

Flight Parameters

The Ideal Airspeed Correction block calculates one of the following airspeeds:
equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS),
from one of the other two airspeeds.

Three equations are used to implement the Ideal Airspeed Correction block.
The first equation shows TAS as a function of EAS, relative pressure ratio at
altitude (8), and speed of sound at altitude (a).

EAS xa
CLO/\/S

TAS =

Using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, the last two equations for EAS and CAS are derived.

EAS — JW_%%)[(%+1)(Y_1)/Y_1}

2vP,, (y-1)/y
CAS = —[9 41 _1}
\/(y—l)po (PO)

In order to generate a correction table and its approximate inverse, these two
equations were solved for dynamic pressure (q). Having values of q by a
function of EAS and ambient pressure at altitude (P) or by a function of CAS,
allows the two equations to be solved using the other’s solution for ¢, thus
creating a solution for EAS that depends on P and CAS and a solution for CAS
that depends on P and EAS.

Ideal Airspeed Correction

Dialog Box

Block Parameters: Ideal Airspeed Correction |

r— |deal Airspeed Corection [mazk)] (link]
Calculate equivalent airspeed [EAS), calibrated airspeed [CAS), or true
airzpeed [TAS] from one of the other two airspeeds.

Bazed on assumption of compressible, isentropic [subsonic flow], dry air
with constant specific heat ratio [gamma).

.
F

Urits: | Metric (MKS)

Airzpeed input: I TAS

Airzpeed output: I CAS

Lef Lel Lo Lo

Action for out of range input: IE”D[

QK | Cancel | Help I Apply |

Units
Specifies the input and output units:

Units Airspeed Speed of Air Pressure
Input Sound
Metric (MKS) Meters per Meters per Pascal
second second
English (Velocity Feet per Feet per Pound force per
in ft/s) second second square inch
English (Velocity Knots Knots Pound force per
in kts) square inch

Airspeed input
Specify the airspeed input type:

TAS True airspeed
EAS Equivalent airspeed
CAS Calibrated airspeed

Airspeed
Output

Meters per
second

Feet per
second

Knots

4-261

|

Ideal Airspeed Correction

Inputs and
Outputs

Assumptions
and Limitations

Examples

References

4-262

Airspeed output
Specify the airspeed output type:
Velocity Input Velocity Output
TAS EAS (Equivalent airspeed)
CAS (Calibrated airspeed)
EAS TAS (True airspeed)
CAS (Calibrated airspeed)
CAS TAS (True airspeed)

EAS (Equivalent airspeed)

Action for out of range input
Specify if an out of range input (supersonic airspeeds) invokes a warning,

an error, or no action.
The first input is the selected airspeed in the selected units.
The second input is the speed of sound in the selected units.
The third input is the static pressure in the selected units.
The output of the block is the selected airspeed in the selected units.

This block assumes that the air flow is compressible, isentropic (subsonic flow),
dry air with constant specific heat ratio, v.

See the aeroblk indicated model and the aeroblk calibrated model for
examples of this block.

Lowry, J. T., Performance of Light Aircraft, AIAA Education Series,
Washington, DC, 1999.

Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

Incidence & Airspeed

Purpose
Library

Description

o

W

Dialog Box

Inputs and
Outputs

Examples

See Also

Calculate incidence and air speed
Flight Parameters

The Incidence & Airspeed block supports the 3DoF equations of motion model
by calculating the angle between the velocity vector and the body, and also the
total air speed from the velocity components in the body-fixed coordinate
frame.

w
o = atan —)
u

V = A/u2+w2

Block Parameters: Incidence & Airspeed #

Calculate the angle between the body and the velocity vector [incidence]

Incidencetiirzpeed [mask] (link]
’iand the velocity magnitude from the components in body axes [U.w).

QK I Cancel | Help | Apply |

The input to the block is the two-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the air speed of the body.

See the aeroblk _guidance model and the aero_guidance_airframe model for
examples of this block.

Incidence, Sideslip & Airspeed

4-263

Incidence, Sideslip & Airspeed

Purpose
Library

Description

Dialog Box

Inputs and
Outputs

Examples

See Also

4-264

Calculate incidence, sideslip, and air speed
Flight Parameters

The Incidence, Sideslip & Airspeed block supports the 6DoF (Euler Angles) and
6DoF (Quaternion) models by calculating the angles between the velocity
vector and the body, and also the total air speed from the velocity components
in the body-fixed coordinate frame.

o = atan(%}
B= asin(‘%)

2 2
V=Ju +v2+w

Block Parameters: Incidence, Sideslip & ' #

Calculate the angles between the body and the velocity vector (incidence
and sideslip], and the velocity magnitude from the components in body

Incidence, Sidesliphairspeed [mask] [link]
Lxes b).

QK I Cancel | Help | Apply |

The input to the block is the three-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle in radians.
The second output of the block is the sideslip angle in radians.
The third output is the air speed of the body.

See Airframe in the aeroblk_HL20 model for an example of this block.

Incidence & Airspeed

Interpolate Matrix(x)

Purpose
Library

Description

o helatrisi) -

Dialog Box

Inputs and
Outputs

Return an interpolated matrix for given input x
GNC/Controls

The Interpolate Matrix(x) block interpolates a one-dimensional array of
matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number
of values of an independent variable x = [x; X9 x3 ... x; %;,7 ... x,,]. Then for
x; < x < x;, 1, the block output is given by

(1-MM(x;) + AM(x; , ;)
where the interpolation fraction is defined as

Block Parameters: Interpolate Matriz(x) #

— MatrixSchedule-10 [mask] [link]

Fieturn an interpolated matrix for given input 2. Input % must be from the
Simulink. PreLook-up Index Search block.

=

M atrix to interpolate:

Imatrix

QK I Cancel | Help | Apply

Matrix to interpolate

Matrix to be interpolated. It should be three dimensional, the first two
dimensions corresponding to the matrix at each value of x. For example, if
you have three matrices A, B, and C defined at x = 0,x = 0.5, and

X = 1.0, then the input matrix is given by

matrix(:,:,1) = A;
matrix(:,:,2) = B;
matrix(:,:,3) = C;
The first input is the first independent variable.

The output is the interpolated matrix.

4-265

Interpolate Matrix(x)

Assumptions This block must be driven from the Simulink PreLook-up Index Search block.
and Limitations

Examples See the following Aerospace Blockset blocks: 1D Controller
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)

Interpolate Matrix(x,y,z)

4-266

Interpolate Matrix(x,y)

Purpose Return an interpolated matrix for given inputs x and y
Library GNC/Controls
Description The Interpolate Matrix(x,y) block interpolates a two-dimensional array of
. matrices.
hgtrine (e) B
Y This two-dimensional case assumes the matrix is defined as a function of two

independent variables, x = [x; xp x3 ... %; X7 ... Xyl andy = [y; y9¥3 ... ¥j ¥ju1
.. ¥ml. For given values of x and y, four matrices are interpolated. Then for
x; <x <x;,7 and y; <y <yj,1, the output matrix is given by

(1= AL =AM (x;y) + A M(x; , 1.9)] +
ky[(l - kx)M(xi,yj_'_ D+ KxM(xi + 1Y+ D]
where the two interpolation fractions are denoted by
Ay = (0=2)/ (%1 -%;)
and
7\-y = (y_yj)/(yj+1—yj)

Dialog Box

Block Parameters: Interpolate Matrix(x.y' |
— MatrixSchedule-2D [mask] [link]

Fieturn an interpolated matrix for given inputs 2 and y. [nputs » and p must
be from Simulink. PreLook-up Index Search block.

=
F

M atrix to interpolate:

Imatrix

QK I Cancel | Help | Apply

Matrix to interpolate
Matrix to be interpolated. It should be four dimensional, the first two
dimensions corresponding to the matrix at each value of x and y. For
example, if you have four matrices A, B, C, and D defined at
(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and
(x = 1.0,y = 3.0), then the input matrix is given by

4-267

Interpolate Matrix(x,y)

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

4-268

matrix 1

LR

matrix(:,:,1, ;

H

1
O O W >

(:5:,1,1)
(: 1,2)
matrix(:,:,2,1)
matrix(:,:,2,2)

B)

The first input is the first independent variable.
The second input is the second independent variable.

The output is the interpolated matrix.

This block must be driven from the Simulink PreLookup Index Search block.

See the following Aerospace Blockset blocks: 2D Controller
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D
Self-Conditioned [A(v),B(v),C(v),D(v)].

Interpolate Matrix(x)

Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y,z)

Purpose

Library

Description

¥
w hlgtrizia, w21
z

W

Return an interpolated matrix for given inputs x, y, and z
GNC/Controls

The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of
matrices.

This three-dimensional case assumes the matrix is defined as a function of
three independent variables

x=[xyxgxg3... % Xjyp o % L, ¥=[y152¥3 - ¥j¥jr1 - Yl

z=[272923... 2} Zp41 - 2p]

For given values of x, y, and z, eight matrices are interpolated. Then for

xi<x<xi+1,yj<y <yj+1

2p<Z2<Zpy1

the output matrix is given by
(1-A){(1- 7\3,)[(1 - }\'x)M(xiaij zp) + A M(x; Yy zp)] +
ky[(l - A)M(x;, Yis 12p) + A M(x; 1Y+ 12p) 1}
+7\.2{(1—Xy)[(l—Xx)M(xi,yj,Zk+1)+ KxM(xi+1,yj, zp 1+
MU =AM (x5 12 4 1)+ MM, 1,12 4 1]
where the three interpolation fractions are denoted by
Ay = (x—2)/ (%1 —%))
Ay = =9/ j1-Y))
Ay = (2-2)/ (24 1-2)

In the three-dimensional case, the interpolation is carried out first on x, then
y, and finally z.

4-269

Interpolate Matrix(x,y,z)

.
Dialog Box
Block Parameters: Interpolate Matriz(H, ¥,z #

— MatrixSchedule-30 [mask] [link]

Fieturn an interpolated matrix for given inputs %, v, and 2. Inputs =, v, 2
must be from Simulink PreLook-up Index Search block.

=

M atrix to interpolate:

Imatrix

QK I Cancel | Help | Apply

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two
dimensions corresponding to the matrix at each value of x, y, and z. For
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at
the following values of x, y, and z, then the corresponding input matrix is

given by
(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;
(x = 0.0,y =1.0,z = 0.5) matrix(:,:,1,1,2) = B;
(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;
(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;
(x = 1.0,y =1.0,z = 0.1) matrix(:,:,2,1,1) = E;
(x =1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;
(x =1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;
(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;
Inputs and The first input is the first independent variable.
Outputs The second input is the second independent variable.
The third input is the third independent variable.
The output is the interpolated matrix.
Assumptions This block must be driven from the Simulink PreLookup Index Search block.

and Limitations

4-270

Interpolate Matrix(x,y,z)

Examples See the following Aerospace Blockset blocks: 3D Controller
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(V),B(v),C(v),F(v),H(v)], and 3D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)
Interpolate Matrix(x,y)

4-271

Invert 3x3 Matrix

Purpose
Library

Description

at L
[Ex3)

Dialog Box

Inputs and
Outputs

See Also

4-272

Compute the inverse of 3-by-3 matrix using determinant formula
Utilities/Math Operations
The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix using

determinant formula.

The inverse of the matrix is calculated by

inv(A) = Z—j{—((-%

If the det(A) = 0, an error is thrown and the simulation will stop.

Block Parameters: Invert 3x3 Matrix |

"Invert 33 Matrix [mask] [link]

Compute the inverse of 3-by-3 matrix using determinant formula.

QK I Cancel | Help | Apply

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 matrix inverse of input matrix.

Adjoint of 3x3 Matrix
Create 3x3 Matrix

Determinant of 3x3 Matrix

ISA Atmosphere Model

Purpose

Library

Description

I15A

Tik)

EXGy]
b gm) ﬁi P (P2
p lhgire’)

Dialog Box

Inputs and

Outputs

Assumptions
and Limitations

References

See Also

Implement the International Standard Atmosphere (ISA)
Environment/Atmosphere

The ISA Atmosphere Model block implements the mathematical
representation of the international standard atmosphere values for ambient
temperature, pressure, density, and speed of sound for the input geopotential
altitude.

The ISA Atmosphere Model block icon displays the input and output metric
units.

Block Parameters: ISA Atmosphere Model |
International Standard Atmozphere Model [mask] [link)

Compute International Standard Atmozphere [|54) model for altitudes
between O Km and 20 Km uzing a lapze rate method.

Select change atmospheric parameters to create custom atmozphere.

=
F

lrl_ Change atmospheric parameters ‘

QK I Cancel | Help | Apply |

Change atmospheric parameters

Select to customize various atmospheric parameters to be different from
the ISA values.

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Below the geopotential altitude of 0 km and above the geopotential altitude of
20 km, temperature and pressure values are held. Density and speed of sound

are calculated using a perfect gas relationship.

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

COESA Atmosphere Model, Lapse Rate Model

4-273

Julian Epoch to Besselian Epoch

Purpose

Library

Description

=

Yoo “Bres

4-274

Transform position and velocity components from the Standard Julian Epoch
(J2000) to the discontinued Standard Besselian Epoch (B1950)

Utilities/Axes Transformations

The Julian Epoch to Besselian Epoch block transforms two 3-by-1 vectors of
Julian Epoch position (7 ;94,) ;and Julian Epoch velocity (v j9000) into
Besselian Epoch position (r5195,) ; and Besselian Epoch velocity (vg95,) - The
transformation is calculated using:

T

rgigso| _ | M Myr| | Tr2000

UB1950 M., M, |vs2000
where (]l_/.frr,]l_/.fw,]l_/.frv, Mvv) are defined as:
_0.9999256782 -0.0111820611 -0.0048579477
M,,.=10.0111820610 0.9999374784 -0.0000271765
0.0048579479 -0.0000271474 0.9999881997

0.00000242395018 -0.00000002710663 -0.00000001177656
M,, =] 0.00000002710663 0.00000242397878 -0.00000000006587
0.00000001177656 -0.00000000006582 0.00000242410173

-0.000551 —0.238565 0.435739
M,, =]0.238514 -0.002667 —0.008541
1—0.435623 0.012254 0.002117

0.99994704 ~0.01118251 —0.00485767
M,, =10.01118251 0.99995883 —0.00002718
10.00485767 —-0.00002714 1.00000956

Julian Epoch to Besselian Epoch

Dialog Box

Inputs and
Outputs

References

See Also

|

[ZJFunction Block Parameters: Julian Epoch ko Bess: x|

’r.J ulian to Beszelian [mask] (link]

Transform position and velocity components from the Standard Julian Epoch [J2000] to
the dizcontinued Standard Besselian Epoch [B1950).

Cancel Help | Apply |

The first input is a 3-by-1 vector containing the position in Standard Julian
Epoch (J2000).

The second input is a 3-by-1 vector containing the velocity in Standard Julian
Epoch (J2000).

The first output is a 3-by-1 vector containing the position in Standard
Besselian Epoch (B1950).

The second output is a 3-by-1 vector containing the velocity in Standard
Besselian Epoch (B1950).

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

Besselian Epoch to Julian Epoch

4-275

Lapse Rate Model

Purpose

Library

Description

TiK)

4-276

Implement lapse rate model for atmosphere

Environment/Atmosphere

The Lapse Rate Model block implements the mathematical representation of
the lapse rate atmospheric equations for ambient temperature, pressure,
density, and speed of sound for the input geopotential altitude. You can
customize this atmospheric model, described below, by specifying atmospheric

properties in the block dialog.

The following equations define the troposphere

T=T,-Lh
£
P:PO-(%)LR
_ T\LE
P pO'(T)

The following equations define the tropopause (lower stratosphere)

T =T, L hts
g g
T iR ﬁ,(hts—h)
P=r, ()" e
8 8
B . (T)ﬁ 1 . ﬁ(hts—h)
p - po T e

Lapse Rate Model

where:

hts

e

0g = & N Q

Absolute temperature at mean sea level in kelvin (K)
Air density at mean sea level in kg/m?

Static pressure at mean sea level in N/m?
Altitude in m

Height of the troposphere in m

Absolute temperature at altitude 4 in kelvin (K)
Air density at altitude % in kg/m?

Static pressure at altitude 4 in N/m?

Speed of sound at altitude & in m/s?

Lapse rate in K/m

Characteristic gas constant J/kg-K

Specific heat ratio

Acceleration due to gravity in m/s?

The Lapse Rate Model block icon displays the input and output metric units.

4-277

Lapse Rate Model

Dialog Box

Block Parameters: Lapse Rate Model #
— International Standard Atmozphere Model [mask] [link]
Compute International Standard Atmozphere [|54) model for altitudes
between O Km and 20 Km uzing a lapze rate method.

Select change atmospheric parameters to create custom atmozphere.

=
F

[¥ Change atmospheric parameters
Acceleration due ta gravity [mds"2):
|9.50885

Fiatio of specific heats:
1.4

Characteristic gas constant [J/Kg/k]:
|287.0531

Lapse rate [K./m]:
|0.0085

Height of troposphere [m]:
|11000

Height of ropopause [m]:
| 20000

Air density at mean sea level [Ka/m™3):
|1.225

Ambient pressure at mean sea level [N/m™2):
[101325

Ambient temperature at mean sea level (K]
28815

QK I Cancel | Help | Apply |

Change atmospheric parameters

When selected, the following atmospheric parameters can be customized to
be different from the ISA values.

Acceleration due to gravity
Specify the acceleration due to gravity (g).

Ratio of specific heats
Specify the ratio of specific heats (y).

Characteristic gas constant
Specify the characteristic gas constant (R).

4-278

Lapse Rate Model

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Lapse rate
Specify the lapse rate of the troposphere (L).

Height of troposphere

Specify the upper altitude of the troposphere, a range of decreasing
temperature.

Height of tropopause

Specify the upper altitude of the tropopause, a range of constant
temperature.

Air density at mean sea level
Specify the air density at sea level (p).

Ambient pressure at mean sea level
Specify the ambient pressure at sea level (P).

Ambient temperature at mean sea level
Specify the ambient temperature at sea level (T).
The input is geopotential height.
The four outputs are temperature, speed of sound, air pressure, and air

density.

Below the geopotential altitude of 0 km and above the geopotential altitude of
the tropopause, temperature and pressure values are held. Density and speed
of sound are calculated using a perfect gas relationship.

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

COESA Atmosphere Model
ISA Atmosphere Model

4-279

Length Conversion

Purpose
Library
Description

ft —* mp

Dialog Box

Inputs and
Outputs

4-280

Convert from length units to desired length units
Utilities/Unit Conversions

The Length Conversion block computes the conversion factor from specified
input length units to specified output length units and applies the conversion
factor to the input signal.

The Length Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Block Parameters: Length Conversion #

i~ Length Conversion [mask] [link]

Convert unitz of input signal to desired output units,

=
F

Initial units: I it

[
[

Final units: I m

QK | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles

The input is length in initial length units.

Length Conversion

See Also

The output is length in final length units.

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

4-281

LLA to ECEF Position

Purpose

Library

Description

i

h

4-282

Calculate Earth-centered Earth-fixed (ECEF) position from geodetic latitude,
longitude, and altitude above mean sea-level (MSL)

Utilities/Axes Transformations

The LLA to ECEF Position block converts geodetic latitude (p) , longitude (1) ,
and MSL altitude (k) into a 3-by-1 vector of ECEF position (p) . The ECEF
position is calculated from geocentric latitude at mean sea-level (A,) and
longitude using:

p, r,CoSA coSl+ hcospcost
P =P, = |7 cosA sint + hcospsint
P resinlg + hsinp

Cz
where geocentric latitude at mean sea-level and the radius at a surface point
(ry) are defined by flattening (f) , and equatorial radius (R) in the following
relationships.

A, = atan((1 -/ tanp)

S

) R’
s = 2 . 2
1+[1/(1-f)"-1]sin"A,

LLA to ECEF Position

Dialog Box
x
—LLA& ta ECEF [mask] (link)

Calculate E arth Centered Earth Fixed [ECEF] position from geodetic latitude, longitude,
and altitude [MMSL].

—Parameters
Units: | Metric [MKS) |
Flanet model: | Earth (/G 564) |

Apply |

=] Function Block Parameters: LLA ko ECEF Position x|

—LLA to ECEF [maszk] [link)

Calculate E arth Centered Earth Fixed [ECEF] position from geodetic latitude, longitude,
and altitude [MMSL].

—Parameters

Flanet model:l Custom LI

Flattening:

[1/298 257223563

E quatarial radius of planet;

IEEY

Qg Cancel Apply
Units
Specifies the parameter and output units:

Units Altitude Equatorial Radius Position
Metric (MKS) Meters Meters Meters
English Feet Feet Feet

This option is only available when Planet model is set to Earth

(WGS84).

|

4-283

LLA to ECEF Position

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

4-284

Planet model
Specifies the planet model to use:

Custom
Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for altitude. This option
is only available with Planet model set to Custom.

The first input is a 2-by-1 vector containing geodetic latitude and longitude, in
degrees.

The second input is a scalar value of altitude above mean sea-level (MSL).
The output is a 3-by-1 vector containing the position in ECEF frame, in same
units as altitude.

The planet is assumed to be ellipsoidal by setting flattening to 0.0 a spherical
planet can be achieved.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis being the mean spin axis of the planet, positive to the
north, and the y-axis completes the right hand system.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Atmospheric and Space Flight Vehicle Coordinate Systems,” ANSI/ATAA
R-004-1992.

Direction Cosine Matrix ECEF to NED

LLA to ECEF Position

Direction Cosine Matrix ECEF to NED to Latitude and Longitude
ECEF Position to LLA
Flat Earth to LLA

Radius at Geocentric Latitude

4-285

Mach Number

Purpose
Library

Description

W
Tz b

T

a

Dialog Box

Inputs and
Outputs

Examples

See Also

4-286

Compute Mach number using velocity and speed of sound
Flight Parameters

The Mach Number block computes Mach number.

Mach number is defined as

Mach = LYV
a

where a is speed of sound and V is velocity vector.

Block Parameters: Mach Number |

" Mach Mumber [mazk] [link]

Compute Mach number using velocity and speed of sound.

QK I Cancel | Help | Apply |

The first input is the velocity vector.
The second input is the speed of sound.

The output of the block is the Mach number.
See Airframe in the aeroblk_HL20 model for an example of this block.

Aerodynamic Forces and Moments

Dynamic Pressure

Mass Conversion

Purpose
Library

Description

bm —+ kgp

Dialog Box

Inputs and
Outputs

See Also

Convert from mass units to desired mass units
Utilities/Unit Conversions

The Mass Conversion block computes the conversion factor from specified
input mass units to specified output mass units and applies the conversion
factor to the input signal.

The Mass Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Block Parameters: Mass Conversion #

— Mass Conversion [mask] [link]

Convert unitz of input signal to desired output units,

=
F

Initial urits: I Ibrii

[
[

Final units: I kg

QK | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm Pound mass
kg Kilograms
slug Slugs

The input is the mass in initial mass units.

The output is the mass in final mass units.

Acceleration Conversion

Angle Conversion

4-287

Mass Conversion

4-288

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

Moments About CG Due to Forces

Purpose

Library

Description

GG("C;’3 Tl

Dialog Box

Inputs and
Outputs

See Also

Compute moments about center of gravity due to forces that are applied at
point CP, not the center of gravity

Mass Properties

The Moments about CG due to Forces block computes moments about center of
gravity due to forces that are applied at point CP not the center of gravity.

Block Parameters: Moments about CG d |
"Moments About CG Due To Force [maszk] (link]

Compute moments about center of gravity due to forces which are applied
at point CF nat the center of gravity.

QK I Cancel | Help | Apply |

The first input is the forces applied at point CP.

The second input is the center of gravity.

The third input is the application point of forces.

The output of the block is moments at the center of gravity in x-axes, y-axes and
z-axes.

Aerodynamic Forces and Moments

Estimate Center of Gravity

4-289

Non-Standard Day 210C

Purpose
Library

Description

TIK)
a (m's)

him) ZoEe

ng2nc TPl
p lhatrm)

Dialog Box

4-290

Implement the MIL-STD-210C climatic data
Environment/Atmosphere

The Non-Standard Day 210C block implements a portion of the climatic data
of the MIL-STD-210C worldwide air environment to 80 km (geometric or
approximately 262,000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 210C block icon displays the input and output units
selected from the Units list.

Block Parameters: Non-Standard Day 2

—Atmosphere Model [mazk) (link]

Calculate various atmosphere models including 1976 COESA-extended
.5, Standard Atmosphere, MIL-HDEK-310, and MIL-STD-210C. Given
geopotential altitude, calculate absolute temperature, pressure and density
uzing standard interpolation formulas.

The COESA model extrapolates temperature linearly and pressure/density
logarithmic:ally beyond the range

0 <= altitude <= 84852 meters [geopatential]

The MIL specifications are not extrapolated beyond their defined altitudes
which are typically

0 <= altitude <= 80000 meters [geometric]

Depending on the given information either density or pressure is
calculated using a perfect gas relationship.

The unit spstem zelected applies to both input and outputs.

=) |

4

Urits: | Metric (MKS)

Specification: I MIL-STD-210C

Atmozpheric model type: Imeile

Extreme parameter: IHigh temperature

Frequency of occurmence: |1°/°

Altitude of extreme value: |5 km (16404 ft)

4

Lef Lel Lo Lef e L] e

Action for out of range input: I\.\.-'aming

QK | Cancel | Help I Apply |

Non-Standard Day 210C

Units

Specifies the input and output units:

Units Height Temperature
Metric Meters Kelvin
(MKS)

English Feet Degrees

(Velocity Rankine
in ft/s)

English Feet Degrees
(Velocity Rankine
in kts)

Specification

Speed of Sound

Meters per
second

Feet per second

Knots

Air Pressure Air Density

Pascal

Pound force
per square
inch

Pound force
per square
inch

Kilograms
per cubic
meter

Slug per
cubic foot

Slug per
cubic foot

Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-STD-210C.

1976 COESA-extended U.S. Standard Atmosphere

This selection is linked to the COESA Atmosphere Model block. See
the block reference for more information.

MIL-HDBK-310

This selection is linked to the Non-Standard Day 310 block. See the
block reference for more information.

MIL-STD-210C

Atmospheric model type

Select the representation of the atmospheric data.

Profile Realistic atmospheric profiles associated with extremes at
specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when the
total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

4-291

Non-Standard Day 210C

Extreme parameter
Select the atmospheric parameter that is the extreme value.
High temperature
Low temperature
High density
Low density

High pressure This option is available only when Envelope is
selected for Atmospheric model type

Low pressure This option is available only when Envelope is
selected for Atmospheric model type

Frequency of occurrence
Select percent of time the values would occur.

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is

selected for Atmospheric model type.

Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

5 km (16404 ft)

10 km (32808 ft)
20 km (65617 ft)
30 km (98425 ft)
40 km (131234 ft)

4-292

Non-Standard Day 210C

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3,281 feet) and above the
geometric altitude of 30,000 meters (approximately 98,425 feet). These
exceptions are due to lack of data in MIL-STD-210C for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-STD-210C for these conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-STD-210C.

Global Climatic Data for Developing Military Products (MIL-STD-210C), 9
January 1987, Department of Defense, Washington, D.C.

COESA Atmosphere Model
ISA Atmosphere Model
Non-Standard Day 310

4-293

Non-Standard Day 310

Purpose
Library

Description

TiK)
aim'=s)
b ()
ns o P
p tkaim]

Dialog Box

4-294

Implement the MIL-HDBK-310 climatic data

Environment/Atmosphere

The Non-Standard Day 310 block implements a portion of the climatic data of
the MIL-HDBK-310 worldwide air environment to 80 km (geometric or
approximately 262,000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 310 block icon displays the input and output units

selected from the Units list.

Block Parameters: Non-Standard Day 310

—Atmosphere Model [mazk) (link]

Calculate various atmosphere models including 1976 COESA-extended
.5, Standard Atmosphere, MIL-HDEK-310, and MIL-STD-210C. Given
geopotential altitude, calculate absolute temperature, pressure and density
uzing standard interpolation formulas.

The COESA model extrapolates temperature linearly and pressure/density
logarithmic:ally beyond the range

0 <= altitude <= 84852 meters [geopatential]

The MIL specifications are not extrapolated beyond their defined altitudes
which are typically

0 <= altitude <= 80000 meters [geometric]

Depending on the given information either density or pressure is
calculated using a perfect gas relationship.

The unit spstem zelected applies to both input and outputs.

=) |

4

Urits: | Metric (MKS)

Specification: I MIL-HDEK-310

Atmozpheric model type: Imeile

Extreme parameter: IHigh temperature

Frequency of occurmence: |1°/°

Altitude of extreme value: |5 km (16404 ft)

4

Lef Lel Lo Lef e L] e

Action for out of range input: I\.\.-'aming

QK | Cancel | Help I Apply |

Non-Standard Day 310

Units

Specifies the input and output units:

Units Height Temperature

Metric Meters Kelvin
(MKS)

English Feet Degrees
(Velocity Rankine
in ft/s)
English Feet Degrees
(Velocity Rankine
in kts)

Specification

Speed of Sound
Meters per
second

Feet per second

Knots

Air Pressure Air Density

Pascal

Pound force
per square
inch

Pound force
per square
inch

Kilograms
per cubic
meter

Slug per
cubic foot

Slug per
cubic foot

Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-HDBK-310.

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See

the block reference for more information.

MIL-HDBK-310
MIL-STD-210C

This selection is linked to the Non-Standard Day 210C block. See the
block reference for more information.

Atmospheric model type

Select the representation of the atmospheric data.

Profile Realistic atmospheric profiles associated with extremes
at specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when
the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

4-295

Non-Standard Day 310

Extreme parameter
Select the atmospheric parameter which is the extreme value.
High temperature
Low temperature
High density
Low density

High pressure This option is available only when Envelope
is selected for Atmospheric model type.

Low pressure This option is available only when Envelope
is selected for Atmospheric model type.

Frequency of occurrence
Select percent of time the values would occur.

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is

selected for Atmospheric model type.

Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

5 km (16404 ft)

10 km (32808 ft)
20 km (65617 ft)
30 km (98425 ft)
40 km (131234 ft)

4-296

Non-Standard Day 310

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80,000 meters (approximately 262,000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3,281 feet) and above the
geometric altitude of 30,000 meters (approximately 98,425 feet). These
exceptions are due to lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-HDBK-310 for these
conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-HDBK-310.

Global Climatic Data for Developing Military Products (MIL-HDBK-310), 23
June 1997, Department of Defense, Washington, D.C.

COESA Atmosphere Model
ISA Atmosphere Model
Non-Standard Day 210C

4-297

Pack net_fdm Packet for FlightGear

Purpose
Library

Description

longitude
latitude
altitude
phi pachet B
thieta
psi

Dialog Box

4-298

Generate net_fdm packet for FlightGear
Animation/Flight Simulator Interfaces

The Pack net_fdm Packet for FlightGear block creates, from separate inputs, a
FlightGear net_fdm data packet compatible with a particular version of
FlightGear Flight Simulator. All the signals supported by the FlightGear

net fdm data packet for FlightGear versions 0.9.3, 0.9.8/0.9.8a, 0.9.9 are
supported by this block. The signals are arranged into six groups. Any group
can be turned on or off. Zeros are inserted for packet values that are part of
inactive signal groups.

See “Inputs and Outputs” on page 4-299 for details on signals and signal
groups.

[EJFunction Block Parameters: Pack net_fdm Pac x|

—FlightGearPackMetFdm [mask] [link]

Create a FlightGear net_fdm data packet compatible with a particular wergion of
FlightGear Flight Simulator.

Zerog are inzerted for packet values that are part of inactive signal groups. Press the
help button for detail on zignals and signal groups.

—Parameters

FlightGear wversior: | +0.9.3 |
W Show position / attitude inputs

[~ Show velocity / acceleration inputs

[~ Show contral surface position inputs

[~ Show engine / fuel inputs

[~ Show landing gear inputs

[~ Show enviranment inputs

Sample time [-1 for inherited):

1730

0K | Cancel | Apply

FlightGear version
Select your FlightGear software version: v0.9.3, v0.9.8, or v0.9.9.

Pack net_fdm Packet for FlightGear

Inputs and
Outputs

Show position/altitude inputs

Select this check box to include the position and altitude inputs (signal
group 1) into the FlightGear net_fdm data packet.

Show velocity/acceleration inputs

Select this check box to include the velocity and acceleration inputs (signal
group 2) into the FlightGear net_fdm data packet.

Show control surface position inputs

Select this check box to include the control surface position inputs (signal
group 3) into the FlightGear net_fdm data packet.

Show engine/fuel inputs

Select this check box to include the engine and fuel inputs (signal group 4)
into the FlightGear net_fdm data packet.

Show landing gear inputs

Select this check box to include the landing gear inputs (signal group 5)
into the FlightGear net_fdm data packet.

Show environment inputs

Select this check box to include the environment inputs (signal group 6)
into the FlightGear net_fdm data packet.

Sample time

Specify the sample time (-1 for inherited).

Input Signals Supported for FlightGear 0.9.3
This table lists all the input signals supported for Version 0.9.3:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudelnputs
longitude rad double 1 Geodetic longitude
latitude rad double 1 Geodetic altitude
altitude m double 1 Altitude above sea level
phi rad single 1 Roll
theta rad single 1 Pitch

4-299

Pack net_fdm Packet for FlightGear

4-300

Name Units Type
psi rad single 1
Signal Group 2: ShowVelocityAccelerationinputs

phidot rad/sec single 1
thetadot rad/sec single 1
psidot rad/sec single 1
veas kts single 1
climb_rate ft/sec single 1
v_north ft/sec single 1
v_east ft/sec single 1
v_down ft/sec single 1
v_wind_body_north ft/sec single 1
v_wind_body_east ft/sec single 1
v_wind_body_down ft/sec single 1
stall_warning - single 1
A_X pilot ft/sec? single 1
A_Y_pilot ft/sec? single 1
A_7_pilot ft/sec? single 1

Width Description

Yaw or true heading

Roll rate

Pitch rate

Yaw rate
Calibrated airspeed
Climb rate

North velocity in
local/body frame

East velocity in
local/body frame

Down/vertical velocity
in local/body frame

Body north velocity
relative to local airmass

Body east velocity
relative to local airmass

Body down/vertical
velocity relative to local
airmass

0.0-1.0, indicating the
amount of stall

X acceleration in body
frame

Y acceleration in body
frame

7 acceleration in body
frame

Pack net_fdm Packet for FlightGear

Name Units Type Width Description
Signal Group 3: ShowControlSurfacePositioninputs

elevator geometry- single 1 Elevator position
specific units

flaps geometry- single 1 Flaps position
specific units

left_aileron geometry- single 1 Left aileron position
specific units

right_aileron geometry- single 1 Right aileron position
specific units

rudder geometry- single 1 Rudder position
specific units

speedbrake geometry- single 1 Speed brake position
specific units

spoilers geometry- single 1 Spoilers position
specific units

Signal Group 4: ShowEngineFuellnputs

num_engines - int32 1 Number of valid
engines

eng_state enum int32 4 Engine state (0=off,
l=cranking, 2=running)

rpm rev/min single 4 Engine RPM

fuel_flow gal/hr single 4 Fuel flow

EGT °F single 4 Exhaust gas temp

oil_temp °F single 4 Oil temp

oil_px 1bf/in? single 4 Oil pressure

num_tanks - int32 1 Max number of fuel
tanks

fuel_quantity - single 4 Amount of fuel in tanks

(0-1 fraction)

4-301

Pack net_fdm Packet for FlightGear

4-302

Name Units Type
Signal Group 5: ShowlandingGearinputs
num_wheels - int32
WOowW - boolean
gear_pos - single
gear_steer - single

gear_compression single

Signal Group 6: ShowEnvironmentinputs

agl m single
cur_time sec int32
warp sec int32
visibility m single

Width Description

Maximum number of
wheels

Weight on wheels
signal (1=wheel is on
ground)

Landing gear position
(0-1, indicating amount
deployed)

Landing gear steering
angle

Landing gear
compression

Above ground level
Current UNIX time

Offset in seconds to
UNIX time

Visibility in meters (for
visual effects)

Input Signals Supported for FlightGear 0.9.8/0.9.8a
This table lists all the input signals supported for Versions 0.9.8/0.9.8a:

Name Units Type
Signal Group 1: ShowPositionAttitudelnputs
longitude rad double
latitude rad double
altitude m double
phi rad single

Width Description

e

Geodetic longitude
Geodetic atitude
Altitude above sea level

Roll

Pack net_fdm Packet for FlightGear

Name Units Type

theta rad single 1
psi rad single 1

Signal Group 2: ShowVelocityAccelerationinputs

alpha rad single 1
beta rad single 1
phidot rad/sec single 1
thetadot rad/sec single 1
psidot rad/sec single 1
veas kts single 1
climb_rate ft/sec single 1
v_north ft/sec single 1
v_east ft/sec single 1
v_down ft/sec single 1
v_wind_body_north ft/sec single 1
v_wind_body_east ft/sec single 1
v_wind_body_down ft/sec single 1
A_X pilot ft/sec? single 1
A_Y_pilot ft/sec? single 1

Width Description

Pitch

Yaw or true heading

Angle of attack
Side slip angle

Roll rate

Pitch rate

Yaw rate
Calibrated airspeed
Climb rate

North velocity in
local/body frame

East velocity in
local/body frame

Down/vertical velocity
in local/body frame

Body north velocity
relative to local airmass

Body east velocity
relative to local airmass

Body down/vertical
velocity relative to local
airmass

X acceleration in body
frame

Y acceleration in body
frame

4-303

Pack net_fdm Packet for FlightGear

4-304

Name
A_7Z_pilot

stall_warning

slip_deg

elevator

elevator_trim_tab

left_flap

right_flap

left_aileron

right_aileron

rudder

nose_wheel

speedbrake

spoilers

num_engines

Units
ft/sec?

deg

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

Type

single

single

single

single

single

single

single

single

single

single

single

single

single

Signal Group 4: ShowEngineFuellnputs

int32

Width Description

1

1

1

Signal Group 3: ShowControlSurfacePositioninputs

1

7 acceleration in body
frame

0.0-1.0, indicating the
amount of stall

Slip ball deflection

Elevator position

Elevator trim position

Left flap position

Right flap position

Left aileron position

Right aileron position

Rudder position

Nose wheel position

Speed brake position

Spoilers position

Number of valid
engines

Pack net_fdm Packet for FlightGear

Name

eng_state

rpm
fuel flow
EGT

cht

mp_osi

tit

oil_temp
oil_px

num_tanks

fuel_quantity

Units

enum

rev/min
gal/hr
oF

oF

psi
oF

of
1bf/in2

Type
int32

single
single
single

single

single

single

single
single

int32

single

Signal Group 5: ShowlandingGearinputs

num_wheels

wWow

gear_pos

gear_steer

gear_compression -

int32

boolean

single

single

single

Width Description

4

O N N

IS

w

w

w

Engine state (0=off,
1=cranking, 2=running)

Engine RPM
Fuel flow
Exhaust gas temp

Cylinder head
temperature

Manifold pressure

Turbine inlet
temperature

Oil temp
Oil pressure

Max number of fuel
tanks

Amount of fuel in tanks
(0-1 fraction)

Maximum number of
wheels

Weight on wheels signal
(1=wheel is on ground)

Landing gear position
(0-1, indicating amount
deployed)

Landing gear steering
angle

Landing gear
compression

4-305

Pack net_fdm Packet for FlightGear

Name Units Type Width Description
Signal Group 6: ShowEnvironmentinputs
agl m single 1 Above ground level
cur_time sec int32 1 Current UNIX time
warp sec int32 1 Offset in seconds to
UNIX time
visibility m single 1 Visibility in meters (for

visual effects)

Input Signals Supported for FlightGear 0.9.9
This table lists all the input signals supported for Version 0.9.9:

Name Units Type Width Description

Signal Group 1: ShowPositionAttitudelnputs
longitude rad double 1 Geodetic longitude
latitude rad double 1 Geodetic latitude
altitude m double 1 Altitude above sea level
phi rad single 1 Roll
theta rad single 1 Pitch
psi rad single 1 Yaw or true heading

Signal Group 2: ShowVelocityAccelerationlnputs

alpha rad single 1 Angle of attack
beta rad single 1 Side slip angle
phidot rad/sec single 1 Roll rate

thetadot rad/sec single 1 Pitch rate

psidot rad/sec single 1 Yaw rate

veas kts single 1 Calibrated airspeed
climb_rate ft/sec single 1 Climb rate

4-306

Pack net_fdm Packet for FlightGear

Name

v_north

v_east

v_down

v_wind_body_north

v_wind_body_east

v_wind_body_down

A_X pilot

A_Y pilot

A_Z pilot

stall warning

slip_deg

Signal Group 3: ShowControlSurfacePositioninputs

elevator

elevator_trim_tab

left_flap

Units Type

ft/sec single
ft/sec single
ft/sec single
ft/sec single
ft/sec single
ft/sec single
ft/sec? single
ft/sec? single
ft/sec? single
- single
deg single

geometry- single
specific units
geometry- single
specific units
geometry- single
specific units

Width Description

1

1

1

North velocity in
local/body frame

East velocity in
local/body frame

Down/vertical velocity
in local/body frame

Body north velocity
relative to local airmass

Body east velocity
relative to local airmass

Body down/vertical
velocity relative to local
airmass

X acceleration in body
frame

Y acceleration in body
frame

7Z acceleration in body
frame

0.0-1.0, indicating the
amount of stall

Slip ball deflection

Elevator position

Elevator trim position

Left flap position

4-307

Pack net_fdm Packet for FlightGear

4-308

Name

right_flap

left_aileron

right_aileron

rudder

nose_wheel

speedbrake

spoilers

num_engines

eng_state

rpm
fuel_flow
EGT

cht

mp_osi

tit

oil_temp

oil_px

Units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

geometry-
specific units

enum

rev/min
gal/hr
°F

°F

psi
°F

of
1bf/in?

Type

single

single

single

single

single

single

single

Signal Group 4: ShowEngineFuellnputs

uint32

uint32

single
single
single

single

single

single

single

single

Width Description

1

[y

N N N N

N

Right flap position

Left aileron position

Right aileron position

Rudder position

Nose wheel position

Speed brake position

Spoilers position

Number of valid
engines

Engine state (0=off,
l=cranking, 2=running)

Engine RPM
Fuel flow
Exhaust gas temp

Cylinder head
temperature

Manifold pressure

Turbine inlet
temperature

Oil temp

Oil pressure

Pack net_fdm Packet for FlightGear

Examples

See Also

Name Units Type Width Description

num_tanks - uint32 1

fuel_quantity - single 4

Signal Group 5: ShowlandingGearinputs

num_wheels - uint32 1
WOW - uint32 3
gear_pos - single 3
gear_steer - single 3
gear_compression - single 3

Signal Group 6: ShowEnvironmentinputs

agl m single 1

cur_time sec uint32 1

warp sec int32 1

visibility m single 1
Output Signal

Max number of fuel
tanks

Amount of fuel in tanks
(0-1 fraction)

Maximum number of
wheels

Weight on wheels signal
(1=wheel is on ground)

Landing gear position
(0-1, indicating amount
deployed)

Landing gear steering
angle

Landing gear
compression

Above ground level
Current UNIX time

Offset in seconds to
UNIX time

Visibility in meters (for
visual effects)

The output signal is the FlightGear net_fdm data packet.

See the asbh120 demo for an example of this block.

FlightGear Preconfigured 6DoF Animation

4-309

Pack net_fdm Packet for FlightGear

Generate Run Script

Send net_fdm Packet to FlightGear

4-310

Pilot Joystick

Purpose
Library

Description

mll
pitch
e
thmttk [+

Dialog Box

Use joystick interface for Windows platform
Animation/Animation Support Utilities

The Pilot Joystick block provides a pilot joystick interface for a Windows
platform. Roll, pitch, yaw, and throttle are mapped to the joystick X, Y, R, and
Z channels respectively.

You can also configure it to output all channels by setting the Output
configuration parameter to A110utputs.

[Z)source Block Parameters: Pilot Joystick x|

— Pilot) owstick [maszk] [link)

Japstick interface for Windows plathorm. Outputs values are [-1,1] far centered
values, [0.1] for non-centered values, and uint32 for the buttong in All Dutputs mode.
Output genge iz positive for right-hand rule ratations on centered values [roll, pitch,
and yaw):

Rall, pitch, vaw, and thrattle are mapped to the jopstick 2., B, and £ channels
resepectively. | the jopstick does not support an B [a.k.a. rudder or "'twist"] channel,
paw output iz get to zero, Outputs are of type double except for the buttons autput in
All Outputz mode. On non-windows platforms, thig block. currently outputs zeros.

—Parameters

Joystick ID:l Joystick

=
=

Output u:c-nfiguration:l Fourdueiz

Sample time [-1 for inherited):

1/30

Ok Cancel

Joystick ID
Specify the joystick ID: Joystick 1,Joystick 2, or None.

Output configuration
Specify the output configuration: FourAxis or A110utputs.

Sample time
Specify the sample time (-1 for inherited).

4-311

Pilot Joystick

Inputs and
Outputs

4-312

The block has the following outputs:

¢ Four Axis mode (all double precision values)

Port Output
number range

1 ['1; 1]
2 ['1; 1]

3 (-1, 1]
4 [0, 1]

Joystick

[left,right]

[forward/down,

back/up]
[left, right]

[min, max]

Description

Roll command

Pitch command

Yaw command

Throttle command

e All Outputs mode (values are double precision except for buttons)

Port Array Channel Output
number number Range

1 1 X [-1, 1]
1 2 Y [-1, 1]
1 3 z [0, 1]
1 4 R [-1, 1]
1 5 U [0, 1]
1 6 \Y [0, 1]
2 buttons

3 POV

Joystick

[left,right]

[forward/down,
back/up]

[min, max]
[left, right]
[min, max]

[min, max]

Description

Roll command

Pitch command

Throttle command
Yaw command

U channel value
V channel value

uint32 flagword
containing up to 32
button states. Bit
0 is button 1, etc.

Point-of-view hat
value in degrees as
a double. Zero
degrees is straight
ahead, 90 is to the
left, etc.

Pilot Joystick

Assumptions
and Limitations

See Also

Output values are [-1,1] for centered values, [0,1] for non-centered values, and
uint32 for the buttons in All Outputs mode. Output sense is positive for
right-hand rule rotations on centered values (roll, pitch, and yaw).

If the joystick does not support an R (rudder or “twist”) channel, yaw output is
set to zero. Outputs are of type double except for the buttons output in
AllOutputs mode, which is a uint32 flagword of bits. On non-Windows
platforms, this block currently outputs zeros.

Note Pitch value has the opposite sense as that delivered by FlightGear’s
joystick interface.

Simulation Pace

4-313

Pressure Altitude

Purpose
Library

Description

P, P2 Alt

pres

fri)

Dialog Box

Inputs and
Outputs

4-314

Calculate pressure altitude based on ambient pressure
Environment/Atmosphere

The Pressure Altitude block computes the pressure altitude based on ambient
pressure. Pressure altitude is the altitude in the 1976 Committee on the
Extension of the Standard Atmosphere (COESA) United States with specified
ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.

The Pressure Altitude block icon displays the input and output units selected
from the Units list.

Block Parameters: Pressure Altitude |

r— Pressure Altitude [mask] [link]

Calculate prezzure altitude based on ambient pressure.

Pressure altitude is the altitude in the 1976 COESA-extended LS.
Standard Atmosphere with specified ambient pressure. Pressure altitude is
alzo known as the mean sea level alitude [MSL).

=

Urits: [Metric MKS) =l
Action for out of range input: I\.\.-'aming j
QK | Cancel | Help I Apply |

Units
Specifies the input units:
Units Pstatic Alt p
Metric (MKS) Pascal Meters
English Pound force per square inch Feet

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

The input is the static pressure.

The output is the pressure altitude.

Pressure Altitude

Assumptions Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above the
and Limitations pressure of 101325 Pa (approximately 14.7 psi), altitude values are
extrapolated logarithmically.

Air is assumed to be dry and an ideal gas.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

4-315

Pressure Conversion

Purpose Convert from pressure units to desired pressure units
Library Utilities/Unit Conversions
Descripl’ion The Pressure Conversion block computes the conversion factor from specified
input pressure units to specified output pressure units and applies the
psi —* Fap conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog Box

Block Parameters: Pressure Conyersion #

r— Prezsure Convergion [mazk] [link]

Convert unitz of input signal to desired output units,

=
F

Iitial units: I psi

[
[

Final units: I Pa

QK | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

psi Pound mass per square inch
Pa Pascals
psf Pound mass per square foot
atm Atmospheres

Inputs and The input is the pressure in initial pressure units.

Outputs The output is the pressure in final pressure units.

4-316

Pressure Conversion

See Also

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Temperature Conversion

Velocity Conversion

4-317

Quaternion Conjugate

Purpose Calculate the conjugate of a quaternion
Library Utilities/MathOperations
Descripl'ion The Quaternion Conjugate block calculates the conjugate for a given
quaternion.
q T F

The quaternion has the form of

q = qo+iqy+jqg+kqg
The quaternion conjugate has the form of
9" =4q9-iq;-Jqy-kqs

Dialog Box
E! Function Block Parameters: Quaternion Conjugal il

(Guaternion Conjugate [mazk] [link]

Calculate the conjugate of a quaternion.

Cancel | Help | Apply |
K
Inputs and The input is a quaternion or vector of quaternions in the form of [qy, rg, -.., q1,
outpu"s ry, ... ,q9, 19, ... ,qs, I',]
The output is a quaternion conjugate or vector of quaternion conjugates in the
form of [qo’, 1‘0’, . ql’, I‘l’, . (]2,, I‘z’, . q3’, 1'3’, R
See Also Quaternion Division

Quaternion Inverse
Quaternion Modulus
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize

Quaternion Rotation

4-318

Quaternion Division

Purpose Divide a quaternion by another quaternion
Library Utilities/Math Operations
Description The Quaternion Division block divides a given quaternion by another.
q The quaternions have the form of
Qi

)

q = qg+iq+jqy+kqgs and

r=ro+ir;+jro+krg

The resulting quaternion from the division has the form of

t = 9}{ = to+ity +jty+ kg

where
= Tod0+ 7191+ 7999+ T3d3)
0 2 2 2 2
s = T0917 190~ 293+ "39)
1 2 2 2 2
r0+r1+r2+r3
s = T092% 7193~ 7990~ "391)
2 2 2 2 2
r0+7‘1+r2+r3
; _(rgq3—7r199+ 7991 -739)
g =

2 2 2 2

Dialog Box

E! Function Block Parameters: Quaternion Division

Quaternion Division [mask] [link)
’7 Divide a guatemion by another quatermion.

Cancel

Help | Apply |

Inputs and

Outputs ++5> Q1> P15 «++ 5 425 P25 -

The first input is a quaternion or vector of quaternions in the form of [q, Py,
» 43, P35 ---1-

4-319

Quaternion Division

The second input is a quaternion or vector of quaternions in the form of [s, r,
ceey 81, T, ..., 89, T9, ..., S3, I'g,]

The output is the resulting quaternion from the division or vector of resulting
quaternions from division.
See Also Quaternion Conjugate
Quaternion Inverse
Quaternion Modulus
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize

Quaternion Rotation

4-320

Quaternion Inverse

Purpose
Library

Description

q Imigp

Dialog Box

Inputs and
Outputs

See Also

Calculate the inverse of a quaternion
Utilities/Math Operations

The Quaternion Inverse block calculates the inverse for a given quaternion.
The quaternion has the form of
g =qy+iq;+jay+kqg

The quaternion inverse has the form of
g - 20" 191J9e- kqs

2 2 2 2
qdot+t4q1+49+3q3

E! Function Block Parameters: Quaternion Inverse ﬂ

(Guaternion Inwverse [mask] [link]

Calculate inverse of a quaterion.

Cancel | Help | Apply |

The input is a quaternion or vector of quaternions in the form of [q, rg, ..., q1,
ry,...,49, 9, ... ,q3, I'g,]

The output is a quaternion inverse or vector of quaternion inverses.

Quaternion Conjugate
Quaternion Division
Quaternion Modulus
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize

Quaternion Rotation

4-321

Quaternion Modulus

Purpose
Library

Description

q il

Dialog Box

Inputs and
Outputs

See Also

4-322

Calculate the modulus of a quaternion
Utilities/Math Operations

The Quaternion Modulus block calculates the magnitude for a given
quaternion.
The quaternion has the form of

q = qo+iqy+jag+kqg

The quaternion modulus has the form of

2 2 2 2
lg| = A/CI0+Q1+CI2+(13

E! Function Block Parameters: Quaternion Modulus |

’7G uaternion Maodulus [maszk] (link)]

Calculate the modulus of & quatermion.

Cancel | Help | {\gpl_l,l |

The input is a quaternion or vector of quaternions in the form of [qy, r,
ry,...,q9, ro, ... ,q3, Iy,]

-+ 41,

The output is a quaternion modulus or vector of quaternion modulus in the

form of [|q], |r], ...].

Quaternion Conjugate
Quaternion Division
Quaternion Inverse
Quaternion Multiplication
Quaternion Norm
Quaternion Normalize

Quaternion Rotation

Quaternion Multiplication

Purpose
Library

Description

q
gq'r

)

Dialog Box

Inputs and
Outputs

|

Calculate the product of two quaternions

Utilities/Math Operations

The Quaternion Multiplication block calculates the product for two given

quaternions.

The quaternions have the form of
q = qo+iqq+jqq+kqs and
r=ro+iry+jro+krg

The quaternion product has the form of
t = qXr = ty+ity+jtg+ktg

where
to=(roqo—T191~T9d2~"393)
t1=(roq1+7190~"293 +73952)
ty=(roqg+7193+ 7290~ "391)
t3=(rog3—r192+7291+739)

[=]Function Block Parameters: Quaternion Mulkiplic x|

"Quaternion rultiplication [mask] [link]

Calculate the product of bwo quaternions.

Cancel | Help | Apply |

The first input is a quaternion or vector of quaternions in the form of [qg, py,
ceo>Q1, P15 «++ 5 925 P2 -++ > 43, P3, ---]-

The second input is a quaternion or vector of quaternions in the form of [s, ry,
ceey 81, T, ... , 89, T9, ..., S3, I'g, .0

The output is a quaternion product or vector of quaternion products.

4-323

Quaternion Multiplication

See Also Quaternion Conjugate
Quaternion Division
Quaternion Inverse
Quaternion Modulus
Quaternion Norm
Quaternion Normalize

Quaternion Rotation

4-324

Quaternion Norm

Purpose
Library

Description

q remidg

Dialog Box

Inputs and
Outputs

See Also

|

Calculate the norm of a quaternion
Utilities/Math Operations

The Quaternion Norm block calculates the norm for a given quaternion.
The quaternion has the form of

q =qo+igqy+jgy+kqg

The quaternion norm has the form of

2 2 2 2
norm(q) = qy+q71+4qy +q3

E! Function Block Parameters: Quaternion Norm ﬂ

(Guaternion Marm [mazk] (link]

Calculate the nom of a quaternion,

Cancel | Help | Apply |

The input is a quaternion or vector of quaternions in the form of [qg, rg, ..., q1,
ry,...,49,r9, ... ,q3, I'g,]

The output is a quaternion norm or vector of quaternion norms in the form of
[norm(q), norm(r), ...].

Quaternion Conjugate

Quaternion Division

Quaternion Inverse

Quaternion Modulus

Quaternion Multiplication

Quaternion Normalize

Quaternion Rotation

4-325

Quaternion Normalize

Purpose
Library

Description

q ol i)

T

Dialog Box

Inputs and
Outputs

See Also

4-326

Normalize a quaternion
Utilities/Math Operations
The Quaternion Normalize block calculates a normalized quaternion for a
given quaternion.
The quaternion has the form of
q = qo+iqy+jag+kqg

The normalized quaternion has the form of
qo+1iq,+jqq+kqs

normal(q) =

2 2 2 2
Jq0+q1+q2+q3

E! Function Block Parameters: Quaternion Normaliz |

’7G uaternion Mormalize [mask] [link]

MNommalize a quaternion.

Cancel | Help | Apply |

The input is a quaternion or vector of quaternions in the form of [qy, rg, -.., q1,
ry,...,q9, ro, ... ,q3, Iy,]

The output is a normalized quaternion or vector of normalized quaternions.

Quaternion Conjugate
Quaternion Division
Quaternion Inverse
Quaternion Modulus
Quaternion Multiplication
Quaternion Norm

Quaternion Rotation

Quaternion Rotation

Purpose
Library

Description

q
ves_iot b
=

Dialog Box

Inputs and
Outputs

See Also

|

Rotate a vector by a quaternion
Utilities/Math Operations

The Quaternion Rotation block rotates a vector by a quaternion.
The quaternion has the form of

q = qy+igy+jgyo+kqs
The vector has the form of

v = tvy +jug+kug

The rotated vector has the form of

2 2
vy| |(1-292-293) 2(9192+9093) 2(9193-9092)||v,

[= 2 2
vo= g 2(9192-9093) (1-2q7-2q3) 2(9593+9¢q1)||V2
Vs’ 2 2. ||v
3 2(q1935+9099) 2(99935-9091) (1 -297—-2q5) 3
5

"Quaternion Fiatation [mask] [link]

Rotate a wector by a quaternion.

Cancel | Help | Apply |

The first input is a quaternion or vector of quaternions in the form of [q, r, ...,
q1, ryy --- 599, Ig, ... , qg, I'g,]

The second input is a vector or vector of vectors in the form of [v{, uy, ..., Vg,
ug, ..., V3, Ug,]

The output is a rotated vector or vector of rotated vectors.

Quaternion Conjugate
Quaternion Division

Quaternion Inverse

4-327

Quaternion Rotation

4-328

Quaternion Modulus
Quaternion Multiplication
Quaternion Norm

Quaternion Normalize

Quaternions to Direction Cosine Matrix

Purpose
Library

Description

Quat?DChl |

Convert quaternion vector to direction cosine matrix
Utilities/Axes Transformations

The Quaternions to Direction Cosine Matrix block transforms the four-element
unit quaternion vector (qg,q1,99,93) into a 3-by-3 direction cosine matrix
(DCM). The outputted DCM performs the coordinate transformation of a vector
in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a
quaternion g, it changes to P’ given by the following relationship:

P’ = gPq¢°

q=qg+iqy+jqy+kqg

9" = q9-iq;-jay- ka3

P =0+ix+jy+kz

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in
terms of P in the vector quaternion format:

~ . }
0 2 2 2 2
W (9o +91-92-93)x +2(9199-9¢4q3)y +2(q193 + q0q2)?
P’ = T 2 2 2 2
y 2(q093+9199)x+(q9—q1+95—93)y +2(q993-9¢91)2
2’ 2 2 2 2
12(9193-9092)% +2(q9q1 +9293)y + (20~ 91~ 92+ q3)?|

Since individual terms in P’ are linear combinations of terms in x, ¥, and z, a
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from
the preceding. This matrix rotates a vector in inertial axes, and hence is
transposed to generate the DCM that performs the coordinate transformation
of a vector in inertial axes into body axes.

4-329

Quaternions to Direction Cosine Matrix

Dialog Box

Inputs and
Outputs

See Also

4-330

2 2 2 2
(90+91-93-93) 2(q199+9(q3)

2((]1‘]3—‘10‘12)

2 2 2 2
(qg-91-99+93)

— 2 2 2 2
DCM = 2(9192-9093) (@9—971+92-93) 2(99953+9¢q1)
2(Q1Q3"‘Q0Q2) 2(Q2Q3—QO(I1)
[Block Parameters: Quaternions to Directio x4

Quatemion2DCM [maszk] [link]

Dretermine the 3-by-3 direction cozine matrix [DCH) from a 4-by-1
quaternion orientation vector. The output DT transforms vectars from
inertial axes to body axes.

QK I Cancel | Help | Apply |

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions

Quaternions to Euler Angles

Quaternions to Euler Angles

Purpose Convert quaternion vector to Euler angles
Library Utilities/Axes Transformations
Descripl'ion The Quaternions to Euler Angles block converts the four-element unit

QuatzEul |

quaternion (qg,q1,99,93) into the equivalent three Euler angle rotations (roll,
pitch, yaw).

The conversion is generated by comparing elements in the direction cosine

matrix (DCM), as functions of the Euler rotation angles, with elements in the
DCM, as functions of a unit quaternion vector:

DCM

DCM

_cosecosqf cosOsiny —sin®
(sin¢sinBcosy — cosPpsiny) (sinhpsinOsiny + cosdcosy) sindcosO
|(coshsinBcosy + sindsiny) (cosdpsinOsiny — sindcosy) cosdcosO

2 2 2 2
(@o+91-99—-93) 2(9199+9q093) 2(q195-9092)

2 2 2 2
2(9192-9093) (@9—971+92-93) 2(9993+9¢q1)

2 2 2 2
_2((11(13""10(12) 2(Q2‘]3‘Qoql) (q9—-91-92%+93)

From the preceding, you can derive the following relationships between DCM
elements and individual Euler angles:

q):

atan(DCM (2, 3), DCM (3, 3))

2 2 2 2
atan(2(q9993+90q1): (99— 91 -92+43))
asin(-DCM(1, 3))
asin(-2(9193-9092))
atan(DCM(1,2),DCM(1, 1))

2 2 2 2
atan(2(q199+9¢93),(qo+91—-99—-93))

4-331

Quaternions to Euler Angles

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

4-332

Block Parameters: Quaternions to Euler |

" GuatemionZEuler [maszk] [link]

Calculate Euler angles [rall, pitch, yaw] from quaternion [g0.91.92.93]

QK I Cancel | Help | Apply |

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

This implementation generates a pitch angle that lies between +90 degrees,
and roll and yaw angles that lie between +180 degrees.

The Euler angle solution is singular when the pitch angle 6 is equal to £90

degrees.

See aero_six_dof for an example of the use of the Quaternions to Euler Angles
block in an implementation of the equations of motion of a rigid body.
Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Radius at Geocentric Latitude

Purpose Estimate radius of ellipsoid planet at geocentric latitude
Library Flight Parameters
Description The Radius at Geocentric Latitude block estimates the radius (r,) of an

ellipsoid planet at a particular geocentric latitude (A,).

;,
.
/ t':&s A n
g/

The following equation estimates the ellipsoid radius () using flattening (f) ,
geocentric latitude (7_»3), and equatorial radius (R).

R2

s = 2 2
1+[1/(1-f)" - 1]sin"A

4-333

Radius at Geocentric Latitude

Dialog Box

4-334

ZJFunction Block Parameters: Radius at Geocentric Lati

—Radiug at Geocentric Latitude [mazk] [link]

Estimate radiuz of elipsoid planet at geocentric |atitude.

—Parameters

Units: | Metric MKS)

Planet model: | Earth [wWE584]

ZJFunction Block Parameters: Radius at Geocentric Lati

—Radiug at Geocentric Latitude [mazk] [link]

Estimate radiuz of elipsoid planet at geocentric |atitude.

—Parameters

Planet model: | Cuztam

Flattening:

|1 /298,257 223563

Equatarial radius of planet;

|CEIEES

Ok, | Cancel |

Apply

Units
Specifies the parameter and output units:

Units Equatorial Radius Radius at Geocentric Latitude

Metric (MKS) Meters Meters
English Feet Feet

This option is only available when Planet model is set to Earth (WGS84).

Planet model
Specifies the planet model to use:

Custom

Radius at Geocentric Latitude

Inputs and
Outputs

References

See Also

Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available with
Planet model set to Custom.

Equatorial radius of planet
Specifies the radius of the planet at its equator. This option is only

available with Planet model set to Custom.
The input is geocentric latitude, in degrees.

The output is radius of planet at geocentric latitude, in the same as the units
as flattening.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

ECEF Position to LLA

Direction Cosine Matrix ECEF to NED

Direction Cosine Matrix ECEF to NED to Latitude and Longitude

Geocentric to Geodetic Latitude

Geodetic to Geocentric Latitude

LLA to ECEF Position

4-335

Relative Ratio

Purpose
Library
Description
=T ap
¥
T) sqri
F_iP2) ap
p, lag/i) sp

Dialog Box

4-336

Calculate relative atmospheric ratios
Flight Parameters

The Relative Ratio block computes the relative atmospheric ratios, including

relative temperature ratio (), /0, relative pressure ratio (8), and relative
density ratio (o).

0 represents the ratio of the air stream temperature at a chosen reference
station relative to sea level standard atmospheric conditions.

T

]
0 represents the ratio of the air stream pressure at a chosen reference station
relative to sea level standard atmospheric conditions.

o represents the ratio of the air stream density at a chosen reference station
relative to sea level standard atmospheric conditions.

o= £

Po
The Relative Ratio block icon displays the input units selected from the Units
list.

Block Parameters: Relative Ratio E|

i~ Relative Ratio [mask] (link]

Calculate the relative atmospheric ratios including relative temperature
ralio [theta), square root of theta, 1elative pressure ratio [delta), and
relative density ratio [sigmal.

Theta represents the ratio of the air stream temperature at a chosen
reference station relative to sea level standard atmosphenc conditions.

Delta represents the ratio of the air stream pressue at a chosen reference
station relalive to sea level standard atmospheric conditions,

Sigma represents the ratio of the air stream density at a chosen reference:
station relative to sea level standard atmospheric conditions,

=

f

Urits: [Metic (MKS] |
[V Theta:

[Square rock of theta:

[Delta:

¥ Sigma:

0K Cancel I Help I Apply

Relative Ratio

Inputs and
Outputs

Assumptions

References

Units
Specifies the input units:

Units Tstatic Pstatic rho_static

Metric (MKS) Kelvin Pascal Kilograms per
cubic meter

English Degrees Rankine Pound force per Slug per cubic foot
square inch

Theta
When selected, the 6 is calculated and static temperature is a required
input.
Square root of theta
When selected, the /0 is calculated and static temperature is a required
input.
Delta
When selected, the 6 is calculated and static pressure is a required input.
Sigma
When selected, the 6 is calculated and static density is a required input.

The four possible inputs are Mach number, static temperature, static pressure,
and static density.

The four possible outputs are 6, /8, 8, and .

For cases in which total temperature, total pressure, or total density ratio is

desired (Mach number is nonzero), the total temperature, total pressure, and
total densities are calculated assuming perfect gas (with constant molecular

weight, constant pressure specific heat, and constant specific heat ratio) and
dry air.

Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

4-337

Second Order Linear Actuator

Purpose Implement a second-order linear actuator
Library Actuators
Descripl'ion The Second Order Linear Actuator block outputs the actual actuator position

using the input demanded actuator position and other dialog parameters that
A A aF define the system.

.
Dialog Box
Block Parameters: Second Drder Linear Act #

— Second Order Linear Actuator [mask)] [link]

Implement a second-order actuator model

=

Matural frequency:
|150

[ramping ratio:
jo7

Initial position:
jo

QK I Cancel | Help Apply

Natural frequency

The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.
Initial position

The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Inputs and The input is the demanded actuator position.
Outputs

The output is the actual actuator position.

See Also Second Order Nonlinear Actuator

4-338

Second Order Nonlinear Actuator

Purpose
Library

Description

Dialog Box

|

Implement a second-order actuator with rate and deflection limits
Actuators
The Second Order Nonlinear Actuator block outputs the actual actuator

position using the input demanded actuator position and other dialog
parameters that define the system.

Block Parameters: Second Order Nonlinear #

—Second Order Monlinear Actuator [mazk] [link]

Implement a second-order actuator model with zaturation and rate limits.

=

Matural frequency:
|150

[ramping ratio:
jo7

I awirum deflection:
| EED]

Minirum deflection:
|-20pi180

I awirnum rate:
|5007pi 180

Initial position:
jo

QK I Cancel | Help Apply

Natural frequency

The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection

The largest actuator position allowable. The units of maximum deflection
should be the same as the units of demanded actuator position.

4-339

Second Order Nonlinear Actuator

Inputs and
Outputs

Examples

See Also

4-340

Minimum deflection

The smallest actuator position allowable. The units of minimum deflection
should be the same as the units of demanded actuator position.

Maximum rate

The fastest speed allowable for actuator motion. The units of maximum
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

The input is the demanded actuator position.

The output is the actual actuator position.

See the aero_guidance model and the Actuators subsystem in the
aeroblk HL20 model for an example of this block.

Second Order Linear Actuator

Self-Conditioned [A,B,C,D]

Purpose
Library

Description

e
u_dem

u_meas

Implement a state-space controller in a self-conditioned form

GNC/Controls

The Self-Conditioned [A,B,C,D] block can be used to implement the state-space
controller defined by

x= Ax + Be
u= Cx + De

in the self-conditioned form

2= (A-HC)z+(B-HD)e+Hu

meas

Ugem= Cz+De

The input u,,., is a vector of the achieved actuator positions, and the output
Ugem 18 the vector of controller actuator demands. In the case that the actuators
are not limited, then u,,.,, = udem and substituting the output equation into
the state equation returns the nominal controller. In the case that they are not
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track u,,.,5 but
at the same time not so fast that noise on e is propagated to u4,,,. The matrix
H is designed by a callback to the Control System Toolbox command place to
place the poles at defined locations.

4-341

Self-Conditioned [A,B,C,D]

Dialog Box

4-342

Block Parameters: Self-Conditioned [A,B,C #
r— Self-Conditioned [mazk] [link]

Implement a state-space controller [4,B.C.0] in a self-conditioned form. [f
u_meaz = u_dem, then the implemented controller iz [4,B,C.0]. If u_meas
is limited, e.q., rate limiting, then the poles of the controller become thosze
defined in the mazk dialog box. Uses call to Control Systems Toolbox
function place.m when initializing.

=
F

A-matriz:
Ji1-0.20-3

B-rnatrix:
Ji
C-mnatrix:
jiro
D-matrix:
Jooz

Initial state, =_initial:
jo
Poles of A-H*C = [wl ... wn]:
Ji5-21

QK I Cancel Help Apply

A-matrix

A-matrix of the state-space implementation.
B-matrix

B-matrix of the state-space implementation.
C-matrix

C-matrix of the state-space implementation.
D-matrix

D-matrix of the state-space implementation.
Initial state, x_initial

This is a vector of initial states for the controller, i.e., initial values for the

state vector, z. It should have length equal to the size of the first dimension
of A.

Poles of A-H*C

This is a vector of the desired poles of A-H*C. Hence the number of pole
locations defined should be equal to the dimension of the A-matrix.

Self-Conditioned [A,B,C,D]

Inputs and
Outputs

Assumptions
and Limitations

Examples

|

The first input is the control error.
The second input is the measured actuator position.

The output is the actuator demands.

This block requires the Control System Toolbox.

This Simulink model shows a state-space controller implemented in both
self-conditioned and standard state-space forms. The actuator authority limits
of +/- 0.5 units are modeled by the saturation block.

E!aerohlk_self_cond_cntr i ;Iglll

File Edit WYiew Simulation Format Tools Help

= Ax+Bu
W= Gt Du

State-Space
[Same contmlier, no
salf conditioning]

=

Actuztor
demand

Step att=1son
tracking emrssnt Self-Conditioned Saturmtion:
to the contmlier [A,B,C,00 hodel of actuatar
autharity limits
[401.5,0.5]

Ready [1o02 |odets v

4-343

Self-Conditioned [A,B,C,D]

References

See Also

4-344

Notice that the A-matrix has a zero in the 1,1 element, indicating integral
action.

IEEIEEEI YRR

The top trace shows the conventional state-space implementation. The output
of the controller winds up well past the actuator upper authority limit of +0.5.
The lower trace shows that the self-conditioned form results in an actuator

demand that tracks the upper authority limit, which means that when the sign
of the control error, e, is reversed, the actuator demand responds immediately.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(¥)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Send net_fdm Packet to FlightGear
|

Purpose Transmit net_fdm packet to destination IP address and port for FlightGear
session
Library Animation/Flight Simulator Interfaces
Description The Send net_fdm Packet to FlightGear block transmits the net_fdm packet to
FlightGear on the current computer, or a remote computer on the network. The
neugfnngmm packet is constructed using the Pack net_fdm Packet for FlightGear block. The
1 Flight Gesr destination port should be an unused port that you can use when you launch

FlightGear with the FlightGear command line flag:
--fdm=network,localhost,5501,5502,5503 (the second port in the list, 5502, is
the network flight dynamics model (fdm) port). You can use one of several
techniques to determine the destination IP address, such as:

e Use 127.0.0.1 for “this” computer
¢ Ping another computer from a Windows cmd.exe (or UNIX shell) prompt:
C:\> ping andyspc

Pinging andyspc [144.213.175.92] with 32 bytes of data:

Reply from 144.213.175.92: bytes=32 time=30ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253
Reply from 144.213.175.92: bytes=32 time=20ms TTL=253

Ping statistics for 144.213.175.92:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 20ms, Maximum = 30ms, Average = 22ms

® On a Windows machine, type ipconfig and use the returned IP Address:
H:\>ipconfig

Windows 2000 IP Configuration
Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . :
IP Address. : 192.168.42.178

4-345

Send net_fdm Packet to FlightGear

Subnet Mask ! 255.255.255.0
Default Gateway : 192.168.42.254
Dialog Box
x

—FlightGearSendMetFdm [mazk] [link]

Tranzmit a network, fight dynamics model (net_fdm) packet ta FlightGear Flight
Simulataor wia UDP at the specified IP Address and LUDP port.

—Parameters

Destination IF address:

127001

Destination port:

|5502

Sample time [-1 for inherited):
J1430

0K I Cancel | Help Apply

Destination IP address

Specify your destination IP address.

Destination port
Specify your destination port.

Sample time
Specify the sample time (-1 for inherited).

Inputs and The input signal is the FlightGear net_fdm data packet.
Outputs

Examples See the asbh120 demo for an example of this block.

See Also FlightGear Preconfigured 6DoF Animation

Generate Run Script

Pack net_fdm Packet for FlightGear

4-346

Simple Variable Mass 3DoF (Body Axes)

Purpose Implement three-degrees-of-freedom equations of motion with respect to body
axes

Library Equations of Motion/3DoF
Description The Simple Variable Mass 3DoF (Body Axes) block considers the rotation in the

Fon " vertical plane of a body-fixed coordinate frame about an Earth-fixed reference

Fe it Simple Varabke dcor.fdt frame'

b (M-} ®, 2, im) -

it fhals) " Uw =) Xb,U\q

Bcﬂgfﬂfti Tnecidence = & \‘\\
frame ‘\
*y
Earth fived
reference frape’ =
- Xe zb,w

Ze

4-347

Simple Variable Mass 3DoF (Body Axes)
|

The equations of motion are

F .
g=—x_mU_ qw-gsin®
m m
F .
w = —=-"% 4 qu+gcosd
m m
) MLy
I,
0 =g¢q
I -1
_ Cyyfull” "yyempty .
yy - m

mfull - mempty

where the applied forces are assumed to act at the center of gravity of the body.

4-348

Simple Variable Mass 3DoF (Body Axes)

Dialog Box

Block Parameters: Simple ¥ariable Mass 3DoF (

—30oF Eokd [mask] [link]

Integrate the three-degrees-of-freedom equations of motion to determine
body position, velocity, attitude, and related values.

=) |

Urits: | Metric (MKS)

[
[

Mass type: I Simple Variable

Initial welocity:
100

Initial body attitude:
jo

Initial incidence:
jo

Initial body ratation rate:
jo

Initial position [« 2]:
fo o]

Initial mass:
j1.0

Emply mazs:
jos

Full mass:
E

Empty inertia:
jos

Full inertia:
E

Gravity source: IExtema| j

QK I Cancel Help Apply |

|

4-349

Simple Variable Mass 3DoF (Body Axes)

4-350

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.
Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V).

Initial body attitude
A scalar value for the initial pitch attitude of the body, (8,)) .
Initial incidence
A scalar value for the initial angle between the velocity vector and the body,
(o) -
Initial body rotation rate
A scalar value for the initial body rotation rate, (q().

Simple Variable Mass 3DoF (Body Axes)

Inputs and
Outputs

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the body x-axis, (F).
The second input to the block is the force acting along the body z-axis, (F,) .
The third input to the block is the applied pitch moment, (M).
The fourth input to the block is the rate of change of mass, (m).
The fifth optional input to the block is gravity in the selected units.
The first output from the block is the pitch attitude, in radians (0).

4-351

Simple Variable Mass 3DoF (Body Axes)

See Also

4-352

The second output is the pitch angular rate, in radians per second (g).

The third output is the pitch angular acceleration, in radians per second
squared (g) .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar element containing a flag for fuel tank status,
(Fuel):

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)
Custom Variable Mass 3DoF (Wind Axes)
Simple Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Wind Axes)

Purpose
o
Library
o e
Description
F_ M) ¥ (=d)
* Wind @ (mdis)
F2 ™ Simple varable 9o,
% 2, 'im)
(- V., i)
dmit faats) A A i)
o (r=d)
a (wsS) Fuel

Implement three-degrees-of-freedom equations of motion with respect to wind
axes

Equations of Motion/3DoF
The Simple Variable Mass 3DoF (Wind Axes) block considers the rotation in

the vertical plane of a wind-fixed coordinate frame about an Earth-fixed
reference frame.

Wind-Fixed
Reference Frame

Earth-Fixed B
Reference Frame - '

4-353

Simple Variable Mass 3DoF (Wind Axes)

The equations of motion are

, F ;
V = —Kwind _ m—V—gsin'y
m m

F
d=%}ﬂ+q+€,cosy

G =6 = Yootr yyq

Iyy

Y=q-a
_ Lyypuni — 1Ly empty .
mfull - mempty

yy

where the applied forces are assumed to act at the center of gravity of the body.

4-354

Simple Variable Mass 3DoF (Wind Axes)

Dialog Box

[EJFunction Block Parameters: Simple Yariable Mass 300

—aDaF 'Wind Eokd [mazk] [link)]

Integrate the three-degrees-of-freedom equations of motion in wind azes to determine
pozition, velocity, attitude, and related values.

—Parameters

Units: | Metric MKS)

=
Maszs t_l,lpe:l Simple Y ariable ;I
Initial airzpeed:
J100
Initial flight path angle:
jo
Initial incidence:
jo
Initial body ratation rate:
Jo

Initial pozition [2):
fio

Initial mass:

f1.0

Empty mass:

jns

Full mass:

J30

Ennpty inertia body axes:
|5

Full inertia body axes:
j30

Gravity source: | External |

Ok Cancel

|

4-355

Simple Variable Mass 3DoF (Wind Axes)

4-356

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia
Metric Newton Newton Meters per Meters Meters Kilogram Kilogram
(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot
(velocity pound second second squared
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug Slug foot
(velocity pound second squared
in kts) squared

Mass Type

Select the type of mass to use:
Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described
equations of motion.
Initial airspeed
A scalar value for the initial velocity of the body, (V).
Initial flight path angle
A scalar value for the initial flight path angle of the body, (y,) .
Initial incidence
A scalar value for the initial angle between the velocity vector and the body,
(o) -
Initial body rotation rate
A scalar value for the initial body rotation rate, (q().

Simple Variable Mass 3DoF (Wind Axes)

Inputs and
Outputs

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the wind x-axis, (F).
The second input to the block is the force acting along the wind z-axis, (F,).
The third input to the block is the applied pitch moment in body axes, (M).
The fourth input to the block is the rate of change of mass, (m).
The fifth optional input to the block is gravity in the selected units.
The first output from the block is the flight path angle, in radians (y).

4-357

Simple Variable Mass 3DoF (Wind Axes)

References

See Also

4-358

The second output is the pitch angular rate, in radians per second ().

The third output is the pitch angular acceleration, in radians per second
squared (du)y/dt) .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the wind-fixed coordinate frame, (V,0).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar containing the angle of attack, (o).

The eighth output is a scalar element containing a flag for fuel tank status,
(Fuel):

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

3DoF (Body Axes)

3DoF (Wind Axes)

Custom Variable Mass 3DoF (Body Axes)

Custom Variable Mass 3DoF (Wind Axes)

Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 6DoF (Euler Angles)

Purpose
o
Library
o e
Description
ERE]
Fe M1 X, im)
EukrAnges $9wiRd)
DSl
M,) ¥ tvs)
Simpk vaisple R4S
Mass dealdt
dreidt (kgis) Ay (i)
Fusl

Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Equations of Motion/6DoF

The Simple Variable Mass 6DoF (Euler Angles) block considers the rotation of
a body-fixed coordinate frame (X, Y,, Z;) about an Earth-fixed reference
frame (X,,Y,, Z,) . The origin of the body-fixed coordinate frame is the center
of gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

Center of
Gravity Xb
0 ub
/
/
/
/
— e
b Yb b
Vb Wb

Ye
Ie

Earth-fixed reference frame

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [F, F, FZ]T are in the body-fixed frame.

Fx
Eb= Fy

F

zZ

= m(‘_/.b"'(i)x‘_/b)"'m‘_/b

4-359

Simple Variable Mass 6DoF (Euler Angles)

4-360

Il
<
(o)
e
I
N QT

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor I is with respect to the
origin O.

L

Mp= M| = Io+ox (o) +]o
N
Ixx _Ixy _Ixz

I= _Iyx Iyy _Iyz

_sz _Izy Izz
The inertia tensor is determined using a table lookup which linearly
interpolates between Ig;); and Igppty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

I I

ull " empt

mfull_mempty

The relationship between the body-fixed angular velocity vector, [p q 1T, and
the rate of change of the Euler angles, [¢ 6y 1T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

p ol |10 0 0 |10 0 cosO 0 —sin@||0) ¢
q| =10/ % |0 cosd¢ sin¢||[6] |0 cos¢ sino[|0 10 0/=J |g
r 0 0 —sin¢ cos¢| [0 0 —sin¢ cos¢| [sin® 0 cos6 ||y v

Inverting J then gives the required relationship to determine the Euler rate
vector.

Simple Variable Mass 6DoF (Euler Angles)

Dialog Box

=

ol = z _ |0 coso —sind
i - 0 sing cos¢
\d cosO cos0

Block Parameters: Simple ¥ariable Mass 6ol

— EDoF Eotd [Body dwis] [mazk] [link]

1 (sin¢tan®) (cosdptan6)

Integrate the sis-degrees-of-freedom equations of mation wsing an Euler
angle representation for the orientation of the body in space.

— Par

Urits: | Metric [MKS)

Mazs type: ISimpIe Yariahle

Lef Lel Lo

Representation: | Euler Aingles

Initial position in inertial axes [<e. Ve Ze]:
finom

Initial velocity in bady axes [v w]:
finom

Initial Euler orientation [roll, pitch, paw]:
finom

Initial body ratation rates [pog.rf:
finom

Initial mass:
1.0

Emply mass:
{05

Full maszs:
20

Emptly inertia matris:
Ieye[S]

Full inertia matriz:
Zepel3)

kK I Cancel Help Anply

N Q

|

4-361

Simple Variable Mass 6DoF (Euler Angles)

4-362

Units

Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described

equations of motion.

Representation

Select the representation to use:

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations

of motion.

Simple Variable Mass 6DoF (Euler Angles)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.
The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.
The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

4-363

Simple Variable Mass 6DoF (Euler Angles)

Assumptions
and Limitations

References

See Also

4-364

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yawl], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-365

Simple Variable Mass 6DoF (Quaternion)

Purpose
.
Library
-
Description
v, fvs)
Foe M X, i)
Guaemion P8 ird)
CGm
i e Vi, fmis)
Simple Vanablke @ ()
lass deafdt
drridt (hgis) A, (s

Fuel

4-366

Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to body axes

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the Simple Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain K drives the norm of the quaternion state vector to 1.0 should ¢
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

do 43 99 41 ’Iy)
q.1=l 92 93 99 Z +KelT1
do| %1 20 as|| | |o2
ds3 —d0 ~91 92 q3

2 2 2 2
€ = 1—(‘10 +qq +q93 +q4)

Simple Variable Mass 6DoF (Quaternion)
|

Dialog Box
Block Parameters: Simple ¥ariable Mass 6DOF { |
— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters
U rits: | Metric [MES]

Mass type: ISirane Variable

Lef Le] Le

Fiepresentation: I Fuaternion

Iritial positian in inertial axes [$e Yele]
[mom

Iritial velocity in bady ases [v w]:
[mom

Iritial Euler orientation [rall, pitch, waw]:
[mom

Initial body ratation rates [p.a.r:
[mom

Initial mass:
1.0

E mpty mass:
{05

Full mass:
20

E mpty inertia matrix:
|eye[3]

Full inertia matriz:
[Zepel3)

Gain for guaternion normalization:
1.0

ak. I Cancel Help Apply

4-367

Simple Variable Mass 6DoF (Quaternion)

4-368

Units

Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described

equations of motion.

Representation

Select the representation to use:

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations

of motion.

Simple Variable Mass 6DoF (Quaternion)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Gain for quaternion normalization

The gain to maintain the norm of the quaternion vector equal to 1.0.
The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.
The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

4-369

Simple Variable Mass 6DoF (Quaternion)

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

Assumptions The block assumes that the applied forces are acting at the center of gravity of
and Limitations the body.

References Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.
See Also 6DoF (Euler Angles)
6DoF (Quaternion)
6DoF ECEF (Quaternion)
6DoF Wind (Quaternion)
6DoF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)

4-370

Simple Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-371

Simple Variable Mass 6DoF ECEF (Quaternion)

Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion in Earth-Centered Earth-Fixed (ECEF) coordinates

Library Equations of Motion/6DoF
Description The Simple Variable Mass 6DoF ECEF (Quaternion) block considers the
rotation of a Earth-Centered Earth-Fixed (ECEF) coordinate frame
P e ""igwﬁ Xgcer Yecer Zrcrr) about an Earth-Centered Inertial (ECI) reference
o "W frame (Xgop, Ygop Zgcp)- The origin of the ECEF coordinate frame is the
e e center of the Earth, additionally the body of interest is assumed to be rigid, an
i O] T assumption that eliminates the need to consider the forces acting between

individual elements of mass. The representation of the rotation of ECEF frame
from ECI frame is simplified to consider only the constant rotation of the
ellipsoid Earth (w,) including an initial celestial longitude (L;(0)). This
simplification allows the forces due to the Earth’s complex motion relative to a
star-fixed reference system to be neglected.

ZECEE ZECI

Horth
pole T

Vemnal S
0T B I e -

XEL_._,_..

L) + et

Greenwich
reridian

4-372

Simple Variable Mass 6DoF ECEF (Quaternion)

The translational motion of the ECEF coordinate frame is given below, where
the applied forces [F, F, F,]T are in the body frame.

X

F,= Fy = m(‘_/'b + 0, X Vy + (DCMbi‘i)e xVy) "‘DCMbi(@e X (0, xx;))) + m(V, "‘DCMbi(‘i’e Xx;))
FZ
where the change of position in ECI (%) is calculated by
Xger
% = Ygc1| = DCMibe+(i)eX3—ci
2ECI

and the velocity in body-axis (V;), angular rates in body-axis (@) Earth
rotation rate (®,), and relative angular rates in body-axis (o,,,) are defined as

p 0
‘_/b: v,(i)b: q,(Be: 0 ,L_Urel:(i)b_DCMbi(i)e
r (De

The rotational dynamics of the body defined in body-fixed frame are given
below, where the applied moments are [L M NIT, and the inertia tensor I is
with respect to the origin O.

L

My= M| = 1o, + 0, x{v,)
N
Ixx _Ixy Ixz

I= _Iyx Iyy _Iyz

I, -1, 1

“tzy ez

4-373

Simple Variable Mass 6DoF ECEF (Quaternion)

4-374

The inertia tensor is determined using a table lookup which linearly
interpolates between Iz and Loy, based on mass (m). The rate of change of
the inertia tensor is estimated by the following equation.
I-= Iull_Iem 3 m
mfull - mempty

The integration of the rate of change of the quaternion vector is given below.

q

5 0 p g ri||?
91| _1|-p 0 —r q||%1
gy 2|-a v 0 -p|lgy
A I [

Simple Variable Mass 6DoF ECEF (Quaternion)

Dialog Box

E! Function Block Parameters: Simple ¥ariable Mass Do il

BDoF Ech (ECEF] (mask) flink)

Integrate the sis-degrees-of-freedom equations of motion using a quaternion
reprezentation for the orientation of the body in zpace.

M ain IPIanet I

Urits: | Metric [MES)

Ll Lo

Mass type: I Simple Yanable

Initial position in geodetic latitude, longitude, altitude [Lh]:
flooa

Initial velocity in body axes [,yww];

oo

Iritial Evler orientation [rall, pitch, yaw]:

oo

Initial body ratation rates [p.g.rl

jioo)

Initial mazs:
1.0

Empty mass:
jns

Full mass:
|20

Empty inertia matris:
|eye[3]

Ful inertia matriz:

| Z'epel3)

ak. Cancel Apply

|

4-375

Simple Variable Mass 6DoF ECEF (Quaternion)

E! Function Block Parameters: Simple ¥ariable Mass |

EDoF EoM [ECEF] [mask] [link]

Integrate the six-degrees-of-freedom equations of motion using a quaternion
reprezentation for the arientation of the body in space.

Main | Flanet |
Planet model: | E anth (wWG504] =]

Celestial longitude of Graswich source:l Intermnal |

Celestial longitude of Greewich [deqg]:
i

Ay |

ak Cancel

4-376

Simple Variable Mass 6DoF ECEF (Quaternion)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described
equations of motion.

Initial position in geodetic latitude, longitude and altitude
The three-element vector for the initial location of the body in the geodetic
reference frame.

Initial velocity in body axes
The three-element vector containing the initial velocity in the body-fixed
coordinate frame.

Initial Euler orientation

The three-element vector containing the initial Euler rotation angles [roll,
pitch, yawl], in radians.

4-377

Simple Variable Mass 6DoF ECEF (Quaternion)

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Planet model
Specifies the planet model to use:

Custom
Earth (WGS84)

Flattening

Specifies the flattening of the planet. This option is only available when
Planet model is set to Custom.

Equatorial radius of planet

Specifies the radius of the planet at its equator. The units of the equatorial
radius parameter should be the same as the units for ECEF position. This
option is only available when Planet model is set to Custom.

Rotational rate

Specifies the scalar rotational rate of the planet in rad/sec. This option is
only available when Planet model is set to Custom.

4-378

Simple Variable Mass 6DoF ECEF (Quaternion)

Inputs and
Outputs

Celestial longitude of Greenwich source
Specifies the source of Greenwich meridian’s initial celestial longitude:

Internal Use celestial longitude value from mask dialog.

External Use external input for celestial longitude value.

Celestial longitude of Greenwich

The initial angle between Greenwich meridian and the x-axis of the ECI
frame.

The first input to the block is a vector containing the three applied forces in
body-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the ECEF
reference frame.

The second output is a three-element vector containing the position in the
ECEF reference frame.

The third output is a three-element vector containing the position in geodetic
latitude, longitude and altitude, in degrees, degrees and selected units of
length respectively.

The fourth output is a three-element vector containing the body rotation angles
[roll, pitch, yaw], in radians.

The fifth output is a 3-by-3 matrix for the coordinate transformation from ECI
axes to body-fixed axes.

The sixth output is a 3-by-3 matrix for the coordinate transformation from
geodetic axes to body-fixed axes.

The seventh output is a 3-by-3 matrix for the coordinate transformation from
ECEF axes to geodetic axes.

The eighth output is a three-element vector containing the velocity in the
body-fixed frame.

4-379

Simple Variable Mass 6DoF ECEF (Quaternion)

Assumptions
and Limitations

4-380

The ninth output is a three-element vector containing the relative angular
rates in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The eleventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The twelfth output is a three-element vector containing the accelerations in
body-fixed axes.

The thirteenth output is a scalar element containing a flag for fuel tank status:

¢ 1 indicates that the tank is full.
¢ (0 indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

This implementation assumes that the applied forces are acting at the center
of gravity of the body.

This implementation generates a geodetic latitude that lies between +90
degrees, and longitude that lies between +180 degrees. Additionally, the MSL
altitude is approximate.

The Earth is assumed to be ellipsoidal. By setting flattening to 0.0, a spherical
planet can be achieved. The Earth’s precession, nutation, and polar motion are
neglected. The celestial longitude of Greenwich is Greenwich Mean Sidereal
Time (GMST) and provides a rough approximation to the sidereal time.

The implementation of the ECEF coordinate system assumes that the origin is
at the center of the planet, the x-axis intersects the Greenwich meridian and
the equator, the z-axis is the mean spin axis of the planet, positive to the north,
and the y-axis completes the right-hand system.

The implementation of the ECI coordinate system assumes that the origin is at
the center of the planet, the x-axis is the continuation of the line from the
center of the Earth through the center of the Sun toward the vernal equinox,
the z-axis points in the direction of the mean equatorial plane’s north pole,
positive to the north, and the y-axis completes the right-hand system.

Simple Variable Mass 6DoF ECEF (Quaternion)

References

See Also

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley &
Sons, New York, NY, 1992.

Zipfel, P. H., Modeling and Simulation of Aerospace Vehicle Dynamics, AIAA
Education Series, Reston, VA, 2000.

“Supplement to Department of Defense World Geodetic System 1984 Technical
Report: Part I - Methods, Techniques and Data Used in WGS84 Development,”
DMA TR8350.2-A.

6DoF (Euler Angles)

6DoF (Quaternion)

6DoF ECEF (Quaternion)

6DoF Wind (Quaternion)

6DoF Wind (Wind Angles)

6th Order Point Mass (Coordinated Flight)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF ECEF (Quaternion)

Custom Variable Mass 6DoF Wind (Quaternion)

Custom Variable Mass 6DoF Wind (Wind Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF Wind (Quaternion)

Simple Variable Mass 6DoF Wind (Wind Angles)

4-381

Simple Variable Mass 6DoF Wind (Quaternion)

Purpose
.
Library
A
Description
¥,)
Fope 1N X, m
Wind w3 (ad
Cugtemicn DM,
W, is)
Mg bl awp (md)
it it
Simple Variabe 4, (ds)
Mass o it
it fea's) A, sy
Fudd

4-382

Implement a quaternion representation of six-degrees-of-freedom equations of
motion with respect to wind axes

Equations of Motion/6DoF

The Simple Variable Mass 6DoF Wind (Quaternion) block considers the
rotation of a wind-fixed coordinate frame (X, ,Y,,Z,) about an Earth-fixed
reference frame (X, Y,, Z,) . The origin of the wind-fixed coordinate frame is
the center of gravity of the body, and the body is assumed to be rigid, an
assumption that eliminates the need to consider the forces acting between
individual elements of mass. The Earth-fixed reference frame is considered
inertial, a simplification that allows the forces due to the Earth’s motion
relative to a star-fixed reference system to be neglected.

Center of Grawity

X, V

Wind-Fized
Eeference Frame

Earth-Fized
Feference Frame

ZE
The translational motion of the wind-fixed coordinate frame is given below,
where the applied forces [F, F, Fz]T are in the wind-fixed frame.

F

X
Fy =m(V, + o, X V,)+mV,

F

z

F =

—w

Simple Variable Mass 6DoF Wind (Quaternion)

v P Py — Bsinal Py
Yw = 0 ’(Bw = qw =DMCwb qb—(l ,u_)b= qb
0 Tw ry + Beosa "y

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M NIT, and the inertia tensor I is with respect to the
origin O. Inertia tensor I is much easier to define in body-fixed frame.

L

M= M =I@b+9bx(19b)+j9b
N
I, —Iy I,

I= Iyx Iyy _Iyz

-1, -1, 1

zy “zz

The inertia tensor is determined using a table lookup which linearly
interpolates between Ig,); and Ieppty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

L =1

empt

mfull - mempty

The integration of the rate of change of the quaternion vector is given below.

4o Opqrqo
q1|_ 1|-p 0 —r q||%1
gy 2|-a v 0 -p|lgy
ds T -4 p 0llg,

4-383

Simple Variable Mass 6DoF Wind (Quaternion)

Dialog Box
E! Function Block Parameters: Simple ¥Yariable Mass 6Do il
—EDoF Eakd [wind Axis) [mask] (link]

Integrate the six-degrees-of-freedom equations of motion uzing a wind angle
representation for the onentation of the body in space.

—Parameters

Units: | Metric MKS)

Mazz type: I Simple Yariable

Lef Led Lol

Hepresentatinn:l Cuaternion

Initial position in inertial axes [Ke e Ze]:

jinoo

Initial airspeed, angle of attack, and sideslip angle [V alpha betal:
Jioo o

Initial wind arientation [bank angle fight path angle heading angle]:
jinoo

Initial body rotation rates [p.g.r]:
jlooo

Initial mazz:

j1.0

Ennpty mazs:
|5

Full mass:
|20

Empty inertia matrix in body axis:
Jewel)

Full inertia matrix in body asis:
|2epel)

0K Cancel Apply

4-384

Simple Variable Mass 6DoF Wind (Quaternion)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:
Wind Angles Use wind angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations
of motion.

4-385

Simple Variable Mass 6DoF Wind (Quaternion)

Inputs and
Outputs

4-386

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body, in
body-fixed axes.

Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed
axes.

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

Simple Variable Mass 6DoF Wind (Quaternion)

Assumptions
and Limitations

References

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

The eleventh output is a scalar element containing a flag for fuel tank status:

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

4-387

Simple Variable Mass 6DoF Wind (Quaternion)

Stevens, B. L., and F. L. Lewis, “Aircraft Control and Simulation,” John Wiley
& Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)
6DoF (Quaternion)
6DoF ECEF (Quaternion)
6DoF Wind (Quaternion)
6DoF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)
Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-388

Simple Variable Mass 6DoF Wind (Wind Angles)

Purpose
.
Library
-
Description
)
[X, i
Wird
Wird Anges ”gﬁj
o, s}
Mo el af (md)
dedch dpich
SimpleVaiate o (i)
Mass dlo
it agis) Ay)

Fud

Implement a wind angle representation of six-degrees-of-freedom equations of
motion

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the Simple Variable Mass 6DoF
(Quaternion) block.

The relationship between the wind angles, [pyy 1T, can be determined by
resolving the wind rates into the wind-fixed coordinate frame.

Py i |10 0 0 |10 0 cosy 0 —siny| |0 . i
qy| = |0| |0 cosp sinp||y|* [0 cosp sinp[|0 10 ol=J ¥
'y 0 0 —sinp cosy| |0 0 —sinpu cosy||siny O cosy y

Inverting J then gives the required relationship to determine the wind rate
vector.

P 1 (sinptany) (cosptany) P

o= - |0 cos —sin
Y|~ J qu| = . H H qy
. sin cos L

"w cosy cosy "w

The body-fixed angular rates are related to the wind-fixed angular rate by the
following equation.

P, Py — Bsina
"w ry, + Peosa

Using this relationship in the wind rate vector equations, gives the
relationship between the wind rate vector and the body-fixed angular rates.

4-389

Simple Variable Mass 6DoF Wind (Wind Angles)

Py 1 (sinutany) (cosptany) pp - Bsina
e JI|q,| = 0 c?su —sinp pMcC,, g,
o Sin cos L
"w cosy cosy ry + Beosa

Dialog Box
[=JFunction Block Parameters: Simple ¥ariable Mass BE x|
—EDaoF Eokd [wind Axiz) [mazk)] (link)]

Integrate the sis-degrees-of-freedom equations of motion using a wind angle
representation for the orientation of the body in space.

—Parameters

Units: | Metric MKS)

Maszs type: I Simple Y ariable

Lef Led Lol

Reprezentation: | “Wind Angles

Initial position in inertial axes [Ke.v'eZe]:
Jioo o

Initial airspeed, angle of attack, and sideslip angla [V.alpha betal:
jinoo

Initial wind orientation [bank angle flight path angle heading angle]:
jiooo

Initial body rotation rates [p.g.r]:

jlooo

Initial mass:

j1.0

Ennpty mazs:
|5

Full mass:
|20

Empty inertia matrix in body axis:
Jewel)

Full inertia matrix in body asis:
|2epel)

0K Cancel Help Apply

4-390

Simple Variable Mass 6DoF Wind (Wind Angles)

Units
Specifies the input and output units:

Units Forces Moment Acceleration Velocity Position Mass Inertia

Metric Newton Newton Meters per Meters Meters Kilogram Kilogram

(MKS) meter second per meter
squared second squared

English Pound Foot Feet per Feet per Feet Slug Slug foot

(velocity pound second second squared

in ft/s) squared

English Pound Foot Feet per Knots Feet Slug Slug foot

(velocity pound second squared

in kts) squared

Mass Type

Select the type of mass to use:

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:
Wind Angles Use wind angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Wind Angles selection conforms to the previously described equations
of motion.

4-391

Simple Variable Mass 6DoF Wind (Wind Angles)

Inputs and
Outputs

4-392

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial airspeed, sideslip angle, and angle of attack

The three-element vector containing the initial airspeed, initial sideslip
angle and initial angle of attack.

Initial wind orientation

The three-element vector containing the initial wind angles [bank, flight
path, and heading], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body, in
body-fixed axes.

Full inertia matrix

A 3-by-3 inertia tensor matrix for the full inertia of the body, in body-fixed
axes.

The first input to the block is a vector containing the three applied forces in
wind-fixed axes.

The second input is a vector containing the three applied moments in
body-fixed axes.

The third input is a scalar containing the rate of change of mass.

Simple Variable Mass 6DoF Wind (Wind Angles)

Assumptions
and Limitations

References

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the wind rotation angles
[bank, flight path, heading], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to wind-fixed axes.

The fifth output is a three-element vector containing the velocity in the
wind-fixed frame.

The sixth output is a two-element vector containing the angle of attack and
sideslip angle, in radians.

The seventh output is a two-element vector containing the rate of change of
angle of attack and rate of change of sideslip angle, in radians per second.

The eighth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The ninth output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The tenth output is a three-element vector containing the accelerations in
body-fixed axes.

The eleventh output is a scalar element containing a flag for fuel tank status:

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper, Edizioni Libreria CLUP, 1998.

4-393

Simple Variable Mass 6DoF Wind (Wind Angles)

Stevens, B. L., and F. L. Lewis, “Aircraft Control and Simulation,” John Wiley
& Sons, New York, NY, 1992.

See Also 6DoF (Euler Angles)
6DoF (Quaternion)
6DoF ECEF (Quaternion)
6DoF Wind (Quaternion)
6DoF Wind (Wind Angles)
6th Order Point Mass (Coordinated Flight)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF ECEF (Quaternion)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)
Simple Variable Mass 6DoF ECEF (Quaternion)
Simple Variable Mass 6DoF Wind (Quaternion)

4-394

Simulation Pace

Purpose
Library

Description

Set
Face

Dialog Box

Set the simulation pace for FlightGear Flight Simulator

Animation/Animation Support Utilities

The Simulation Pace block lets you run the simulation

at the specified pace so

that connected animations appear aesthetically pleasing.

Use the Sample time parameter to set how often Simulink synchronizes with

the wall clock.

The sample time of this block should be considered for human interaction with
visualizations. The default is 1/30 sec, chosen to correspond to a 30
frames-per-second visualization rate (typical for common systems). Choose as

slow of a sample time as needed for smooth animation,

since oversampling has

little benefit and undersampling can cause “jumpiness” in animations and
potentially problematic blocking of MATLAB’s main thread.

[Z1Block Parameters: Simulation Pace

x|

— Simulation Pace [mask] [link)

Run the simulation at the specified pace so that connected animations appear
aestetically plaasing.

The pace iz the ratio: simulation seconds / clock seconds. such az 1 zim second per
clock second, 88400 sec/sec, 00071 sec/zec, ete. You can optionally output the
"pace eror' walue from the block [simulationTime - ClockTime], in seconds. This
means that the pace erar iz pozitive if the simulation is ruhning Fazter than the
zpecified pace and negative if glower than the specified pace. When Simulink, iz
ahead of the pace, thiz block puts all MATLAB Simulink computations o sleep so that
other proceszes on the computer can .

MOTE: This block does MOT make the simulation min in real-time, it merely attermpts to
make the aggregate simulation pace match the specified clock pace.

—Parameters
Simulation pace [gim zec per clock sec):
[1

Sleep mode: | MATLAE Thread =]

[~ Dutput pace emor [sec)

Sample time [-1 for inherited):
J1430

0K, I Cancel Help Apply

4-395

Simulation Pace

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

4-396

Simulation pace
Specifies the ratio of simulation time to clock time. The default is 1 second
of simulation time per second of clock time.

Sleep mode

Setting the Sleep mode parameter to of f lets you disable the pace
functionality and run as fast as possible.

Output pace error

If you select this check box, the block outputs the “pace error” value
(simulationTime minus ClockTime), in seconds. The pace error is positive
if the simulation is running faster than the specified pace and negative if
slower than the specified pace.

Sample time
Specify the sample time (-1 for inherited). Larger sample times result in
more efficient simulations, but less “smoothness” in output pace when
there are multiple Simulink time steps between pacer block samples. If the
Sample time is too large, MATLAB may become less responsive as
MATLAB and Simulink calculations are blocked from running when the
block puts MATLAB to sleep.

The block optionally outputs the “pace error” value (simulationTime minus
ClockTime), in seconds. The pace error is positive if the simulation is running
faster than the specified pace and negative if slower than the specified pace.

Outputting the pace error from the block lets you record the overall pace
achieved during the simulation or routing the signal to other blocks to make
decisions about the simulation if the simulation is too slow to keep up with the
specified pace.

The simulation pace is implemented by putting the entire MATLAB thread to
sleep until it needs to run again to keep up the pace. Simulink is single
threaded and runs on the one MATLAB thread, so only one Simulation Pace
block can be active at a time.

See the asbh120 demo for an example of this block.

Pilot Joystick

SinCos

Purpose
Library

Description

sinfu) p
cosiu) B

Dialog Box

Inputs and
Outputs

|

Compute the sine and cosine of the input angle
Utilities/Math Operations

The SinCos block computes the sine and cosine of the input angle, theta.

Block Parameters: SinCos |

" SinCos [mask] [link]

Compute the sine and cosine of input, u. u is in radians.

QK I Cancel | Help | Apply |

The first input is an angle, in radians.
The first output is the sine of the input angle.

The second output is the cosine of the input angle.

4-397

Symmetric Inertia Tensor

Purpose Create an inertia tensor from moments and products of inertia
Library Mass Properties
Description The Symmetric Inertia Tensor block creates an inertia tensor from moments

and products of inertia. Each input corresponds to an element of the tensor.

— The inertia tensor has the form of

I ' I _Ixy _Iyz

Inertia = —Ixy Iyy -1,

I I

_J&z “txz fzz

RS a3 8

ial
Dialog Box
Block Parameters: Symmetric Inertia Tei #

" Symmetric Inertia Tengor [mazk] (link]

Create an inertia tenzor from moments and products of inertia. Each input
cormesponds to an element of the tensor,

QK I Cancel | Help | Apply |

Inputs and The first input is the moment of inertia about the x-axis.
Outputs : . o
The second input is the product of inertia in the xy plane.
The third input is the product of inertia in the xz plane.
The fourth input is the moment of inertia about the y-axis.
The fifth input is the product of inertia in the yz plane.

The sixth input is the moment of inertia about the z-axis.

The output of the block is a symmetric 3-by-3 inertia tensor.

See Also Create 3x3 Matrix

4-398

Temperature Conversion

Purpose
Library
Description

R —* b

Dialog Box

Inputs and
Outputs

Convert from temperature units to desired temperature units

Utilities/Unit Conversions

The Temperature Conversion block computes the conversion factor from
specified input temperature units to specified output temperature units and
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Block Parameters: Temperature Conversio

— Temperature Conversion [mask)] [link]

Convert unitz of input signal to desired output units,

=

Initial units: I =1

Final units: I K

[
[

QK | Cancel | Help I

Apply

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

K Kelvin

F Degrees Fahrenheit
C Degrees Celsius

R Degrees Rankine

The input is the temperature in initial temperature units.

The output is the temperature in final temperature units.

4-399

Temperature Conversion

See Also

4-400

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Velocity Conversion

Three-Axis Accelerometer

Purpose
Library

Description

A, (i)

0 (mdris)

deaidt A s iy
f=icy)

a (i)

Implement a three-axis accelerometer
GNC/Navigation

The Three-Axis Accelerometer block implements an accelerometer on each of
the three axes. The ideal measured accelerations (4,, .. .) include the
acceleration in body axes at the center of gravity (4,), lever arm effects due to
the accelerometer not being at the center of gravity, and, optionally, gravity in
body axes can be removed.

Ajmeas = Ap+ 0, X (0 xd) + Oy xd—g

—itmeas

where ®, are body-fixed angular rates, o, are body-fixed angular
accelerations and d is the lever arm. The lever arm (d) is defined as the
distances that the accelerometer group is forward, right and below the center
of gravity.

dx _(xacc _xCG)
d = dy = Yace = Yca
dz _(Zacc _ZCG)

The orientation of the axes used to determine the location of the accelerometer
group (X, Y4eer 2qce) and center of gravity (xpq Yo 20@g) 1S from the zero
datum (typically the nose) to aft, to the right of the vertical centerline and
above the horizontal centerline. The x-axis and z-axis of this measurement axes
are opposite the body-fixed axes producing the negative signs in the lever arms
for x-axis and z-axis.

Measured accelerations (A4, ,) output by this block contain error sources
and are defined as

A =A. 'ASFCC“'Abias"'”Oise

—meas —itmeas

where Agpoc is a 3-by-3 matrix of scaling factors on the diagonal and

misalignment terms in the nondiagonal, and A, . are the biases.

4-401

Three-Axis Accelerometer

Optionally discretizations can be applied to the block inputs and dynamics
along with nonlinearizations of the measured accelerations via a Saturation
block.

Dialog Box
[EJFunction Block Parameters: Three-axis Acceleromete x|

’rThree-axis Accelerometer [mask] [link]

Implement a three-axis accelerometer.

Fain INoise I

Urits: | Metric [MKS) =]

Accelerameter location:
Jinoo
v Subtract gravity:

¥ Second-order dynamics
Matural frequency [rad/sec):
J190

Damping ratio:

Jo.707

Scale factors and crozs-coupling:
jnon:o1o:001]

teasurement bias:
Jinoo

Update rate [zec):
J0.025

QK Cancel Apply

4-402

Three-Axis Accelerometer

[=]Function Block Parameters: Three-axis Acceleron
’7Three-axis Accelerometer [mask) [link)

Implement a three-axis accelerameter.

td ain | hoize |
[v Moise on

hoize seeds
|[23093 23094 23095]

Maoize power:
|[D.DD1 0.001 0.001]

Lower and upper output limits:
I[-inf Ainf -inf inf inf inf]

Ok Cancel

Apply |

Units
Specifies the input and output units:

Units Acceleration Length

Metric (MKS) Meters per second squared Meters

English Feet per second squared Feet

Accelerometer location

The location of the accelerometer group is measured from the zero datum
(typically the nose) to aft, to the right of the vertical centerline and above
the horizontal centerline. This measurement reference is the same for the
center of gravity input. The units are in selected length units.

4-403

Three-Axis Accelerometer

4-404

Subtract gravity
Select to subtract gravity from acceleration readings.

Second order dynamics
Select to apply second-order dynamics to acceleration readings.

Natural frequency (rad/sec)

The natural frequency of the accelerometer. The units of natural frequency
are radians per second.

Damping ratio
The damping ratio of the accelerometer. A dimensionless parameter.

Scale factors and cross-coupling

The 3-by-3 matrix used to skew the accelerometer from body axes and to
scale accelerations along body axes.

Measurement bias

The three-element vector containing long-term biases along the
accelerometer axes. The units are in selected acceleration units.

Update rate (sec)

Specify the update rate of the accelerometer. An update rate of 0 will create
a continuous accelerometer. If noise is selected and the update rate is 0,
then the noise will be updated at the rate of 0.1. The units of update rate
are seconds.

Noise on
Select to apply white noise to acceleration readings.

Noise seeds

The scalar seeds for the Gaussian noise generator for each axis of the
accelerometer.

Noise power
The height of the PSD of the white noise for each axis of the accelerometer.

Lower and upper output limits
The six-element vector containing three minimum values and three
maximum values of acceleration in each of the accelerometer axes. The
units are in selected acceleration units.

Three-Axis Accelerometer

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

The first input is a three-element vector containing the actual accelerations in
body-fixed axes, in selected units.

The second input is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The third input is a three-element vector containing the angular accelerations
in body-fixed axes, in radians per second squared.

The fourth input is a three-element vector containing the location of the center
of gravity, in selected units.

The optional fifth input is a three-element vector containing the gravity, in
selected units.

The output is a three-element vector containing the measured accelerations

from the accelerometer, in selected units.

Vibro-pendulous error and hysteresis effects are not accounted for in this block.
Additionally, it is not the intention of this block to model the internal dynamics
of differing forms of instrument.

This block requires the Control System Toolbox.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA
Education Series, 2000.

Three-Axis Gyroscope

Three-Axis Inertial Measurement Unit

4-405

Three-Axis Gyroscope

Purpose
Library

Description

0 (mdris) ® i)

G's

4-406

Implement a three-axis gyroscope
GNC/Navigation

The Three-Axis Gyroscope block implements a gyroscope on each of the three
axes. The measured body angular rates (o,) include the body angular
rates (®,), errors, and optionally discretizations and nonlinearizations of the
signals.

(i)meas = (Bb ' (BSFCC + (Bbias +Gs - (Bgsens +tnoise
where DOerece is a 3-by-3 matrix of scaling factors on the diagonal and

misalignment terms in the nondiagonal, ® iqs 8T€ the biases, (Gs) are the Gs
on the gyroscope, and Dssons aT€ the g-sensitive biases.

Optionally discretizations can be applied to the block inputs and dynamics
along with nonlinearizations of the measured body angular rates via a
Saturation block.

Three-Axis Gyroscope
|

Dialog Box

E! Function Block Parameters: Three-axis Gyroscope
’rThree-axis Gyrozcope [mask) [link]

Implement a three-axis geroscope.

b ain INoise |

M atural frequency [rad/zec):
130

D arnping ratio:
jn707

Scale factors and cross-coupling:
jrroo:010:001]

Measurement bias:
flooa

G-gensitive bias:
oo

Update rate [sec):
0025

ak. I Cancel | Help | Apply |

m Function Block Parameters: Three-axis Gyroscope
’— Three-axiz Gyroscope [mask) (link)

Implement a three-axiz guroscope.

M ain | Maize |
¥ Maoise on

Maise seeds:
|[23093 23094 23095]

Moise power:
|[D.DDD‘I 0.0001 0.0001]

Lower and upper output limits:
|[-inf Ainf -infink inf inf]

Ok Cancel

Apply |

4-407

Three-Axis Gyroscope

4-408

Second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Natural frequency (rad/sec)

The natural frequency of the gyroscope. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

Scale factors and cross-coupling

The 3-by-3 matrix used to skew the gyroscope from body axes and to scale
angular rates along body axes.

Measurement bias

The three-element vector containing long-term biases along the gyroscope
axes. The units are in radians per second.

G-sensitive bias
The three-element vector contains the maximum change in rates due to
linear acceleration. The units are in radians per second per G’s.

Update rate (sec)

Specify the update rate of the gyroscope. An update rate of 0 will create a
continuous gyroscope. If noise is selected and the update rate is 0, then the
noise will be updated at the rate of 0.1. The units of update rate are
seconds.

Noise on
Select to apply white noise to gyroscope readings.

Noise seeds
The scalar seeds for the Gaussian noise generator for each axis of the
gyroscope.

Noise power
The height of the PSD of the white noise for each axis of the gyroscope.

Three-Axis Gyroscope

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Lower and upper output limits

The six-element vector containing three minimum values and three
maximum values of angular rates in each of the gyroscope axes. The units
are in radians per second.

The first input is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The second input is a three-element vector containing the accelerations in
body-fixed axes, in G’s.

The output is a three-element vector containing the measured angular rates

from the gyroscope, in radians per second.

Anisoelastic bias and anisoinertial bias effects are not accounted for in this
block. Additionally, it is not the intention of this block to model the internal
dynamics of differing forms of instrument.

This block requires the Control System Toolbox.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA
Education Series, 2000.

Three-Axis Accelerometer

Three-Axis Inertial Measurement Unit

4-409

Three-Axis Inertial Measurement Unit

Purpose Implement a three-axis inertial measurement unit (IMU)
Library GNC/Navigation
Description The Three-Axis Inertial Measurement Unit block implements an inertial
PR measurement unit (IMU) containing a three-axis accelerometer and a
ol e 1) three-axis gyroscope.
deaddt
N For a description of the equations and application of errors, see the Three-Axis

Accelerometer block and the Three-Axis Gyroscope block reference pages.

Dialog Box

E! Function Block Parameters: Three-axis Inertial Me x|

Implement a three-axiz inertial measurement unit [IMLU].

’rThree-axis Inertial M easurement it [mazk] [link]

I ain I Accelerometer | Gyrozcope | Moize |

Urits: | Metric [MKS) |
MU location:

jlooo

Update rate:
jon2s

] Cancel Apply

4-410

Three-Axis Inertial Measurement Unit

Function Block Parameters: Three-aris Inertial Meas

Three-axiz Inertial Meazurement Unit [magk] (link]
’7 Implement a three-axiz inertial measurement uit [IMLU].

T | Accelerometer IGyroscope | Moize |
¥ Second-order dymamics for accelerometer

Accelerometer natural fraquency [rad/sec):

130

Agccelerometer damping ratio:

jo707

Agccelerometer scale factor and cross-coupling:

jmoooto:001]

Accelerometer measurement bias:

jmoo)

Agccelerometer upper and lower lirnits:

I[-inf Ainf -inf - inf inf inf]

0K I Cancel

Function Block Parameters: Three-axis Inertial Meas

Three-axiz Inertial Meazurement Unit [mask] (link)]
’7 Implement a three-axiz inertial measurement unit [IMLU].

I iy | Accelerometer | Gyroscope I Moise |
¥ Second-order dynamics for gyra

Gwro natural frequency [rad/sec]:

190

Gwro damping ratio:

jo7o7

Gwro zcale factors and crozs-coupling:

jmoooto:001]

Gwro measurement bias:

jmoo)

G-gensitive bias:

jmoo)

Gwro upper and lower limits:

I[-inf Ainf -inf - inf inf inf]

Ok Cancel

Apply

4-411

|

Three-Axis Inertial Measurement Unit

E! Function Block Parameters: Three-asis Inertial
’—Three-axis Inertial Measurement it [mazk] [link]

Implement a three-axiz inertial measurement uit [IMLU].

T | Accelerometer Gyroscope | Moize |
¥ Moize an
Moise seeds:
|[23l]83 23094 23095 23096 23097 23098]
Moize pawer:
|[D.DD1 0.001 0.001 0.0007 0.0001 0.0001]

0K Cancel

Units

Specifies the input and output units:

Units Acceleration Length

Metric (MKS) Meters per second squared Meters

English Feet per second squared Feet

IMU location

The location of the IMU, which is also the accelerometer group location, is

measured from the zero datum (typically the nose) to aft, to the right of the
vertical centerline and above the horizontal centerline. This measurement

reference is the same for the center of gravity input. The units are in
selected length units.

Update rate (sec)

Specify the update rate of the accelerometer and gyroscope. An update rate
of 0 will create a continuous accelerometer and continuous gyroscope. If

4-412

Three-Axis Inertial Measurement Unit

noise is selected and the update rate is 0, then the noise will be updated at
the rate of 0.1. The units of update rate are seconds.

Second order dynamics for accelerometer
Select to apply second-order dynamics to acceleration readings.

Accelerometer natural frequency (rad/sec)

The natural frequency of the accelerometer. The units of natural frequency
are radians per second.

Accelerometer damping ratio
The damping ratio of the accelerometer. A dimensionless parameter.

Accelerometer scale factors and cross-coupling

The 3-by-3 matrix used to skew the accelerometer from body-axis and to
scale accelerations along body-axis.

Accelerometer measurement bias

The three-element vector containing long-term biases along the
accelerometer axes. The units are in selected acceleration units.

Accelerometer lower and upper output limits

The six-element vector containing three minimum values and three
maximum values of acceleration in each of the accelerometer axes. The
units are in selected acceleration units.

Gyro second order dynamics
Select to apply second-order dynamics to gyroscope readings.

Gyro natural frequency (rad/sec)

The natural frequency of the gyroscope. The units of natural frequency are
radians per second.

Gyro damping ratio
The damping ratio of the gyroscope. A dimensionless parameter.

Gyro scale factors and cross-coupling

The 3-by-3 matrix used to skew the gyroscope from body axes and to scale
angular rates along body axes.

4-413

Three-Axis Inertial Measurement Unit

Inputs and
Outputs

4-414

Gyro measurement bias

The three-element vector containing long-term biases along the gyroscope
axes. The units are in radians per second.

G-sensitive bias

The three-element vector contains the maximum change in rates due to
linear acceleration. The units are in radians per second per G’s.

Gyro lower and upper output limits

The six-element vector containing three minimum values and three
maximum values of angular rates in each of the gyroscope axes. The units
are in radians per second.

Noise on
Select to apply white noise to acceleration and gyroscope readings.

Noise seeds

The scalar seeds for the Gaussian noise generator for each axis of the
accelerometer and gyroscope.

Noise power

The height of the PSD of the white noise for each axis of the accelerometer
and gyroscope.

The first input is a three-element vector containing the actual accelerations in
body-fixed axes, in selected units.

The second input is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The third input is a three-element vector containing the angular accelerations
in body-fixed axes, in radians per second squared.

The fourth input is a three-element vector containing the location of the center
of gravity, in selected units.

The fifth input is a three-element vector containing the gravity, in selected
units.

The first output is a three-element vector containing the measured
accelerations from the accelerometer, in selected units.

Three-Axis Inertial Measurement Unit

Assumptions
and Limitations

Examples

References

See Also

The second output is a three-element vector containing the measured angular
rates from the gyroscope, in radians per second.

Vibro-pendulous error, hysteresis affects, anisoelastic bias and anisoinertial

bias are not accounted for in this block. Additionally, it is not the intention of
this block to model the internal dynamics of differing forms of instrument.

This block requires the Control System Toolbox.
See the asbh120 demo for an example of this block.

Rogers, R. M., Applied Mathematics in Integrated Navigation Systems, AIAA
Education Series, 2000.

Three-Axis Accelerometer

Three-Axis Gyroscope

4-415

Turbofan Engine System

Purpose
Library

Description

Thrattle position Thrust (N}
hach

Altitude (m) Fuel flow gis)

4-416

Implement a first-order representation of a turbofan engine with controller
Propulsion

The Turbofan Engine System block computes the thrust and the weight of fuel
flow of a turbofan engine and controller at a specific throttle position, Mach
number, and altitude.

This system is represented by a first-order system with unitless heuristic
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine
time constant. For the lookup table data, thrust is a function of throttle position
and Mach number, TSFC is a function of thrust and Mach number, and engine
time constant is a function of thrust. The unitless lookup table outputs are
corrected for altitude using the relative pressure ratio 6 and relative
temperature ratio 0, and scaled by maximum sea level static thrust, fastest
engine time constant at sea level static, sea level static thrust specific fuel
consumption, and ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output units
selected from the Units list.

Turbofan Engine System

Dialog Box

Block Parameters: Turbofan Engine System #

r— Turbofan Engine System [mask)] [link]

Implement a turbofan engine spstem. The tutbofan engine system includes
bath engine and contraller.

Thrattle position can wary from zero to one, coresponding to no ta full
throttle. Altitude, initial thrust, and maximum thrust are entered in the same
unit system az selected from the block for thrust and fuel flow output.

=
F

Urits: | Metric (MKS) =
Initial thrust source: I Internal j
Initial thrust:

ol
M arimum sea-level static thrust:
45000

Fastest engine time constant at sea-level static [zec):
1
Sealevel static thrust specific fuel consumption:
joss

R atio of installed thrust to uninstalled thrust:
jos

QK I Cancel Help Apply

Units

Specifies the input and output units:

Units Altitude Thrust Fuel Flow
Metric (MKS) Meters Newtons Kilograms per second
English Feet Pound force Pound mass per second

Initial thrust source

Specifies the source of initial thrust:

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.

4-417

Turbofan Engine System

Inputs and
Outputs

Assumptions
and Limitations

References

4-418

Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Fastest engine time at sea level.

Sea-level static thrust specific fuel consumption

Thrust specific fuel consumption at sea level, at Mach = 0, and at maximum
thrust, in specified mass units per hour per specified thrust units.

Ratio of installed thrust to uninstalled thrust

Coefficient representing the loss in thrust due to engine installation.
The first input is the throttle position. Throttle position can vary from zero to
one, corresponding to no to full throttle.
The second input is the Mach number.
The third input is the altitude in specified length units.
The first output is the thrust in specified force units.

The second output is the fuel flow in specified mass units per second.

The atmosphere is at standard day conditions and an ideal gas.
The Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used
as a reference model.

This engine system is assumed to have a high bypass ratio.
Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

Raymer, D. P., Aircraft Design: A Conceptual Approach, AIAA Education
Series, Washington, DC, 1989.

Hill, P. G., and C. R. Peterson, Mechanics and Thermodynamics of Propulsion,
Addison-Wesley Publishing Company, Reading, MA, 1970.

Velocity Conversion

Purpose
Library

Description

fiz mi's

Dialog Box

Convert from velocity units to desired velocity units
Utilities/Unit Conversions

The Velocity Conversion block computes the conversion factor from specified
input velocity units to specified output velocity units and applies the
conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Block Parameters: ¥elocity Conversion |

—Welocity Conversion [mazk) (link]

Convert unitz of input signal to desired output units,

=
F

Initial urits: I ftis

[
[

Final units: I ds

QK | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s Meters per second

ft/s Feet per second

km/s Kilometers per second
in/s Inches per second

km/h Kilometers per hour
mph Miles per hour

kts Nautical miles per hour
ft/min Feet per minute

4-419

Velocity Conversion

Inputs and The input is the velocity in initial velocity units.
Outputs

The output is the velocity in final velocity units.

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion

Temperature Conversion

4-420

Von Karman Wind Turbulence Model (Continuous)

Purpose

Library

Description

b {r)
W (s

DSt

Gontinuous
Viirg M1

WON AN o fmdis)
g+ ™

Generate continuous wind turbulence with the Von Karman velocity spectra
Environment/Wind

The Von Karman Wind Turbulence Model (Continuous) block uses the Von
Karman spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters. This

block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Q radians per meter, the circular
frequency o is calculated by multiplying V by Q. The following table displays
the component spectra functions:

MIL-F-8785C MIL-HDBK-1797
Longitudinal
2 2
o @ ulu 1 2%l L
u 5/6 1% 2 5/6
v [1+(1.339L,2)"] " 1413391,
1 1
L N3 3
o2 0.8(—@ 2 0.8(2an)
@ () e 4b . Op 4b
w1, 45_0)) 2VL,, 1+(4bw)2
1% v

4-421

Von Karman Wind Turbulence Model (Continuous)

MIL-F-8785C MIL-HDBK-1797
Lateral
2 1+8(1.3391 2)° 2 1+8(2.678L ©)°
(SULU g\ vV 26va gL vV
@, (o) ‘ 11/6 ‘ 11/6
’ ™ 1+(1339L,2)% ™1+ (2678L,2)%
)2 o\ 2
it A3
v v
() ———— P, (0) LD (0)
1+(M) 1 ﬂf ’
1% + 1%
Vertical
2 14813300 0% 502 1+5(2678L,%)°
o (0)) GwLw . 3 wv Gw w 3 wv
w 11/6 1A% 2 11/6
o1 (1.339L,2)°] [1+(2.678L,2)"]
@, ()
2 2
()] ()]
i(v> o () i(v> o)
()] ()]
1 (4.@2)2 v 1 (4.@2)2 “
1% VvV

The variable b represents the aircraft wingspan. The variables L, L, L,

represent the turbulence scale lengths. The variables 6, 6,, 6,, represent the
turbulence intensities:

4-422

Von Karman Wind Turbulence Model (Continuous)

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

Jw Jw Jv
_ - &8 - __8
pg_—é}g % = ox g T Tox
Jw Jv

Jw

- _ 8

g o0x
wy
pgz_—a;,g 9 = Tox g T ox

The variations affect only the vertical (q,) and lateral (ry) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, @, (w),
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,
@, (o), multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra.

Vertical Lateral
D (0) D ()
D (0) D (o)
~0 (0) D ()

4-423

Von Karman Wind Turbulence Model (Continuous)

4-424

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is passed through forming filters. The forming
filters are approximations of the Von Karman velocity spectra which are valid
in a range of normalized frequencies of less than 50 radians. These filters can
be found in both the Military Handbook MIL-HDBK-1797 and the reference by
Ly and Chan.

The following two tables display the transfer functions.

MIL-F-8785C
Longitudinal

o (2.5 140955
Hu(s) unNg V ' \4

L L 29
1+1.357#%s+0.1987(%) s

1/6
(@)

H,(s) . JE
NV L (14 (2),)

4%
Lateral
1L, L L 29
o, [= -2 (1+2.7478-Ys + 0.3398(<2) s
H,(s) i 7 (v () s7)
Ly L2 Ly
1+2.9958¢s + 1.9754(5%) s +0.1539(52) s
<5
H.(s) 14 »(8)

Von Karman Wind Turbulence Model (Continuous)

MIL-F-8785C
Vertical
1 L L L 2,
H,(s) GWH(1+2.74787%+0.3398(TW) s2)
L L,2 2 L 33
1+2.9958-Fs +1.9754(5#) s~ +0.1539(5F) s
Hq(S) b .Hw(s)
(1+(59)s)
MIL-HDBK-1797
Longitudinal

9 L L
2.2 (140254
Hu(S) Gy T V(+ VS)

L L 2
1+1.357#%s+0.1987(%) s

\V]

P 1/6
H,(s) s [08 (@)
’ V(2Lw)1/3(1+(i—€’/js)

4-425

Von Karman Wind Turbulence Model (Continuous)

4-426

Lateral

H (s)

H,(s)

Vertical

H,,(s)

H(s)

MIL-HDBK-1797

1 2L
0z 2 (1 + 274787505 10,3398 2y)

1+2. 9958—3 +1. 9754(U) s%+0. 1539()

o 21
Gy a2 (14 + 2747870, 1 0.3308 2y 32)

2L
1+29958—*s + 1. 9754() s%+0. 1539(—) s°

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Note The same transfer functions result after evaluating the turbulence
scale lengths. The differences in turbulence scale lengths and turbulence
transfer functions balance offset.

Von Karman Wind Turbulence Model (Continuous)

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low
altitudes, where 4 is the altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797

L,=h oL, = h

L,=L,= h — L,=2L,= h .
(0.177 +0.000823 /)" (0.177 + 0.000823 /)"

The turbulence intensities are given below, where W, is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

w

6, = 0.1W,,

Qu _ S _ 1

Ow Sy (0.177 +0.000823h)%*

The turbulence axes orientation in this region is defined as follows:

* Longitudinal turbulence velocity, u,, aligned along the horizontal relative
mean wind vector

® Vertical turbulence velocity, W, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

4-427

Von Karman Wind Turbulence Model (Continuous)

4-428

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

MIL-F-8785C MIL-HDBK-1797

L,=L,=L, = 2500 ft L, = 2L, = 2L, = 2500 ft

u

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

GM=GU=GLU

Von Karman Wind Turbulence Model (Continuous)

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates:

Medium/High Altitude Turbulence Intensities (Probability of Exceedance)

80

70

\Q
"Severe"
10°
ig4
"Moderate" 7
3

SLight'
1 -2
20

o
2x e

@
=]
T

o
=]

Altitude, thousands of feet
w B
o o
=

0 5 10 15 20 25 30 35
RMS Turbulence Amplitude [ft/sec]

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

4-429

Von Karman Wind Turbulence Model (Continuous)

Dialog Box

4-430

) Block Parameters: Yon Karman Wind Turbulence Model {Continuous (+q +r}) 21
—'wind Turbulence Model [mask] (link]
Generate atmospheric burbulence. YWhite noise iz passed through a filker to give the turbulence the specified velocity spectra,
Mediumshigh altitude scale lengths from the specifications are 762 m (2500 ft) for Yon Karman turbulence and 533.4 m [1750 it] for Divden tubulence.
Urits: [Metic (MKS] = |
Specification: I IL-F-B785C ﬂ
odel bype: I Continuous Yon Karman [+g +| ﬂ
“Wind speed at B m defines the low-altitude intengity (més]:
|18
‘Wind direction at 6 m [degiees clockwise from naorth]:
[o
Frobability of exceedance of high-altitude intensity: I 102 - Light ;I
Scale length at medium/high altitudes (r:
[762
‘Wingzpan [m]:
[10
Band limited noise sample time (sec):
Jo1
Naoise seeds [ug vg wa pal
|[233=11 23342 23343 23344]
¥ Tubulence on
oK Cancel Help Apply
Units
Define the units of wind speed due to the turbulence.
Units Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English Feet/second Feet Feet/second
(Velocity in
ft/s)
English Knots Feet Knots
(Velocity in
kts)

Von Karman Wind Turbulence Model (Continuous)

Specification

Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type

Select the wind turbulence model to use:

Continuous Von Karman (+q -r)

Continuous Von Karman (+q

+r)

Continuous Von Karman (-q +r)

Continuous Dryden (+q -r)

Continuous Dryden (+q +r)

Continuous Dryden (-q +r)

Discrete Dryden (+q -r)

Use continuous representation of Von
Karman velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Use continuous representation of Von
Karman velocity spectra with positive
vertical and lateral angular rates
spectra.

Use continuous representation of Von
Karmaén velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

4-431

Von Karman Wind Turbulence Model (Continuous)

4-432

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

The Continuous Von Karmaéan selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 20 feet (6 meters) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 20 feet (6 meters) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes

The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan

The wingspan is required in the calculation of the turbulence on the
angular rates.

Von Karman Wind Turbulence Model (Continuous)

Inputs and
Outputs

Assumptions
and Limitations

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated.

Noise seeds

There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

The first input is the altitude in units selected.
The second input is the aircraft speed in units selected.
The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, are small
relative to the aircraft’s ground speed.

4-433

Von Karman Wind Turbulence Model (Continuous)

References

4-434

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

® Terrain roughness

® Lapse rate

¢ Wind shears

® Mean wind magnitude

¢ Other meteorological factions (except altitude)

U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., Gust Loads on Aircraft: Concepts and Applications, AIAA Education
Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, 1., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARYV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

Von Karman Wind Turbulence Model (Continuous)

See Also Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)
Discrete Wind Gust Model
Wind Shear Model

4-435

WGS84 Gravity Model

Purpose

Library

Description

h(m)

Lat(deq)

iES2g
(Taylor Series)

g (mis)

Dialog Box

4-436

Implement the 1984 World Geodetic System (WGS84) representation of Earth’s
gravity

Environment/Gravity

The WGS84 Gravity Model block implements the mathematical representation
of the geocentric equipotential ellipsoid of the World Geodetic System
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity
precision is controlled via the Type of gravity model parameter.

The WGS84 Gravity Model block icon displays the input and output units
selected from the Units list.

[EJFunction Block Parameters: WGS84 Gravity Mod x|

— WG58 Gravity Model [mask] [link]
Calculate E arth's gravity at a specific location uzing Y orld Geodetic System MWES 84).

The 'G5 84 model iz defined az a geocentric equipotential elipzaid. Thiz model can
be found in MIMA TRE3E0.2, "Department of Defense World Geodetic System 1384,
Itz Definition and Fielationship with Local Geodetic Systems."

Height iz entered in the zame unit spstem as selected for gravity. Latitude and
lonagitude [if required] are entered in degrees.

—Parameters

Tupe of gravity rnc-del:l WESH Taplor Series

Units: | Metric MKS)

Led Le] Lo

Action for out of range input:l W arning

Ok | Cancel

Apply |

Type of gravity model
Specifies the method to calculate gravity:

=WGS84 Taylor Series

=WGS84 Close Approximation
=WGS84 Exact

WGS84 Gravity Model

Units
Specifies the input and output units:
Units Height Gravity
Metric (MKS) Meters Meters per second squared
English Feet Feet per second squared

Exclude Earth’s atmosphere

Select for the value for the Earth’s gravitational field to exclude the mass
of the atmosphere.

Clear for the value for the Earth’s gravitational field to include the mass of
the atmosphere.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Precessing reference frame

When selected, the angular velocity of the Earth is calculated using the
International Astronomical Union (IAU) value of the Earth’s angular
velocity and the precession rate in right ascension. In order to obtain the
precession rate in right ascension, Julian centuries from Epoch J2000.0 is
calculated using the dialog parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of the
standard Earth rotating at a constant angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian centuries from Epoch J2000.0.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Day
Specifies the day used to calculate Julian centuries from Epoch J2000.0.

4-437

WGS84 Gravity Model

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Year

Specifies the year used to calculate Julian centuries from Epoch J2000.0.
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

No centrifugal effects

When selected, calculated gravity is based on pure attraction resulting
from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and The first input is a scalar containing the altitude in specified length units.

Outputs The second input is a scalar containing the latitude in degrees.

The third input is a scalar containing the longitude in degrees. This input is
only available with Type of Gravity Model WGS84 Close Approximation or
WGS84 Exact.

The output is a scalar value of gravity with the direction normal to the Earth’s
surface.

4-438

WGS84 Gravity Model

Assumptions
and Limitations

Examples

References

The WGS84 gravity calculations are based on the assumption of a geocentric
equipotential ellipsoid of revolution. Since the gravity potential is assumed to
be the same everywhere on the ellipsoid, there must be a specific theoretical
gravity potential that can be uniquely determined from the four independent
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is not
necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic
height of 20,000.0 m (approximately 65,620.0 feet). Below this height, it gives
results with submicrogal precision.

See the Airframe subsystem in the aeroblk HL20 model for an example of this
block.

[1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its
Definition and Relationship with Local Geodetic Systems.”

4-439

Wind Angles to Direction Cosine Matrix

Purpose Convert wind angles to direction cosine matrix
Library Utilities/Axes Transformations
Description The Wind Angles to Direction Cosine Matrix block converts three wind rotation

angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix performs
the coordinate transformation of a vector in earth axes (0x, 0y, 0z) into a
vector in wind axes (oxg, 0y3, 0z3) . The order of the axis rotations required to
bring (0x3, 0y3, 025) into coincidence with (ox, 0y, 0z() is first a rotation
about oxg through the bank angle (1) to axes (0x4, 0y,,02,) . Second a
rotation about oy, through the flight path angle (y) to axes (ox;,0y,0z4),
and finally a rotation about 0z, through the heading angle ()) to axes

(oxo, 0Y ¢ ozo) .

T

pyg DOM,

O.’)C3 oxO

oyg| = DCMwe 0Yq

0zg 0z
0x3 10 0 cosy 0 —siny||cosy siny 0[|%%0
0yg| = |0 cosp sinp||0 10 —siny cosy 0| |0Yq
0zg 0 —sinp cosp||siny O cosy ||0 0 1oz,

Combining the three axis transformation matrices defines the following DCM.
cosycosy cosysiny —siny

DCM,, = (sinpsinycosy — cospusiny) (sinpsinysiny + cospcosy) sinpcosy
(cosusinycosy + sinusiny) (cospusinysiny — sinLcosy) COS[LCOS

4-440

Wind Angles to Direction Cosine Matrix

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

See Also

|

=JFunction Block Parameters: Wind Angles ko Dire x|

Wind2DCH [mask] (link]

Determite the 3-by-3 direction cozine matrix [DCH)] from a wind orientatiot [mu,
gamma, chil. The output DCM transforms wectors from geodetic earth or
north-eazt-down [MED] axes to wind axes.

Cancel | Help | Apply |

The input is a 3-by-1 vector of wind angles, in radians.
The output is a 3-by-3 direction cosine matrix which transforms earth vectors

to wind vectors.

This implementation generates a flight path angle that lies between +90
degrees, and bank and heading angles that lie between +180 degrees.
Direction Cosine Matrix Body to Wind

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Wind Angles

Euler Angles to Direction Cosine Matrix

4-441

Wind Angular Rates

Purpose Calculate wind angular rates from body angular rates, angle of attack, sideslip
angle, rate of change of angle of attack and rate of change of sideslip

Library Flight Parameters
Description The Wind Angular Rates block supports the equations of motion in wind-fixed
oF frame models by calculating the wind-fixed angular rates (p,,q,,r,). The

body-fixed angular rates (p,, q;,7;) , angle of attack (o), sideslip angle (B),
rate of change of angle of attack (), and rate of change of sideslip (p) are
related to the wind-fixed angular rate by the following equation.

dafdt dfirdt D

T

L]

Py cosocosp sinP sinocosp | [Po~ Psina
9| = |-cosoasinf cosf —sinosinf qp -0
w —sino 0 cos O ry+ Beosor

Dialog Box
x

’rWind Angular Fates [mask] [link]

Compute wind angular rates using body angular rates, angle of attack, sideslip angle,
rate of change of angle of attack and rate of change of sidezlip angle.

Cancel | Help | Apply |

Inputs and The first input is the 2-by-1 vector containing angle of attack and sideslip, in
Outputs radians.

The second input is the 2-by-1 vector containing rate of change of angle of
attack and rate of change of sideslip, in radians per second.

The third input is the body angular rates, in radians per second.

The output is the wind angular rates, in radians per second.

See Also 3DoF (Body Axes)
6DoF Wind (Quaternion)

4-442

Wind Angular Rates

6DoF Wind (Wind Angles)

Custom Variable Mass 3DoF (Body Axes)
Custom Variable Mass 6DoF Wind (Quaternion)
Custom Variable Mass 6DoF Wind (Wind Angles)
Simple Variable Mass 3DoF (Body Axes)

Simple Variable Mass 6DoF Wind (Quaternion)
Simple Variable Mass 6DoF Wind (Wind Angles)

4-443

Wind Shear Model

Purpose
Library

Description

—
—

b m)
Vg 1)

o] Shear

4-444

Calculate wind shear conditions
Environment/Wind

The Wind Shear Model block adds wind shear to the aerospace model. This
implementation is based on the mathematical representation in the Military
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by
the following equation for the mean wind profile as a function of altitude and
the measured wind speed at 20 feet (6 m) above the ground.

h{fﬂ)

3ft <h <1000f¢

where u,, is the mean wind speed, Wy is the measured wind speed at an
altitude of 20 feet, & is the altitude, and z, is a constant equal to 0.15 feet for
Category C flight phases and 2.0 feet for all other flight phases. Category C
flight phases are defined in reference [1] to be terminal flight phases, which
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to
body-fixed axis coordinates by multiplying by the direction cosine matrix
(DCM) input to the block. The block output is the mean wind speed in the
body-fixed axis.

Wind Shear Model

|

.
Dialog Box

Block Parameters: Wind Shear Model |
—wind Shear Model [mazk] (link]

Calculate the wind shear from conditions measured at a height of B meters
[20 feet] above the ground.

.
F

Urits: | Metric (MKS)

Flight phase: IEategory C - Terminal Flight Phaze j
‘Wind speed at B m altitude [m/z):
|15

‘wind direction at & m altitude [degrees clockwize from north]:
jo

QK | Cancel | Help I Apply

Units

Define the units of wind shear.

Units Wind Altitude
Metric (MKS) Meters/second Meters
English (Velocity in ft/s) Feet/second Feet
English (Velocity in kts) Knots Feet
Flight phase

Select flight phase:

= Category C Terminal Flight Phases
= Other
Wind speed at 6 m (20 feet) altitude (m/s, f/s, or knots)
The measured wind speed at an altitude of 20 feet (6 m) above the ground.

4-445

Wind Shear Model

Inputs and
Outputs

Examples

References

See Also

4-446

Wind direction at 6 m (20 feet) altitude (degrees clockwise from north)
The direction of the wind at an altitude of 20 feet (6 m), measured in

degrees clockwise from the direction of the Earth x-axis (north). The wind
direction is defined as the direction from which the wind is coming.

The first input is the altitude in units selected.

The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame,

in the selected units.

See the Airframe subsystem in the aeroblk_ HL20 model for an example of this
block.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Discrete Wind Gust Model
Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)

Von Karman Wind Turbulence Model (Continuous)

World Magnetic Model 2000

Purpose Calculate the Earth’s magnetic field at a specific location and time using the
World Magnetic Model 2000 (WMM2000)

Library Environment/Gravity

Description The WMM2000 block implements the mathematical representation of the

- et T (7T National Geospatial Intelligence Agency (NGA) World Magnetic Model 2000.
Lattugagaagy oS My o) The WMM2000 block calculates the Earth’s magnetic field vector, horizontal

Daclination (d2g)

T I intensity, declination, inclination, and total intensity at a specified location
Decimal Year Total Intensity (nT) and time.

World Magnetic Model 2000

.
Dialog Box

Block Parameters: World Magnetic Model #
—'world Magnetic Maodel 2000 [mask] [link]

Calculate the E arth's magnetic field at a specific location and time uzing
the "wforld Magnetic Model [whdkd). This model iz valid for the year 2000
through the year 2005,

The 'whM-2000 can be found on the web at
hitp: # Awmm. ngde. noaa. gov/D oDk, shtml and in "Eritish Geological
Survey, Technical Report 'Wh/00/17R, Geomagnetism Series".

Height iz entered in length units of selected unit system. Latitude and
longitude are entered in degrees.

=
F

Urits: | Metric (MKS) =
[Input decimal pear

anth: IJanuar}l j
Day: |1 =
Year: |2000 =
Action for out of range input: | Error j

¥ Output horizontal intenszity
¥ Output declination

¥ Output inclination

¥ Output total intenzity

QK I Cancel Help Apply

4-447

World Magnetic Model 2000

4-448

Units

Specifies the input and output units:
Units Height Magnetic Field Horizontal Intensity Total Intensity
Metric (MKS) Meters Nanotesla Nanotesla Nanotesla
English Feet Nanogauss Nanogauss Nanogauss

Input decimal year

When selected, the decimal year is an input for the World Magnetic Model
2000 block. Otherwise, a date must be specified using the dialog
parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination

When selected, the declination, the angle between true north and the
magnetic field vector (positive eastwards), is output.

Output inclination

When selected, the inclination, the angle between the horizontal plane and
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

World Magnetic Model 2000

Inputs and
Outputs

The first input is the height, in selected units.
The second input is the latitude in degrees.
The third input is the longitude in degrees.

The fourth optional input is the desired year in a decimal format to include any
fraction of the year that has already passed. The value is the current year plus
the number of days that have passed in this year divided by 365.

The following code illustrates how to calculate the decimal year, 'dyear', for
March 21, 2005:

%%%BEGIN CODE%%%

year = '2005';

year_selected = str2num(year);
month = 'March';

day = '21"';

if (mod(year_selected,400)&&~mod(year_selected,100))
% leapyear = false;

ndays = 365;

elseif ~mod(year_selected,4)

% leapyear = true;

ndays = 366;

else

% leapyear = false;

ndays = 365;

end

day_of_year = datenum([day '-' month '-'

year])-datenum(['1-january-"' year]);
dyear = year_selected + day_of_year/ndays;
%%%END CODE%%%

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.
The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.

4-449

World Magnetic Model 2000

Limitations

References

See Also

4-450

The WMM2000 specification produces data that is reliable five years after the
epoch of the model, which is January 1, 2000.

The internal calculation of decimal year does not take into account local time
or leap seconds.

The WMM2000 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth's core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the mantle
and crust), are not included. Also, the substantial fluctuations of the
geomagnetic field, which occur constantly during magnetic storms and almost
constantly in the disturbance field (auroral zones), are not included.

Macmillian, S. and J. M. Quinn, 2000. “The Derivation of the World Magnetic
Model 2000,” British Geological Survey Technical Report WM/00/17R.

http://www.ngdc.noaa.gov/seg/WMM/DoDWMM. shtml

World Magnetic Model 2005

World Magnetic Model 2005

Purpose

Library

Description

Height{m) Magnetic Field (nT)

Horizonal Intensity (nT)
Latitude (deg)
Declination (deg)

Longitude (deg)
Inclination (deg)

Decimal Year Total Intensity (nT)

Dialog Box

Calculate the Earth’s magnetic field at a specific location and time using the
World Magnetic Model 2005 (WMM2005)

Environment/Gravity

The WMM2005 block implements the mathematical representation of the

National Geospatial Intelligence Agency (NGA) World Magnetic Model 2005.

The WMM2005 block calculates the Earth’s magnetic field vector, horizontal
intensity, declination, inclination, and total intensity at a specified location
and time.

JFunction Block Parameters: World Magnetic Mo x|

—wiorld Magnetic Maodel 2005 [mask] [link]

Calculate the Earth's magnetic field at a specific location and time using the ‘World
Magnetic Madel fwMb). This model iz valid for the year 2005 through the year 2010,

The "whM-2005 can be found on the web at
http: ¢ Ao, ngde. noaa. gov/zeg/D ol k. shtml and in "MOAS Technical Report:
The USAJK world Magnetic Model for 2005-2010 ",

Height iz entered in length units of selected unit system. Latitude and longitude are
entered in degrees.

=

Units: | Metric: (MKS) |
¥ Input decimal pear
Month: I January LI
Day:l 1 LI
Year:l 2005 LI
Action for out of range input: | Error LI
¥ Output horizontal intenszity
¥ Output declination
¥ Output inclination
[+ Output tatal intensity

oK Cancel Apply

4-451

World Magnetic Model 2005

4-452

Units

Specifies the input and output units:
Units Height Magnetic Field Horizontal Intensity Total Intensity
Metric (MKS) Meters Nanotesla Nanotesla Nanotesla
English Feet Nanogauss Nanogauss Nanogauss

Input decimal year

When selected, the decimal year is an input for the World Magnetic Model
2005 block. Otherwise, a date must be specified using the dialog
parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination

When selected, the declination, the angle between true north and the
magnetic field vector (positive eastwards), is output.

Output inclination

When selected, the inclination, the angle between the horizontal plane and
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

World Magnetic Model 2005

Inputs and
Outputs

The first input is the height, in selected units.
The second input is the latitude in degrees.
The third input is the longitude in degrees.

The fourth optional input is the desired year in a decimal format to include any
fraction of the year that has already passed. The value is the current year plus
the number of days that have passed in this year divided by 365.

The following code illustrates how to calculate the decimal year, 'dyear', for
March 21, 2005:

%%%BEGIN CODE%%%

year = '2005';

year_selected = str2num(year);
month = 'March';

day = '21"';

if (mod(year_selected,400)&&~mod(year_selected,100))
% leapyear = false;

ndays = 365;

elseif ~mod(year_selected,4)

% leapyear = true;

ndays = 366;

else

% leapyear = false;

ndays = 365;

end

day_of_year = datenum([day '-' month '-'

year])-datenum(['1-january-"' year]);
dyear = year_selected + day_of_year/ndays;
%%%END CODE%%%

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.
The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.

4-453

World Magnetic Model 2005

Limitations

References

See Also

4-454

The WMMZ2005 specification produces data that is reliable five years after the
epoch of the model, which is January 1, 2005.

The internal calculation of decimal year does not take into account local time
or leap seconds.

The WMM2005 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth's core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the mantle
and crust), are not included. Also, the substantial fluctuations of the
geomagnetic field, which occur constantly during magnetic storms and almost
constantly in the disturbance field (auroral zones), are not included.

http://www.ngdc.noaa.gov/seg/WMM/DoDWMM. shtml

World Magnetic Model 2000

Aerospace Units

The main blocks of the Aerospace Blockset support standard measurement
systems. The Unit Conversion blocks support all units listed in this table.

Quantity

Metric (MKS)

English

Acceleration

Angle

Angular
acceleration

Angular
velocity

Density

Force
Inertia

Length

Mass

meters/second? (m/s?),

kilometers/second? (km/s2),

(kilometers/hour)/second
(km/h-s), g-unit (g's)

radian (rad), degree (deg),
revolution

radians/second? (rad/s2),
degrees/second? (deg/s?),
revolutions/minute (rpm),
revolutions/second (rps)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

kilogram/meter3 (kg/m3)

newton (N)
kilogram-meter? (kg-m?)

meter (m)

kilogram (kg)

inches/second? (in/s2),
feet/second? (ft/s2),
(miles/hour)/second
(mph/s), g-unit (g's)

radian (rad), degree (deg),
revolution

radians/second? (rad/s2),
degrees/second? (deg/s?),
revolutions/minute (rpm),
revolutions/second (rps)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

pound mass/foot>
(Ibm/ft3), slug/foot3
(slug/ft?), pound
mass/inch® (Ibm/in®)

pound (Ib)

slug-foot? (slug-ft?)

inch (in), foot (ft), mile
(mi), nautical mile (nm)

slug (slug), pound mass

(Ibm)

A Aerospace Units

Quantity Metric (MKS) English

Pressure Pascal (Pa) pound/inch? (psi),
pound/foot? (psf),
atmosphere (atm)

Temperature kelvin (°K), Celsius (°C) degrees Fahrenheit (°F),
degrees Rankine (°R)

Torque newton-meter (N-m) pound-feet (1b-ft)

Velocity meters/second (m/s), inches/second (in/sec),

kilometers/second (km/s),
kilometers/hour (km/h)

feet/second (ft/sec),
feet/minute (ft/min),
miles/hour (mph), knots

A
AC3D coordinates 2-28

Acceleration Conversion block 4-112
Actuators library 2-5
Adjoint of 3x3 Matrix block 4-114
Aerodynamic Forces and Moments block 4-116
Aerodynamics library 2-6
airspeed correction 3-2
Angle Conversion block 4-118
Angular Acceleration Conversion block 4-120
Angular Velocity Conversion block 4-122
Animation library 2-6
Animation Support Utilities sublibrary 2-6
Flight Simulator Interfaces sublibrary 2-6
MATLAB-Based Animation sublibrary 2-6

B
Besselian Epoch to Julian Epoch block 4-124

body coordinates 2-22

C
Calculate Range block 4-126

COESA Atmosphere Model block 4-127
coordinate systems
display 2-26
modeling 2-21
navigation 2-23
overview 2-20
Create 3x3 Matrix block 4-130
creating an aerospace model
basic steps 2-9
Custom Variable Mass 3DoF (Body Axes) block
4-132
Custom Variable Mass 3DoF (Wind Axes) block
4-137

Custom Variable Mass 6DoF (Euler Angles) block
4-142

Custom Variable Mass 6DoF (Quaternion) block
4-148

Custom Variable Mass 6DoF ECEF (Quaternion)
block 4-153

Custom Variable Mass 6DoF Wind (Quaternion)
block 4-161

Custom Variable Mass 6DoF Wind (Wind Angles)
block 4-167

D

demo models
running 1-16

Density Conversion block 4-173

Determinant of 3x3 Matrix block 4-175

Direction Cosine Matrix Body to Wind block
4-176

Direction Cosine Matrix Body to Wind to Alpha
and Beta block 4-178

Direction Cosine Matrix ECEF to NED block
4-180

Direction Cosine Matrix ECEF to NED to Latitude
and Longitude block 4-183

Direction Cosine Matrix to Euler Angles block
4-186

Direction Cosine Matrix to Quaternions block
4-188

Direction Cosine Matrix to Wind Angles block
4-190

Discrete Wind Gust Model block 4-192

Dryden Wind Turbulence Model (Continuous)
block 4-196

Dryden Wind Turbulence Model (Discrete) block
4-209

Index-1

Index

Dynamic Pressure block 4-221

E
ECEF coordinates 2-26

ECEF Position to LLA block 4-222
ECI coordinates 2-25
Environment library 2-6
Atmosphere sublibrary 2-6
Gravity sublibrary 2-6
Wind sublibrary 2-6
Equations of Motion library 2-7
3DoF sublibrary 2-7
6DoF sublibrary 2-7
Point Mass sublibrary 2-7
Estimate Center of Gravity block 4-227
Estimate Inertia Tensor block 4-229
Euler Angles to Direction Cosine Matrix block
4-231
Euler Angles to Quaternions block 4-233

F
Flat Earth to LLA block 4-235

Flight Parameters library 2-7
FlightGear
aircraft models 2-34
example 2-48
flight simulator overview 2-29
installing 2-33
obtaining 2-29
running 2-39
FlightGear coordinates 2-27
FlightGear Preconfigured 6DoF Animation block
4-240
Force Conversion block 4-243
4th Order Point Mass (Longitudinal) block 4-66

Index-2

4th Order Point Mass Forces (Longitudinal) block
4-69

G
Gain Scheduled Lead-Lag block 4-245

Generate Run Script block 4-246
Geocentric to Geodetic Latitude block 4-249
Geodetic to Geocentric Latitude block 4-255
GNC Library

Control sublibrary 2-7

Guidance sublibrary 2-7

Navigation sublibrary 2-7

H
Horizontal Wind Model block 4-258

|
Ideal Airspeed Correction block 4-260

Incidence & Airspeed block 4-263
Incidence, Sideslip & Airspeed block 4-264
Interpolate Matrix(x) block 4-265
Interpolate Matrix(x,y) block 4-267
Interpolate Matrix(x,y,z) block 4-269
Invert 3x3 Matrix block 4-272

ISA Atmosphere Model block 4-273

J
Julian Epoch to Besselian Epoch block 4-274

L
Lapse Rate Model block 4-276

latitude 2-24
Length Conversion block 4-280

Index

lifting body (HL-20) 3-19
LLA to ECEF Position block 4-282

M
Mach Number block 4-286

Mass Conversion block 4-287
Mass Properties library 2-7
MATLAB
opening demos
using the command line 1-16
using the Start button 1-16
M-files
running simulations from 2-19
missile guidance system 3-33
Moments about CG due to Forces block 4-289

N
NED coordinates 2-25

Non-Standard Day 210C block 4-290
Non-Standard Day 310 block 4-294

(0

Controllers
1D Controller [A(v),B(v),C(v),D(v)] block 4-12

1D Controller [A(v),B(v),C(v),D(v)] block 4-12

1D Controller Blend u=(1-L).K1.y+L.K2.y block
4-15

1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
4-18

1D Self-Conditioned [A(v),B(v),C(v),D(v)] block
4-21

P
Pack net_fdm Packet for FlightGear block 4-298

parameters

tuning 2-18
Pilot Joystick block 4-311
Pressure Altitude block 4-314
Pressure Conversion block 4-316
Propulsion library 2-8

Q
Quaternion Conjugate block 4-318
Quaternion Division block 4-319
Quaternion Inverse block 4-321
Quaternion Modulus block 4-322
Quaternion Multiplication block 4-323
Quaternion Norm block 4-325
Quaternion Normalize block 4-326
Quaternion Rotation block 4-327
Quaternions to Direction Cosine Matrix block
4-329
Quaternions to Euler Angles block 4-331

R
Radius at Geocentric Latitude block 4-333
Relative Ratio block 4-336

S
Second Order Linear Actuator block 4-338

Second Order Nonlinear Actuator block 4-339

Self-Conditioned [A,B,C,D] block 4-341

Send net_fdm Packet to FlightGear block 4-345

Simple Variable Mass 3DoF (Body Axes) block
4-347

Index-3

Index

Simple Variable Mass 3DoF (Wind Axes) block
4-353
Simple Variable Mass 6DoF (Euler Angles) block
4-359
Simple Variable Mass 6DoF (Quaternion) block
4-366
Simple Variable Mass 6DoF ECEF (Quaternion)
block 4-372
Simple Variable Mass 6DoF Wind (Quaternion)
block 4-382
Simple Variable Mass 6DoF Wind (Wind Angles)
block 4-389
Simulation Pace block 4-395
simulations
running from M-file 2-19
Simulink
block libraries 2-2
modifying models 1-12
opening demos
using the Help browser 1-16
opening the Aerospace Blockset 2-2
running demos 1-8
using the Simulink Library Browser in
Microsoft Windows 2-2
using the Simulink Library window in UNIX
2-5
SinCos block 4-397
6DoF (Euler Angles) block 4-74
6DoF (Quaternion) block 4-80
6DoF Animation block 4-71
6DoF ECEF (Quaternion) block 4-85
6DoF Wind (Quaternion) block 4-93
6DoF Wind (Wind Angles) block 4-100
6th Order Point Mass (Coordinated Flight) block
4-106
6th Order Point Mass Forces (Coordinated
Flight) block 4-110

Index-4

Symmetric Inertia Tensor block 4-398

T

Temperature Conversion block 4-399

Three-Axis Accelerometer block 4-401

Three-axis Gyroscope block 4-406

Three-Axis Inertial Measurement Unit block
4-410

3x3 Cross Product block 4-65

3D Controller [A(v),B(v),C(v),D(v)] block 4-40

3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
4-44

3D Self-Conditioned [A(v),B(v),C(v),D(v)] block
4-48

3DoF (Body Axes) block 4-55

3DoF (Wind Axes) block 4-60

3DoF Animation block 4-52

tuning parameters 2-18

Turbofan Engine System block 4-416

2D Controller [A(v),B(v),C(v),D(v)] block 4-25

2D Controller Blend block 4-28

2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
4-32

2D Self-Conditioned [A(v),B(v),C(v),D(v)] block
4-36

U

Utilities library 2-8
Axes Transformation sublibrary 2-8
Math Operations sublibrary 2-8
Unit Conversions sublibrary 2-8

\'/
Velocity Conversion block 4-419

Index

Virtual Reality Toolbox 1-3
Von Kdrman Wind Turbulence Model
(Continuous) block 4-421

w
WGS84 Gravity Model block 4-436

Wind Angles to Direction Cosine Matrix block
4-440

Wind Angular Rates block 4-442

wind coordinates 2-23

Wind Shear Model block 4-444

World Magnetic Model 2000 block 4-447

World Magnetic Model 2005 block 4-451

Wright Flyer 3-9

Index-5

Index

Index-6

	Getting Started
	What Is the Aerospace Blockset?
	Related Products
	Running a Demo Model
	What This Demo Illustrates
	Opening the Model
	Key Subsystems
	Running the Demo
	Modifying the Model

	Learning More
	Using the MATLAB Help System for Documentation and Demos
	Finding Aerospace Blockset Help

	Using the Aerospace Blockset
	Introducing the Aerospace Blockset Libraries
	Opening the Aerospace Blockset in Windows
	Opening the Aerospace Blockset on UNIX Platforms
	Summary of Aerospace Block Libraries

	Creating Aerospace Models
	Building a Simple Actuator System
	Building the Model
	Running the Simulation

	About Aerospace Coordinate Systems
	Fundamental Coordinate System Concepts
	Coordinate Systems for Modeling
	Coordinate Systems for Navigation
	Coordinate Systems for Display
	References

	Introducing the Flight Simulator Interface
	About the FlightGear Interface
	Obtaining FlightGear
	Configuring Your Computer for FlightGear
	Installing and Starting FlightGear

	Working with the Flight Simulator Interface
	About Aircraft Geometry Models
	Working with Aircraft Geometry Models
	Running FlightGear with Simulink
	Running the NASA HL-20 Demo with FlightGear

	Case Studies
	Ideal Airspeed Correction
	Airspeed Correction Models
	Measuring Airspeed
	Modeling Airspeed Correction
	Simulating Airspeed Correction

	1903 Wright Flyer
	Wright Flyer Model
	Airframe Subsystem
	Environment Subsystem
	Pilot Subsystem
	Running the Simulation
	References

	NASA HL-20 Lifting Body Airframe
	NASA HL-20 Lifting Body
	The HL-20 Airframe and Controller Model
	References

	Missile Guidance System
	Missile Guidance System Model
	Modeling Airframe Dynamics
	Modeling a Classical Three-Loop Autopilot
	Modeling the Homing Guidance Loop
	Simulating the Missile Guidance System
	Extending the Model
	References

	Block Reference
	Blocks — Categorical List
	Actuators Library
	Aerodynamics Library
	Animation Library
	Environment Library
	Flight Parameters Library
	Equations of Motion Library
	GNC Library
	Mass Properties Library
	Propulsion Library
	Utilities Library

	Blocks — Alphabetical List
	1D Controller [A(v),B(v),C(v),D(v)]
	1D Controller Blend u=(1-L).K1.y+L.K2.y
	1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	1D Self-Conditioned [A(v),B(v),C(v),D(v)]
	2D Controller [A(v),B(v),C(v),D(v)]
	2D Controller Blend
	2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	2D Self-Conditioned [A(v),B(v),C(v),D(v)]
	3D Controller [A(v),B(v),C(v),D(v)]
	3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	3D Self-Conditioned [A(v),B(v),C(v),D(v)]
	3DoF Animation
	3DoF (Body Axes)
	3DoF (Wind Axes)
	3x3 Cross Product
	4th Order Point Mass (Longitudinal)
	4th Order Point Mass Forces (Longitudinal)
	6DoF Animation
	6DoF (Euler Angles)
	6DoF (Quaternion)
	6DoF ECEF (Quaternion)
	6DoF Wind (Quaternion)
	6DoF Wind (Wind Angles)
	6th Order Point Mass (Coordinated Flight)
	6th Order Point Mass Forces (Coordinated Flight)
	Acceleration Conversion
	Adjoint of 3x3 Matrix
	Aerodynamic Forces and Moments
	Angle Conversion
	Angular Acceleration Conversion
	Angular Velocity Conversion
	Besselian Epoch to Julian Epoch
	Calculate Range
	COESA Atmosphere Model
	Create 3x3 Matrix
	Custom Variable Mass 3DoF (Body Axes)
	Custom Variable Mass 3DoF (Wind Axes)
	Custom Variable Mass 6DoF (Euler Angles)
	Custom Variable Mass 6DoF (Quaternion)
	Custom Variable Mass 6DoF ECEF (Quaternion)
	Custom Variable Mass 6DoF Wind (Quaternion)
	Custom Variable Mass 6DoF Wind (Wind Angles)
	Density Conversion
	Determinant of 3x3 Matrix
	Direction Cosine Matrix Body to Wind
	Direction Cosine Matrix Body to Wind to Alpha and Beta
	Direction Cosine Matrix ECEF to NED
	Direction Cosine Matrix ECEF to NED to Latitude and Longitude
	Direction Cosine Matrix to Euler Angles
	Direction Cosine Matrix to Quaternions
	Direction Cosine Matrix to Wind Angles
	Discrete Wind Gust Model
	Dryden Wind Turbulence Model (Continuous)
	Dryden Wind Turbulence Model (Discrete)
	Dynamic Pressure
	ECEF Position to LLA
	Estimate Center of Gravity
	Estimate Inertia Tensor
	Euler Angles to Direction Cosine Matrix
	Euler Angles to Quaternions
	Flat Earth to LLA
	FlightGear Preconfigured 6DoF Animation
	Force Conversion
	Gain Scheduled Lead-Lag
	Generate Run Script
	Geocentric to Geodetic Latitude
	Geodetic to Geocentric Latitude
	Horizontal Wind Model
	Ideal Airspeed Correction
	Incidence & Airspeed
	Incidence, Sideslip & Airspeed
	Interpolate Matrix(x)
	Interpolate Matrix(x,y)
	Interpolate Matrix(x,y,z)
	Invert 3x3 Matrix
	ISA Atmosphere Model
	Julian Epoch to Besselian Epoch
	Lapse Rate Model
	Length Conversion
	LLA to ECEF Position
	Mach Number
	Mass Conversion
	Moments About CG Due to Forces
	Non-Standard Day 210C
	Non-Standard Day 310
	Pack net_fdm Packet for FlightGear
	Pilot Joystick
	Pressure Altitude
	Pressure Conversion
	Quaternion Conjugate
	Quaternion Division
	Quaternion Inverse
	Quaternion Modulus
	Quaternion Multiplication
	Quaternion Norm
	Quaternion Normalize
	Quaternion Rotation
	Quaternions to Direction Cosine Matrix
	Quaternions to Euler Angles
	Radius at Geocentric Latitude
	Relative Ratio
	Second Order Linear Actuator
	Second Order Nonlinear Actuator
	Self-Conditioned [A,B,C,D]
	Send net_fdm Packet to FlightGear
	Simple Variable Mass 3DoF (Body Axes)
	Simple Variable Mass 3DoF (Wind Axes)
	Simple Variable Mass 6DoF (Euler Angles)
	Simple Variable Mass 6DoF (Quaternion)
	Simple Variable Mass 6DoF ECEF (Quaternion)
	Simple Variable Mass 6DoF Wind (Quaternion)
	Simple Variable Mass 6DoF Wind (Wind Angles)
	Simulation Pace
	SinCos
	Symmetric Inertia Tensor
	Temperature Conversion
	Three-Axis Accelerometer
	Three-Axis Gyroscope
	Three-Axis Inertial Measurement Unit
	Turbofan Engine System
	Velocity Conversion
	Von Karman Wind Turbulence Model (Continuous)
	WGS84 Gravity Model
	Wind Angles to Direction Cosine Matrix
	Wind Angular Rates
	Wind Shear Model
	World Magnetic Model 2000
	World Magnetic Model 2005

	Aerospace Units
	Index

